
1

KasperskyOS Community Edition 1.1

© 2022 AO Kaspersky Lab

2

Contents

What's new

About KasperskyOS Community Edition

About this Guide

Distribution kit

System requirements

Included third-party libraries and applications

Limitations and known issues

Overview of KasperskyOS

Overview

KasperskyOS architecture

IPC

IPC mechanism

IPC control

Transport code for IPC

IPC between a process and the kernel

Resource Access Control

Structure and startup of a KasperskyOS-based solution

Getting started

Using a Docker container

Installation and removal

Con�guring the development environment

Building and running examples

Building the examples

Running examples on QEMU

Preparing Raspberry Pi 4 B to run examples

Running examples on Raspberry Pi 4 B

Development for KasperskyOS

Starting processes

Overview: Einit and init.yaml

Example init descriptions

Starting a process using the KasperskyOS API

Overview: Env program

Passing environment variables and arguments using Env

File systems and network

Contents of the VFS component

Creating an IPC channel to VFS

Building a VFS executable �le

Merging a client and VFS into one executable �le

Overview: arguments and environment variables of VFS

Mounting a �le system at startup

Using VFS backends to separate �le calls and network calls

Writing a custom VFS backend

IPC and transport

Creating IPC channels

Overview: creating IPC channels

Creating IPC channels using init.yaml

3

Dynamically created IPC channels

Using endpoints from KasperskyOS Community Edition

Adding an endpoint to a solution

Creating and using your own endpoints

Overview: IPC message structure

Finding an IPC handle

Finding an endpoint ID (riid)

Example generation of transport methods and types

KasperskyOS API

libkos library

Overview of the libkos library

Memory

Memory states

KnVmAllocate()

KnVmCommit()

KnVmDecommit()

KnVmProtect()

KnVmUnmap()

Memory allocation

KosMemAlloc()

KosMemAllocEx()

KosMemFree()

KosMemGetSize()

KosMemZalloc()

Threads

KosThreadCallback()

KosThreadCallbackRegister()

KosThreadCallbackUnregister()

KosThreadCreate()

KosThreadCurrentId()

KosThreadExit()

KosThreadGetStack()

KosThreadOnce()

KosThreadResume()

KosThreadSleep()

KosThreadSuspend()

KosThreadTerminate()

KosThreadTlsGet()

KosThreadTlsSet()

KosThreadWait()

KosThreadYield()

Handles

KnHandleClose()

KnHandleCreateBadge()

KnHandleCreateUserObject()

KnHandleRevoke()

KnHandleRevokeSubtree()

nk_get_badge_op()

4

nk_is_handle_dereferenced()

Managing handles

Handle permissions mask

Creating handles

Transferring handles

Dereferencing handles

Revoking handles

Notifying about the state of resources

Deleting handles

OCap usage example

Noti�cations

Event mask

EventDesc

KnNoticeCreate()

KnNoticeGetEvent()

KnNoticeSetObjectEvent()

KnNoticeSubscribeToObject()

Processes

EntityConnect()

EntityConnectToService()

EntityInfo

EntityInit()

EntityInitEx()

EntityRun()

Dynamically created channels

KnCmAccept()

KnCmConnect()

KnCmDrop()

KnCmListen()

NsCreate()

NsEnumServices()

NsPublishService()

NsUnPublishService()

Synchronization primitives

KosCondvarBroadcast()

KosCondvarDeinit()

KosCondvarInit()

KosCondvarSignal()

KosCondvarWait()

KosCondvarWaitTimeout()

KosEventDeinit()

KosEventInit()

KosEventReset()

KosEventSet()

KosEventWait()

KosEventWaitTimeout()

KosMutexDeinit()

KosMutexInit()

5

KosMutexInitEx()

KosMutexLock()

KosMutexLockTimeout()

KosMutexTryLock()

KosMutexUnlock()

KosRWLockDeinit()

KosRWLockInit()

KosRWLockRead()

KosRWLockTryRead()

KosRWLockTryWrite()

KosRWLockUnlock()

KosRWLockWrite()

KosSemaphoreDeinit()

KosSemaphoreInit()

KosSemaphoreSignal()

KosSemaphoreTryWait()

KosSemaphoreWait()

KosSemaphoreWaitTimeout()

DMA bu�ers

DmaInfo

DMA �ags

KnIoDmaBegin()

KnIoDmaCreate()

KnIoDmaGetInfo()

KnIoDmaGetPhysInfo()

KnIoDmaMap()

IOMMU

KnIommuAttachDevice()

KnIommuDetachDevice()

I/O ports

IoReadIoPort8(), IoReadIoPort16(), IoReadIoPort32()

IoReadIoPortBu�er8(), IoReadIoPortBu�er16(), IoReadIoPortBu�er32()

IoWriteIoPort8(), IoWriteIoPort16(), IoWriteIoPort32()

IoWriteIoPortBu�er8(), IoWriteIoPortBu�er16(), IoWriteIoPortBu�er32()

KnIoPermitPort()

KnRegisterPort8(), KnRegisterPort16(), KnRegisterPort32()

KnRegisterPorts()

Memory-mapped I/O (MMIO)

IoReadMmBu�er8(), IoReadMmBu�er16(), IoReadMmBu�er32()

IoReadMmReg8(), IoReadMmReg16(), IoReadMmReg32()

IoWriteMmBu�er8(), IoWriteMmBu�er16(), IoWriteMmBu�er32()

IoWriteMmReg8(), IoWriteMmReg16(), IoWriteMmReg32()

KnIoMapMem()

KnRegisterPhyMem()

Interrupts

KnIoAttachIrq()

KnIoDetachIrq()

KnIoDisableIrq()

6

KnIoEnableIrq()

KnRegisterIrq()

Deallocating resources

KnIoClose()

Time

KnGetMSecSinceStart()

KnGetRtcTime()

KnGetSystemTime()

KnSetSystemTime()

KnGetSystemTimeRes()

KnGetUpTime()

KnGetUpTimeRes()

RtlTimeSpec

Queues

KosQueueAlloc()

KosQueueCreate()

KosQueueDestroy()

KosQueueFlush()

KosQueueFree()

KosQueuePop()

KosQueuePush()

Memory barriers

IoReadBarrier()

IoReadWriteBarrier()

IoWriteBarrier()

Receiving information about CPU time and memory usage

Sending and receiving IPC messages

Call()

Recv()

Reply()

POSIX support

POSIX support limitations

Concurrently using POSIX and other interfaces

MessageBus component

IProviderFactory interface

IProviderControl interface

IProvider interface (MessageBus component)

ISubscriber, IWaiter and ISubscriberRunner interfaces

Return codes

Building a KasperskyOS-based solution

Building a solution image

Build process overview

Using CMake from the contents of KasperskyOS Community Edition

CMakeLists.txt boot �le

CMakeLists.txt �les for building applications

CMakeLists.txt �le for building the Einit program

init.yaml.in template

security.psl.in template

7

CMake libraries in KasperskyOS Community Edition

platform library

nk library

generate_edl_�le()

nk_build_idl_�les()

nk_build_cdl_�les()

nk_build_edl_�les()

image library

build_kos_hw_image()

build_kos_qemu_image()

Building without CMake

Tools for building a solution

Build scripts and tools

nk-gen-c

nk-psl-gen-c

einit

makekss

makeimg

Cross compilers

Example build without using CMake

Creating a bootable drive containing the solution image

Developing security policies

Formal speci�cations of KasperskyOS-based solution components

Names of process classes, components, packages and interfaces

EDL description

CDL description

IDL description

IDL data types

Describing a security policy for a KasperskyOS-based solution

General information about a KasperskyOS-based solution security policy description

PSL language syntax

Describing the global parameters of a KasperskyOS-based solution security policy

Including PSL �les

Including EDL �les

Creating security model objects

Binding methods of security models to security events

Describing security audit pro�les

Describing and performing tests for a KasperskyOS-based solution security policy

PSL data types

Examples of binding security model methods to security events

Example descriptions of basic security policies for KasperskyOS-based solutions

Example descriptions of security audit pro�les

Example descriptions of tests for KasperskyOS-based solution security policies

KasperskyOS Security models

Pred security model

Bool security model

Math security model

Struct security model

8

Base security model

Regex security model

HashSet security model

HashSet security model object

HashSet security model init rule

HashSet security model �ni rule

HashSet security model add rule

HashSet security model remove rule

HashSet security model contains expression

StaticMap security model

StaticMap security model object

StaticMap security model init rule

StaticMap security model �ni rule

StaticMap security model set rule

StaticMap security model commit rule

StaticMap security model rollback rule

StaticMap security model get expression

StaticMap security model get_uncommited expression

Flow security model

Flow security model object

Flow security model init rule

Flow security model �ni rule

Flow security model enter rule

Flow security model allow rule

Flow security model query expression

Mic security model

Mic security model object

Mic security model create rule

Mic security model execute rule

Mic security model upgrade rule

Mic security model call rule

Mic security model invoke rule

Mic security model read rule

Mic security model write rule

Mic security model query_level expression

Methods of KasperskyOS core endpoints

Virtual memory endpoint

I/O endpoint

Threads endpoint

Handles endpoint

Processes endpoint

Synchronization endpoint

File system endpoints

Time endpoint

Hardware abstraction layer endpoint

XHCI controller management endpoint

Audit endpoint

Pro�ling endpoint

9

I/O memory management endpoint

Connections endpoint

Power management endpoint

Noti�cations endpoint

Hypervisor endpoint

Trusted Execution Environment endpoints

IPC interrupt endpoint

CPU frequency management endpoint

Security patterns for development under KasperskyOS

Distrustful Decomposition pattern

Secure Logger example

Separate Storage example

Defer to Kernel pattern

Defer to Kernel example

Policy Decision Point pattern

Privilege Separation pattern

Device Access example

Information Obscurity pattern

Secure Login (Civetweb, TLS-terminator) example

Appendices

Additional examples

hello example

echo example

ping example

net_with_separate_vfs example

net2_with_separate_vfs example

embedded_vfs example

embed_ext2_with_separate_vfs example

multi_vfs_ntpd example

multi_vfs_dns_client example

multi_vfs_dhcpcd example

mqtt_publisher (Mosquitto) example

mqtt_subscriber (Mosquitto) example

gpio_input example

gpio_output example

gpio_interrupt example

gpio_echo example

koslogger example

pcre example

messagebus example

I2c_ds1307_rtc example

iperf_separate_vfs example

Uart example

spi_check_regs example

barcode_scanner example

perfcnt example

Licensing the application

Data provision

10

Information about third-party code

Trademark notices

11

KasperskyOS Community Edition 1.1.1 has the following new capabilities and re�nements:

KasperskyOS Community Edition 1.1 has the following new capabilities and re�nements:

KasperskyOS Community Edition 1.0 has the following new capabilities and re�nements:

What's new

Updated the following third-party libraries and applications:

Added support for the Raspberry Pi 4 Model B hardware platform (Revision 1.5).

FFmpeg

libxml2

Eclipse Mosquitto

opencv

OpenSSL

protobuf

sqlite

usb

Added support for working with an I2C bus in master device mode.

Added support for working with an SPI bus in master device mode.

Added support for USB HID devices.

Added support for Symmetric Multiprocessing (SMP).

Expanded capabilities for device pro�ling: added iperf library and counters that track system parameters.

Added PCRE library and usage example.

Added SPDLOG library and usage example.

Added MessageBus component and usage example.

Added dynamic code analysis tools (ASAN, UBSAN).

Added support for the Raspberry Pi 4 Model B hardware platform.

Added SD card support for the Raspberry Pi 4 Model B hardware platform.

Added Ethernet support for the Raspberry Pi 4 Model B hardware platform.

12

Added GPIO port support for the Raspberry Pi 4 Model B hardware platform.

Added network services for DHCP, DNS, and NTP and usage examples.

Added library for working with the MQTT protocol and usage examples.

13

About KasperskyOS Community Edition

KasperskyOS Community Edition (CE) is a publicly available version of KasperskyOS that is designed to help you
master the main principles of application development under KasperskyOS. KasperskyOS Community Edition will
let you see how the concepts rooted in KasperskyOS actually work in practical applications. KasperskyOS
Community Edition includes sample applications with source code, detailed explanations, and instructions and
tools for building applications.

KasperskyOS Community Edition will help you:

Learn the principles and techniques of "secure by design" development based on practical examples.

Explore KasperskyOS as a potential platform for implementing your own projects.

Make prototypes of solutions (primarily Embedded/IoT) based on KasperskyOS.

Port applications/components to KasperskyOS.

Explore security issues in software development.

KasperskyOS Community Edition lets you develop applications in the C and C++ languages. For more details about
setting up the development environment, see "Con�guring the development environment".

You can download KasperskyOS Community Edition here .

In addition to this documentation, we also recommend that you explore the materials provided in the speci�c
KasperskyOS website section for developers.

About this Guide

The KasperskyOS Community Edition Developer's Guide is intended for specialists involved in the development of
secure solutions based on KasperskyOS.

The Guide is designed for specialists who know the C/C++ programming languages, have experience developing for
POSIX-compatible systems, and are familiar with GNU Binary Utilities (binutils).

You can use the information in this Guide to:

Install and remove KasperskyOS Community Edition.

Use KasperskyOS Community Edition.

Distribution kit

The KasperskyOS SDK is a set of software tools for creating KasperskyOS-based solutions.

The distribution kit of KasperskyOS Community Edition includes the following:

DEB package for installation of KasperskyOS Community Edition, including:

Image of the KasperskyOS kernel

https://os.kaspersky.com/development/download/
https://os.kaspersky.com/development/

14

1. Debian GNU/Linux® 10 "Buster". A Docker container can be used.

2. x86-64 architecture (support for hardware virtualization is required for higher performance).

3. : it is recommended to have at least 4 GB of RAM for convenient use of the build tools.

4. : at least 3 GB of free space in the /opt folder (depending on the solution being developed).

KasperskyOS Community Edition Developer's Guide (Online Help)

Release Notes

Development tools (GCC compiler, LD linker, GDB debugger, binutils toolset, QEMU emulator, and
accompanying tools)

Utilities and scripts (for example, source code generators, makekss script for creating the Kaspersky
Security Module, and makeimg script for creating the solution image)

A set of libraries that provide partial compatibility with the POSIX standard

Drivers

System programs (for example, virtual �le system)

Usage examples for components of KasperskyOS Community Edition

End User License Agreement

Information about third-party code (Legal Notices)

The KasperskyOS SDK is installed to a computer running the Debian GNU/Linux operating system.

The following components included in the KasperskyOS Community Edition distribution kit are the Runtime
Components as de�ned by the terms of the License Agreement:

Image of the KasperskyOS kernel.

All the other components of the distribution kit are not the Runtime Components. Terms and conditions of the use
of each component can be additionally de�ned in the section "Information about third-party code".

System requirements

To install KasperskyOS Community Edition and run examples on QEMU, the following is required:

Operating system:

Processor:

RAM

Disk space

To run examples on the Raspberry Pi hardware platform, the following is required:

Raspberry Pi 4 Model B (Revision 1.1, 1.2, 1.4, 1.5) with 2, 4, or 8 GB of RAM

microSD card with at least 2 GB

USB-UART converter

15

Included third-party libraries and applications

To simplify the application development process, KasperskyOS Community Edition also includes the following
third-party libraries and applications:

 – set of libraries for writing tests for programs in C, C++ and
POSIX shell.

Documentation: https://github.com/jmmv/atf

 is a set of class libraries that utilize C++ language functionality and provide a convenient cross-
platform, high-level interface for concise coding of various everyday programming subtasks (such as working
with data, algorithms, �les, threads, and more).

Documentation: https://www.boost.org/doc/

 implements the TLS and SSL protocols as well as the corresponding encryption
algorithms and necessary support code.

Documentation: https://github.com/Mbed-TLS/mbedtls

 is an easy-to-use, powerful, embeddable web server based on C/C++ with additional support
for CGI, SSL and Lua.

Documentation: http://civetweb.github.io/civetweb/UserManual.html

 – set of libraries with open source code that let you write, convert, and transmit digital audio-
and video recordings in various formats.

Documentation: https://�mpeg.org/�mpeg.html

 – open-source formatting library.

Documentation: https://fmt.dev/latest/index.html

 – C++ code testing library.

Documentation: https://google.github.io/googletest/

 – network performance testing library.

Documentation: https://software.es.net/iperf/

 – library providing a C interface for calling previously compiled code.

Documentation: https://github.com/lib�i/lib�i

 – library for working with JPEG images.

Documentation: https://libjpeg-turbo.org/

 – library for working with JSON format.

Documentation: https://github.com/open-source-parsers/jsoncpp

 – library for working with PNG images.

Documentation: http://www.libpng.org/pub/png/libpng.html

 – library for working with XML.

Documentation: http://xmlsoft.org/

Automated Testing Framework (ATF) (v.0.20)

Boost (v.1.78.0)

Arm Mbed TLS (v.2.28.0)

Civetweb (v.1.11)

FFmpeg (v.5.1)

fmt (v.8.1.1)

GoogleTest (v.1.10.0)

iperf (v.3.10.1)

lib�i (v.3.2.1)

libjpeg-turbo (v.2.0.91)

jsoncpp (v.1.9.4)

libpng (v.1.6.38)

libxml2 (v.2.9.14)

https://github.com/jmmv/atf
https://www.boost.org/doc/
https://github.com/Mbed-TLS/mbedtls
http://civetweb.github.io/civetweb/UserManual.html
https://ffmpeg.org/ffmpeg.html
https://fmt.dev/latest/index.html
https://google.github.io/googletest/
https://software.es.net/iperf/
https://github.com/libffi/libffi
https://libjpeg-turbo.org/
https://github.com/open-source-parsers/jsoncpp
http://www.libpng.org/pub/png/libpng.html
http://xmlsoft.org/

16

1. Dynamically loaded libraries are not supported.

2. The maximum supported number of running programs is 32.

 – message broker that implements the MQTT protocol.

Documentation: https://mosquitto.org/documentation/

 – library for working with JSON format.

Documentation: https://github.com/nlohmann/json

 – library for working with the NTP time protocol.

Documentation: http://www.ntp.org/documentation.html

 – open-source computer vision library.

Documentation: https://docs.opencv.org/

 – full-�edged open-source encryption library.

Documentation: https://www.openssl.org/docs/

 – library for working with regular expressions.

Documentation: https://www.pcre.org/current/doc/html/

 – data serialization library.

Documentation: https://developers.google.com/protocol-bu�ers/docs/overview

 – logging library.

Documentation: https://github.com/gabime/spdlog

 – library for working with databases.

Documentation: https://www.sqlite.org/docs.html

 – data compression library.

Documentation: https://zlib.net/manual.html

 – library for working with USB devices.

Documentation: https://github.com/freebsd/freebsd-src/tree/release/13.0.0/sys/dev/usb

 – library for working with evdev peripheral devices.

Documentation: https://www.freedesktop.org/software/libevdev/doc/latest/

 – library for working with the ext2/3/4 �le systems.

Documentation: https://github.com/gkostka/lwext4.git

Eclipse Mosquitto (v2.0.14)

nlohmann_json (v.3.9.1)

jsoncpp (v.4.2.8P15)

opencv (v.4.6.0)

OpenSSL (v.1.1.1q)

pcre (v.8.44)

protobuf (v.3.19.4)

spdlog (v.1.9.2)

sqlite (v.3.39.2)

Zlib (v.1.2.12)

usb (v.13.0.0)

libevdev (v.1.6.0)

Lwext4 (v.1.0.0)

See also Information about third-party code.

Limitations and known issues

Because the KasperskyOS Community Edition is intended for educational purposes only, it includes several
limitations:

https://mosquitto.org/documentation/
https://github.com/nlohmann/json
http://www.ntp.org/documentation.html
https://docs.opencv.org/
https://www.openssl.org/docs/
https://www.pcre.org/current/doc/html/
https://developers.google.com/protocol-buffers/docs/overview
https://github.com/gabime/spdlog
https://www.sqlite.org/docs.html
https://zlib.net/manual.html
https://github.com/freebsd/freebsd-src/tree/release/13.0.0/sys/dev/usb
https://www.freedesktop.org/software/libevdev/doc/latest/
https://github.com/gkostka/lwext4.git

17

3. When a program is terminated through any method (for example, "return" from the main thread), the resources
allocated by the program are not released, and the program goes to sleep. Programs cannot be started
repeatedly.

4. You cannot start two or more programs that have the same EDL description.

5. The system stops if no running programs remain, or if one of the driver program threads has been terminated,
whether normally or abnormally.

18

Microkernel

Processes and endpoints

Implementation of the MILS and FLASK architectural approaches

Overview of KasperskyOS

KasperskyOS is a specialized operating system based on a separation microkernel and security monitor.

See also:

What's new

About KasperskyOS Community Edition

System requirements

Getting started

Overview

KasperskyOS is a microkernel operating system. The kernel provides minimal functionality, including scheduling of
program execution, management of memory and input/output. The code of device drivers, �le systems, network
protocols and other system software is executed in user mode (outside of the kernel context).

Software managed by KasperskyOS is executed as processes. A process is a running program that has the
following distinguishing characteristics:

It can provide endpoints to other processes and/or use the endpoints of other processes via the IPC
mechanism.

It uses core endpoints via the IPC mechanism.

It is associated with security rules that regulate the interactions of the process with other processes and with
the kernel.

An endpoint is a set of logically related methods available via the IPC mechanism (for example, an endpoint for
receiving and transmitting data over the network, or an endpoint for handling interrupts).

When developing a KasperskyOS-based system, software is designed as a set of components (programs) whose
interactions are regulated by security mechanisms. In terms of security, the degree of trust in each component
may be high or low. In other words, the system software includes trusted and untrusted components. Interactions
between di�erent components (and between components and the kernel) are controlled by the kernel (see the
�gure below), which has a high level of trust. This type of system design is based on the architectural approach
known as MILS (Multiple Independent Levels of Security), which is employed when developing critical information
systems.

19

Interaction between di�erent processes and between processes and the kernel in KasperskyOS

KasperskyOS-based solution

Security policy for a KasperskyOS-based solution

Kaspersky Security System technology

Source code generators

A decision on whether to allow or deny a speci�c interaction is made by the Kaspersky Security Module. (This
decision is referred to as the security module decision.) The security module is a kernel module whose trust level is
high like the trust level of the kernel. The kernel executes the security module decision. This type of division of
interaction management functions is based on the architectural approach known as FLASK (Flux Advanced
Security Kernel), which is used in operating systems for �exible application of security policies.

A KasperskyOS-based solution (hereinafter also referred to as the solution) consists of system software (including
the KasperskyOS kernel and Kaspersky Security Module) and applications integrated to work as part of the
software/hardware system. The programs included in a KasperskyOS-based solution are considered to be
components of the KasperskyOS-based solution (hereinafter referred to as solution components). Each instance
of a solution component is executed in the context of a separate process.

Interactions between the various processes and between processes and the KasperskyOS kernel are allowed or
denied according to the KasperskyOS-based solution security policy (hereinafter referred to as the solution
security policy or simply the policy). The solution security policy is stored in the Kaspersky Security Module and is
used by this module whenever it makes decisions on whether to allow or deny interactions.

The solution security policy can also de�ne the logic for handling queries sent by a process to the security module
via the security interface. A process can use the security interface to send some data to the security module (for
example, to in�uence future decisions made by the security module) or to receive a security module decision that
is needed by the process to determine its own further actions.

Kaspersky Security System technology lets you implement diverse security policies for solutions. You can also
combine multiple security mechanisms and �exibly regulate the interactions between di�erent processes and
between processes and the KasperskyOS kernel. A solution security policy is described by a specially developed
language known as PSL (Policy Speci�cation Language). A Kaspersky Security Module to be used in a speci�c
solution is created based on the solution security policy description.

20

KasperskyOS architecture

Kernel subsystems and their purpose

Designation Name Purpose

HAL Hardware
abstraction
subsystem

Basic hardware support: timers, interrupt controllers, memory management
unit (MMU). This subsystem includes UART drivers and low-level means for
power management.

Registration and deallocation of hardware platform resources required for
the operation of drivers, such as Interrupt ReQuest (IRQ), Memory-Mapped

Some of the source code of a KasperskyOS-based solution is created by source code generators. Specialized
programs generate the source code in C from declarative descriptions. They generate source code of the
Kaspersky Security Module, source code of the initializing program (which starts all other programs in the solution
and statically de�nes the topology of interaction between them), and the source code of the methods and types
for carrying out IPC (transport code).

Transport code is generated by the nk-gen-c compiler from declarative descriptions in IDL (Interface De�nition
Language), CDL (Component De�nition Language), and EDL (Entity De�nition Language), respectively (for details,
see Formal speci�cations of KasperskyOS-based solution components).

Source code of the Kaspersky Security Module is generated by the nk-psl-gen-c compiler from the solution
security policy description and the IDL, CDL and EDL descriptions.

Source code of the initializing program is generated by the einit tool from the solution initialization description (in
YAML format) and the IDL, CDL and EDL descriptions.

KasperskyOS architecture

The KasperskyOS architecture is presented in the �gure below:

In KasperskyOS, applications and drivers interact with each other and with the kernel by using the libkos library,
which provides the interfaces for querying core endpoints. (In KasperskyOS, a driver generally operates with the
same level of privileges as the application.) The libkos library queries the kernel by executing only three system
calls: Call(), Recv() and Reply(). These calls are implemented by the IPC mechanism. Core endpoints are
supported by kernel subsystems whose purposes are presented in the table below. Kernel subsystems interact with
hardware through the hardware abstraction layer (HAL), which makes it easier to port KasperskyOS to various
platforms.

IO I/O manager

21

Input-Output (MMIO), I/O ports, and DMA bu�ers. If hardware has an
input–output memory management unit (IOMMU), this subsystem is used
to more reliably guarantee memory allocation.

MM Physical
memory
manager

VMM Virtual memory
manager

Management of physical and virtual memory: reserving, locking, and
releasing memory. Working with memory page tables for insulating the
address spaces of processes.

THREAD Thread
manager

Thread management: creating, terminating, suspending, and resuming
threads.

TIME

Support for three classes of scheduling: real-time threads, general-
purpose threads, and IDLE – the state when there is no thread ready for
execution.

SYNC Synchronization
primitive
support
subsystem

Implementation of basic synchronization primitives: spinlock, mutex, event.
The kernel supports only one primitive – futex. All other primitives are
implemented based on a futex in the user space.

IPC Interprocess
communication
subsystem

Implementation of a synchronous IPC mechanism based on the rendezvous
principle.

KSMS Security
module
interaction
subsystem

This subsystem is used for working with the security module. It provides all
messages relayed via IPC to the security module so that these messages
can be checked.

OBJ Object
manager

Operations with �les from ROMFS: opening and closing, receiving a list of
�les and their descriptions, and receiving �le characteristics (name, size).

TASK Process
management
subsystem

Process management: starting, terminating, suspending and resuming.
Receiving the characteristics of running processes (for example, names,
paths, and priority) and their exit codes.

ELF Executable �le
loading
subsystem

Loading executable ELF �les from ROMFS into RAM, parsing headers of
ELF �les.

Debugging mechanism based on GDB (GNU Debugger). The availability of
this subsystem in the kernel is optional.

PM Power manager

Allocation and deallocation of physical memory pages, distribution of
physically contiguous page areas.

Real-time clock
subsystem

Getting the time and setting the system clock. Using clocks provided by
hardware.

SCHED Scheduler

Management of the general behavior of all KasperskyOS resources:
tracking their life cycle and assigning unique security IDs (for details,
see "Resource Access Control"). This subsystem is closely linked to the
capability-based access control mechanism (OCap).

ROMFS Immutable �le
system image
startup
subsystem

DBG Debug support
subsystem

Power management: restart and shutdown.

IPC

22

Exchanging IPC messages

1. The client sends an IPC request to the server. To do so, one of the client's threads makes the Call() system
call and is locked until an IPC response is received from the server.

2. The server thread that has made the Recv() system call waits for IPC requests. When an IPC request is
received, this thread is unlocked and handles the request, then sends an IPC response by making the Reply()
system call.

3. When an IPC response is received, the client thread is unlocked and continues execution.

Exchanging IPC messages between a client and a server

Calling methods of server endpoints

IPC mechanism

In KasperskyOS, processes interact with each other by exchanging IPC messages (IPC request and IPC response).
In an interaction between processes, there are two separate roles: client (the process that initiates the interaction)
and server (the process that handles the request). Additionally, a process that acts as a client in one interaction
can act as a server in another.

To exchange IPC messages, the client and server use three system calls: Call(), Recv() and Reply() (see the
�gure below):

IPC requests are sent to the server when the client calls endpoint methods of the server (hereinafter also referred
to as interface methods) (see the �gure below). The IPC request contains input parameters for the called method,
as well as the endpoint ID (RIID) and the called method ID (MID). Upon receiving a request, the server uses these
identi�ers to �nd the method's implementation. The server calls the method's implementation while passing in the
input parameters from the IPC request. After handling the request, the server sends the client an IPC response
that contains the output parameters of the method.

23

Calling a server endpoint method

IPC channels

1. The static mechanism involves the creation of IPC channels when the solution is started. IPC channels are
created statically by the initializing program.

2. The dynamic mechanism allows already running processes to establish IPC channels between each other.

1. The security module veri�es that the IPC message complies with the called method of the endpoint (the size of
the IPC message is veri�ed along with the size and location of certain structural elements).

2. If the IPC message is incorrect, the security module makes the "deny" decision and the next step of the
scenario is not carried out. If the IPC message is correct, the next step of the scenario is carried out.

3. The security module checks whether the security rules allow the requested action. If allowed, the security
module makes the "granted" decision. Otherwise it makes the "denied" decision.

To enable two processes to exchange IPC messages, an IPC channel must be established between them. An IPC
channel has a client side and a server side. One process can use multiple IPC channels at the same time. A process
may act as a server for some IPC channels while acting as a client for other IPC channels.

KasperskyOS has two mechanisms for creating IPC channels:

IPC control

The Kaspersky Security Module is integrated into the IPC implementation mechanism. The security module is
aware of the contents of IPC messages for all possible interactions because IDL, CDL and EDL descriptions are
used to generate the source code of this module. This enables the security module to verify that the interactions
between processes comply with the solution security policy.

The KasperskyOS kernel queries the security module each time a process sends an IPC message to another
process. The security module operating scenario includes the following steps:

The kernel executes the security module decision. In other words, it either delivers the IPC message to the
recipient process or rejects its delivery. If delivery of an IPC message is rejected, the sender process receives an
error code via the return code of the Call() or Reply() system call.

24

Controlled exchange of IPC messages between a client and a server

Transport code for developed components of a solution

Transport code for supplied components of a solution

The security module checks IPC requests as well as IPC responses. The �gure below depicts the controlled
exchange of IPC messages between a client and a server.

Transport code for IPC

Implementation of interaction between processes requires transport code, which is responsible for properly
creating, packing, sending, and unpacking IPC messages. However, developers of KasperskyOS-based solutions do
not have to write their own transport code. Instead, you can use special tools and libraries included in the
KasperskyOS SDK.

A developer of a KasperskyOS-based solution component can generate transport code based on IDL, CDL and
EDL descriptions related to this component. The KasperskyOS SDK includes the nk-gen-c compiler for this
purpose. The nk-gen-c compiler lets you generate transport methods and types for use by both a client and a
server.

Most components included in the KasperskyOS SDK may be used in a solution both locally (through static linking
with other components) as well as via IPC.

To use a supplied component via IPC, the KasperskyOS SDK provides the following transport libraries:

Solution component's client library, which converts local calls into IPC requests.

Solution component's server library, which converts IPC requests into local calls.

The client library is linked to the client code (the component code that will use the supplied component). The
server library is linked to the implementation of the supplied component (see the �gure below).

25

Using a supplied solution component via IPC

Types of resources

Handles

IPC between a process and the kernel

The IPC mechanism is used for interaction between processes and the KasperskyOS kernel. In other words,
processes exchange IPC messages with the kernel. The kernel provides endpoints, and processes use those
endpoints. Processes query core endpoints by calling functions of the libkos library (directly or via other
libraries). The client transport code for interaction between a process and the kernel is included in this library.

A solution developer is not required to create IPC channels between processes and the kernel because these
channels are created automatically when processes are created. (To set up interaction between processes, the
solution developer has to create IPC channels between them.)

The Kaspersky Security Module makes decisions regarding interaction between processes and the kernel the same
way it makes decisions regarding interaction between a process and other processes. (The KasperskyOS SDK has
IDL, CDL and EDL descriptions for the kernel that are used to generate source code of the security module.)

Resource Access Control

KasperskyOS has two types of resources:

System resources, which are managed by the kernel. Some examples of these include processes, memory
regions, and interrupts.

User resources, which are managed by processes. Examples of user resources: �les, input-output devices, data
storage.

26

Security identi�ers (SID)

When transmitting an IPC message containing handles, the kernel modi�es the message so that it contains
SID values instead of handles when the message is checked by the security module. When the IPC message
is delivered to its recipient, it will contain the handles.
The kernel also has an SID like other resources.

Security context

Resource access control by the KasperskyOS kernel

Both system resources and user resources are identi�ed by handles. Processes (and the KasperskyOS kernel) can
transfer handles to other processes. By receiving a handle, a process obtains access to the resource that is
identi�ed by this handle. In other words, the process that receives a handle can request operations to be
performed on a resource by specifying its received handle in the request. The same resource can be identi�ed by
multiple handles used by di�erent processes.

The KasperskyOS kernel assigns security identi�ers to system resources and user resources. A security identi�er
(SID) is a global unique ID of a resource (in other words, a resource can have only one SID but can have multiple
handles). The Kaspersky Security Module identi�es resources based on their SID.

Kaspersky Security System technology lets you employ security mechanisms that receive SID values as inputs.
When employing these mechanisms, the Kaspersky Security Module distinguishes resources (and the
KasperskyOS kernel) and binds security contexts to them. A security context consists of data that is associated
with an SID and used by the security module to make decisions.

The contents of a security context depend on the security mechanisms being used. For example, a security
context may contain the state of a resource and the levels of integrity of access subjects and/or access objects. If
a security context stores the state of a resource, this lets you allow certain operations to be performed on a
resource only if the resource is in a speci�c state, for example.

The security module can modify a security context when it makes a decision. For example, it can modify
information about the state of a resource (the security module used the security context to verify that a �le is in
the "not in use" state and allowed the �le to be opened for write access and wrote a new state called "opened for
write access" into the security context of this �le).

The KasperskyOS kernel controls access to resources by using two mutually complementary methods at the same
time: executing the decisions of the Kaspersky Security Module and implementing a security mechanism based on
object capabilities (OCap).

Each handle is associated with access rights to the resource identi�ed by this handle, which means it is a capability
in OCap terms. By receiving a handle, a process obtains the access rights to the resource that is identi�ed by this
handle. For example, these access rights may consist of read permissions, write permissions, and/or permissions to
allow another process to perform operations on the resource (handle transfer permission).

Processes that use the resources provided by the kernel or other processes are referred to as resource
consumers. When a resource consumer opens a system resource, the kernel sends the consumer the handle
associated with the access rights to this resource. These access rights are assigned by the kernel. Before an
operation is performed on a system resource requested by a consumer, the kernel veri�es that the consumer has
su�icient rights. If the consumer does not have su�icient rights, the kernel rejects the request of the consumer.

27

Resource access control by resource providers

Handle permissions mask structure

In an IPC message, a handle is sent together with its permissions mask. The handle permissions mask is a value
whose bits are interpreted as access rights to the resource identi�ed by the handle. A resource consumer can �nd
out their access rights to a system resource from the handle permissions mask of this resource. The kernel uses
the handle permissions mask to verify that the consumer is allowed to request the operations to be performed on
the system resource.

The security module can verify the permissions masks of handles and use these veri�cations to either allow or
deny interactions between di�erent processes and between processes and the kernel when such interactions are
related to resource access.

The kernel prohibits the expansion of access rights when handles are transferred among processes (when a handle
is transferred, access rights can only be restricted).

Processes that control user resources and access to those resources for other processes are referred to as
resource providers. For example, drivers are resource providers. Resource providers control access to resources
by using two mutually complementary methods: executing the decisions of the Kaspersky Security Module and
using the OCap mechanism that is provided by the KasperskyOS kernel.

If a resource is queried by its name (for example, to open it), the security module cannot be used to control access
to the resource without the involvement of the resource provider. This is because the security module identi�es a
resource by its SID, not by its name. In such cases, the resource provider �nds the resource handle based on the
resource name and forwards this handle (together with other data, such as the required state of the resource) to
the security module via the security interface (the security module receives the SID corresponding to the
transferred handle). The security module makes a decision and returns it to the resource provider. The resource
provider implements the decision of the security module.

When a resource consumer opens a user resource, the resource provider sends the consumer the handle
associated with the access rights to this resource. In addition, the resource provider decides which speci�c rights
for accessing the resource will be granted to the resource consumer. Before an operation is performed on a user
resource as requested by a consumer, the resource provider veri�es that the consumer has su�icient rights. If the
consumer does not have su�icient rights, the resource provider rejects the request of the consumer.

A resource consumer can �nd out their access rights to a user resource from the permissions mask of the handle
of this resource. The resource provider uses the handle permissions mask to verify that the consumer is allowed to
request the operations to be performed on the user resource.

A handle permissions mask has a size of 32 bits and consists of a general part and a specialized part. The general
part describes the general rights that are not speci�c to any particular resource (the �ags of these rights are
de�ned in the services/ocap.h header �le). For example, the general part contains the
OCAP_HANDLE_TRANSFER �ag, which de�nes the permission to transfer the handle. The specialized part describes
the rights that are speci�c to the particular user resource or system resource. The �ags of the specialized part's
permissions for system resources are de�ned in the services/ocap.h header �le. The structure of the
specialized part for user resources is de�ned by the resource provider by using the OCAP_HANDLE_SPEC() macro
that is de�ned in the services/ocap.h header �le. The resource provider must export the public header �les
describing the structure of the specialized part.

When the handle of a system resource is created, the permissions mask is de�ned by the KasperskyOS kernel,
which applies permissions masks from the services/ocap.h header �le. It applies permissions masks with names
such as OCAP_*_FULL (for example, OCAP_IOPORT_FULL, OCAP_TASK_FULL, OCAP_FILE_FULL) and OCAP_IPC_*
(for example, OCAP_IPC_SERVER, OCAP_IPC_LISTENER, OCAP_IPC_CLIENT).

28

Structure of a solution

Starting a solution

1. The bootloader starts the KasperskyOS kernel.

2. The kernel �nds and loads the security module (as a kernel module).

3. The kernel starts the initializing program.

4. The initializing program starts all other programs that are part of the solution.

When the handle of a user resource is created, the permissions mask is de�ned by the user.

When a handle is transferred, the permissions mask is de�ned by the user but the transferred access rights cannot
be elevated above the access rights of the process.

Structure and startup of a KasperskyOS-based solution

The image of the KasperskyOS-based solution loaded into hardware contains the following �les:

Image of the KasperskyOS kernel

File containing the executable code of the Kaspersky Security Module

Executable �le of the initializing program

Executable �les of all other solution components (for example, applications and drivers)

Files used by programs (for example, �les containing settings, fonts, graphical and audio data)

The ROMFS �le system is used to save �les in the solution image.

A KasperskyOS-based solution is started as follows:

29

1. Make sure that the Docker software is installed and running.

2. To download the o�icial Docker image of the Debian "Buster" 10.12 operating system from the public Docker Hub
repository, run the following command:

docker pull debian:10.12

3. To run the image, run the following command:

docker run --net=host --user root --privileged -it --rm debian:10.12 bash

4. Copy the DEB package for installation of KasperskyOS Community Edition into the container.

5. Install KasperskyOS Community Edition.

6. To ensure correct operation of certain examples:

a. Add the /usr/sbin directory to the PATH environment variable within the container by running the
following command:

export PATH=/usr/sbin:$PATH

b. Install the parted program within the container. To do so, add the following string to
/etc/apt/sources.list:

deb http://deb.debian.org/debian bullseye main

After this, run the following command:

sudo apt update && sudo apt install parted

Installation

$ apt install <path-to-deb-package>

Getting started

This section tells you what you need to know to start working with KasperskyOS Community Edition.

Using a Docker container

To install and use KasperskyOS Community Edition, you can use a Docker container in which an image of one of the
supported operating systems is deployed.

To use a Docker container for installing KasperskyOS Community Edition:

Installation and removal

KasperskyOS Community Edition is distributed as a DEB package. It is recommended to use the apt package
installer to install KasperskyOS Community Edition.

To deploy the package using apt, run the following command with root privileges:

30

$ export PATH=$PATH:/opt/KasperskyOS-Community-Edition-<version>/toolchain/bin

Removal

$ apt remove --purge kasperskyos-community-edition

Con�guring the code editor

Example of how to con�gure Visual Studio Code

1. Create a new workspace or open an existing workspace in Visual Studio Code.

A workspace can be opened implicitly by using the File > Open folder menu options.

2. Make sure the C/C++ for Visual Studio Code extension is installed.

3. In the View menu, select the Command Palette item.

4. Select the C/C++: Edit Configurations (UI) item.

The package will be installed in /opt/KasperskyOS-Community-Edition-<version>.

For convenient operation, you can add the path to the KasperskyOS Community Edition tools binaries to the PATH
variable. This will allow you to use the tools via the terminal from any folder:

To remove KasperskyOS Community Edition, run the following command with root privileges:

All installed �les in the /opt/KasperskyOS-Community-Edition-<version> directory will be deleted.

Con�guring the development environment

This section provides brief instructions on con�guring the development environment and adding the header �les
included in KasperskyOS Community Edition to a development project.

Before getting started, you should do the following to simplify your development of solutions based on
KasperskyOS:

Install code editor extensions and plugins for your programming language (C and/or C++).

Add the header �les included in KasperskyOS Community Edition to the development project.

The header �les are located in the directory: /opt/KasperskyOS-Community-Edition-
<version>/sysroot-aarch64-kos/include.

For example, during KasperskyOS development, you can work with source code in Visual Studio Code.

To more conveniently navigate the project code, including the system API:

https://code.visualstudio.com/docs/languages/cpp

31

5. In the Include path �eld, enter /opt/KasperskyOS-Community-Edition-<version>/sysroot-
aarch64-kos/include.

6. Close the C/C++ Configurations window.

Examples must be built in the home directory. For this reason, the directory containing the example that you
need to build must be copied from /opt/KasperskyOS-Community-Edition-<version>/examples to
the home directory.

Building the examples to run on QEMU

$./cross-build.sh

Building the examples to run on Raspberry Pi 4 B

1. Go to the directory with the example.

2. Open the cross-build.sh script �le in a text editor.

3. In the last line of the script �le, replace the make sim command with make kos-image.

4. Save the script �le and then run the command:

$./cross-build.sh

Building and running examples

Building the examples

The examples are built using the CMake build system that is included in KasperskyOS Community Edition.

The code of the examples and build scripts are available at the following path:

/opt/KasperskyOS-Community-Edition-<version>/examples

To build an example, go to the directory with the example and run this command:

Running cross-build.sh creates a KasperskyOS-based solution image that includes the example. The kos-
qemu-image solution image is located in the <name of example>/build/einit directory.

To build an example:

Running cross-build.sh creates a KasperskyOS-based solution image that includes the example. The kos-
image solution image is located in the <name of example>/build/einit directory.

32

Running examples on QEMU on Linux with a graphical shell

$ sudo ./cross-build.sh

Running examples on QEMU on Linux without a graphical shell

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15,secure=on -cpu cortex-a72 -
nographic -monitor none -smp 4 -nic user -serial stdio -kernel kos-qemu-image

Connecting a computer and Raspberry Pi 4 B

1. Connect the pins of the FT232 USB-UART converter to the corresponding GPIO pins of the Raspberry Pi 4 B
(see the �gure below).

Running examples on QEMU

An example is run on QEMU on Linux with a graphical shell using the cross-build.sh script, which also builds the
example. To run the script, go to the folder with the example and run the command:

Additional QEMU parameters must be used to run certain examples. The commands used to run these examples
are provided in the descriptions of these examples.

To run an example on QEMU on Linux without a graphical shell, go to the directory with the example, build the
example and run the following commands:

Preparing Raspberry Pi 4 B to run examples

To see the output of the examples on the computer:

33

Diagram for connecting the USB-UART converter and Raspberry Pi 4 B

2. Connect the computer's USB port to the USB-UART converter.

3. Install PuTTY or a similar program for reading data from a COM port. Con�gure the settings as follows: bps =
115200, data bits = 8, stop bits = 1, parity = none, flow control = none.

1. Connect the network cards of the computer and Raspberry Pi 4 B to a switch or to each other.

2. Con�gure the computer's network card so that its IP address is in the same subnet as the IP address of the
Raspberry Pi 4 B network card (the settings of the Raspberry Pi 4 B network card are de�ned in the
dhcpcd.conf �le, which is found at the path <example name>/resources/...).

Preparing a bootable SD card for Raspberry Pi 4 B

To create a bootable drive image file (*.img),
run the script corresponding to the revision of your
Raspberry Pi. Supported revisions: 1.1, 1.2, 1.4 and 1.5.
For example, if revision 1.1 is used, run:
$ sudo /opt/KasperskyOS-Community-Edition-
<version>/examples/rpi4_prepare_fs_image_rev1.1.sh
In the following command, path_to_img is the path to the image file
of the bootable drive (this path is displayed upon completion
of the previous command), [X] is the final character
in the name of the SD card block device.
$ sudo dd bs=64k if=path_to_img of=/dev/sd[X] conv=fsync

1. Build the U-Boot bootloader for ARMv8, which will automatically run the example. To do this, run the following
commands:

To allow a computer and Raspberry Pi 4 B to interact through Ethernet:

A bootable SD card for Raspberry Pi 4 B can be prepared automatically or manually.

To automatically prepare the bootable SD card, connect the SD card to the computer and run the following
commands:

To manually prepare the bootable SD card:

34

$ sudo apt install git build-essential libssl-dev bison flex unzip parted gcc-
aarch64-linux-gnu xz-utils device-tree-compiler
$ git clone https://github.com/u-boot/u-boot.git u-boot-armv8
For Raspberry Pi 4 B revisions 1.1 and 1.2 only:
$ cd u-boot-armv8 && git checkout tags/v2020.10
For Raspberry Pi 4 B revisions 1.4 and 1.5 only:
$ cd u-boot-armv8 && git checkout tags/v2022.01
For all Raspberry Pi revisions:
$ make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- rpi_4_defconfig
In the menu that appears when you run the following command,
in the 'Boot options' section, change the value in the 'bootcmd value' field to
the following:
fatload mmc 0 ${loadaddr} kos-image; bootelf ${loadaddr},
and delete the value "usb start;" in the 'preboot default value' field.
Exit the menu after saving the settings.
$ make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- menuconfig
$ make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- u-boot.bin

2. Prepare the image containing the �le system for the SD card. To do this, connect the SD card to the computer
and run the following commands:

For Raspberry Pi 4 B revisions 1.1 and 1.2 only:
$ wget https://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2020-
02-14/2020-02-13-raspbian-buster-lite.zip
$ unzip 2020-02-13-raspbian-buster-lite.zip
$ loop_device=$(sudo losetup --find --show --partscan 2020-02-13-raspbian-buster-
lite.img)
For Raspberry Pi 4 B revision 1.4 only:

$ unxz 2022-04-04-raspios-bullseye-arm64-lite.img.xz
$ loop_device=$(sudo losetup --find --show --partscan 2022-04-04-raspios-bullseye-
arm64-lite.img)
For Raspberry Pi 4 B revision 1.5 only:

$ unxz 2022-09-06-raspios-bullseye-arm64-lite.img.xz
$ loop_device=$(sudo losetup --find --show --partscan 2022-09-06-raspios-bullseye-
arm64-lite.img)
For all Raspberry Pi revisions:
Image will contain a boot partition of 1 GB in fat32 and 3 partitions of 256 MB
each in ext2, ext3 and ext4, respectively:
$ sudo parted ${loop_device} rm 2
$ sudo parted ${loop_device} resizepart 1 1G
$ sudo parted ${loop_device} mkpart primary ext2 1000 1256M
$ sudo parted ${loop_device} mkpart primary ext3 1256 1512M
$ sudo parted ${loop_device} mkpart primary ext4 1512 1768M
$ sudo mkfs.ext2 ${loop_device}p2
$ sudo mkfs.ext3 ${loop_device}p3
$ sudo mkfs.ext4 -O ^64bit,^extent ${loop_device}p4
$ sudo losetup -d ${loop_device}
In the following command, [X] is the last symbol in the name of the block device
for the SD card.
$ sudo dd bs=64k if=$(ls *rasp*lite.img) of=/dev/sd[X] conv=fsync

3. Copy the U-Boot bootloader to the SD card by running the following commands:

$ wget https://downloads.raspberrypi.org/raspios_lite_arm64/images/raspios_lite_arm6
2022-04-07/2022-04-04-raspios-bullseye-arm64-lite.img.xz

$ wget https://downloads.raspberrypi.org/raspios_lite_arm64/images/raspios_lite_arm6
2022-09-07/2022-09-06-raspios-bullseye-arm64-lite.img.xz

35

In the following commands, the path ~/mnt/fat32 is just an example. You
can use a different path.
$ mkdir -p ~/mnt/fat32
In the following command, [X] is the last alphabetic character in the name of the
block
device for the partition on the formatted SD card.
$ sudo mount /dev/sd[X]1 ~/mnt/fat32/
$ sudo cp u-boot.bin ~/mnt/fat32/u-boot.bin
For Raspberry Pi 4 B revision 1.5 only:
In the following commands, the path ~/tmp_dir is just an example. You
can use a different path.
$ mkdir -p ~/tmp_dir
$ cp ~/mnt/fat32/bcm2711-rpi-4-b.dtb ~/tmp_dir
$ dtc -I dtb -O dts -o ~/tmp_dir/bcm2711-rpi-4-b.dts ~/tmp_dir/bcm2711-rpi-4-b.dtb
&& \
$ sed -i -e "0,/emmc2bus = /s/emmc2bus =.*//" ~/tmp_dir/bcm2711-rpi-4-b.dts && \
$ sed -i -e "s/dma-ranges = <0x00 0xc0000000 0x00 0x00 0x40000000>;/dma-ranges =
<0x00 0x00 0x00 0x00 0xfc000000>;/" ~/tmp_dir/bcm2711-rpi-4-b.dts && \
$ sed -i -e "s/mmc@7e340000 {/mmc@7e340000 {\n\t\t\tranges = <0x00 0x7e000000 0x00
0xfe000000 0x1800000>;\n dma-ranges = <0x00 0x00 0x00 0x00 0xfc000000>;/"
~/tmp_dir/bcm2711-rpi-4-b.dts && \
$ dtc -I dts -O dtb -o ~/tmp_dir/bcm2711-rpi-4-b.dtb ~/tmp_dir/bcm2711-rpi-4-b.dts
$ sudo cp ~/tmp_dir/bcm2711-rpi-4-b.dtb ~/mnt/fat32/bcm2711-rpi-4-b.dtb
$ sudo rm -rf ~/tmp_dir

4. Fill in the con�guration �le for the U-Boot bootloader on the SD card by using the following commands:

$ echo "[all]" > ~/mnt/fat32/config.txt
$ echo "arm_64bit=1" >> ~/mnt/fat32/config.txt
$ echo "enable_uart=1" >> ~/mnt/fat32/config.txt
$ echo "kernel=u-boot.bin" >> ~/mnt/fat32/config.txt
$ echo "dtparam=i2c_arm=on" >> ~/mnt/fat32/config.txt
$ echo "dtparam=i2c=on" >> ~/mnt/fat32/config.txt
$ echo "dtparam=spi=on" >> ~/mnt/fat32/config.txt
$ sync
$ sudo umount ~/mnt/fat32

1. Go to the directory with the example and build the example.

2. Make sure that Raspberry Pi 4 B and the bootable SD card are prepared to run examples.

3. Copy the KasperskyOS-based solution image to the bootable SD card. To do this, connect the bootable SD
card to the computer and run the following commands:

In the following command, [X] is the last alphabetic character in the name of the
block
device for the partition on the bootable SD card.
In the following commands, the path ~/mnt/fat32 is just an example. You

Running examples on Raspberry Pi 4 B

To run an example on a Raspberry Pi 4 B:

36

can use a different path.
$ sudo mount /dev/sd[X]1 ~/mnt/fat32/
$ sudo cp build/einit/kos-image ~/mnt/fat32/kos-image
$ sync
$ sudo umount ~/mnt/fat32

4. Connect the bootable SD card to the Raspberry Pi 4 B.

5. Supply power to the Raspberry Pi 4 B and wait for the example to run.

The output displayed on the computer indicates that the example started.

37

Einit initializing program

Generating the C-code of the initializing program

You are not required to create static description �les for the initializing program. These �les are included in
the KasperskyOS Community Edition toolkit and are automatically connected during a solution build.
However, the Einit process class must be described in the security.psl �le.

Syntax of init.yaml

Process dictionary keys in an init description

Key Required Value

name Yes Process security class

Development for KasperskyOS

Starting processes

Overview: Einit and init.yaml

At startup, the KasperskyOS kernel �nds the executable �le named Einit (initializing program) in the solution
image and runs this executable �le. The running process has the Einit class and is normally used to start all other
processes that are required when the solution is started.

The KasperskyOS Community Edition toolkit includes the einit tool, which lets you generate the C-code of the
initializing program based on the init description (the description �le is normally named init.yaml). The obtained
program uses the KasperskyOS API to do the following:

Statically create and run processes.

Statically create IPC channels.

The standard way of using the einit tool is to integrate an einit call into one of the steps of the build script. As a
result, the einit tool uses the init.yaml �le to generate the einit.c �le containing the code of the initializing
program. In one of the following steps of the build script, you must compile the einit.c �le into the executable �le
of Einit and include it into the solution image.

An init description contains data in YAML format. This data identi�es the following:

Processes that are started when KasperskyOS is loaded.

IPC channels that are used by processes to interact with each other.

This data consists of a dictionary with the entities key containing a list of dictionaries of processes. Process
dictionary keys are presented in the table below.

38

task No Process name. If this name is not speci�ed, the security class name will be used.
Each process must have a unique name.

You can start multiple processes of the same security class if they have
di�erent names.

path No

Name of the executable �le in ROMFS (in the solution image) from which the
process will be started. If this name is not speci�ed, the security class name
(without pre�xes and dots) will be used. For example, processes of the Client
and net.Client security classes for which an executable �le name is not
speci�ed will be started from the Client �le.

You can start multiple processes from the same executable �le.

connections No

Process IPC channel dictionaries list. This list de�nes the statically created IPC
channels whose client handles will be owned by the process. The list is empty by
default. (In addition to statically created IPC channels, processes can also use
dynamically created IPC channels.)

args No
List of arguments passed to the process (the main() function). The maximum
size of one item on the list is bytes.

env No
Dictionary of environment variables passed to the process. The keys in this
dictionary are the names of variables mapped to the passed values. The
maximum size of a value is bytes.

IPC channel dictionary keys in an init description

Key Required Value

id Yes
IPC channel name, which can be de�ned as a speci�c value or as a link such as

{var: <constant name>, include: <path to header file>} .

target Yes Name of the process that will own the server handle of the IPC channel.

Examples in KasperskyOS Community Edition may utilize a macro-containing init description format
(init.yaml.in).

Connecting and starting a client process and server process

init.yaml

1024

1024

Process IPC channel dictionary keys are presented in the table below.

Example init descriptions

This section contains init descriptions that demonstrate various aspects of starting processes.

The �le containing an init description is usually named init.yaml, but it can have any name.

In the next example, two processes will be started: one process of the Client class and one process of the
Server class. The names of the processes are not speci�ed, so they will match the names of their respective
process classes. The names of the executable �les are not speci�ed either, so they will also match the names of
their respective classes. The processes will be connected by an IPC channel named server_connection.

39

entities:
- name: Client
 connections:
 - target: Server
 id: server_connection
- name: Server

Specifying the executable �le to run

init.yaml

entities:
- name: Client
 path: cl
- name: ClientServer
 path: csr
- name: MainServer
 path: msr

Starting two processes from the same executable �le

init.yaml

entities:
- name: Client
- name: MainServer
 path: srv
- name: BkServer
 path: srv

Starting two processes of the same class

init.yaml

entities:
- name: Client
 connections:
 - id: server_connection_us

The next example will run a Client-class process from the cl executable �le, a ClientServer-class process
from the csr executable �le, and a MainServer-class process from the msr executable �le. The names of the
processes are not speci�ed, so they will match the names of their respective process classes.

The next example will run three processes: a Client-class process from the default executable �le (Client), and
processes of the MainServer and BkServer classes from the srv executable �le. The names of the processes
are not speci�ed, so they will match the names of their respective process classes.

The next example will run one Client-class process (named Client by default) and two Server-class processes
named UserServer and PrivilegedServer. The client process is linked to the server processes through IPC
channels named server_connection_us and server_connection_ps, respectively. The names of the
executable �les are not speci�ed, so they will match the names of their respective process classes.

40

 target: UserServer
 - id: server_connection_ps
 target: PrivilegedServer
- task: UserServer
 name: Server
- task: PrivilegedServer
 name: Server

Passing environment variables and arguments using the main() function

If the Env program is used in a solution, the arguments and environment variables passed through this
program rede�ne the values that were de�ned through init.yaml.

init.yaml

entities:
- name: VfsFirst
 args:
 - -f
 - /etc/fstab
 env:
 ROOTFS: ramdisk0,0 / ext2 0
 UNMAP_ROMFS: 1
- name: VfsSecond
 args:
 - -l
 - devfs /dev devfs 0

 uses the EntityInitEx() and EntityRun() functions to run an executable �le from the
solution image.

#define CONNECT_RETRY 150 /* Number of connection attempts */
#define CONNECT_DELAY 10 /* Delay (ms) between attempts */

The next example will run two processes: one VfsFirst-class process (named VfsFirst by default) and one
VfsSecond-class process (named VfsSecond by default). At startup, the �rst process receives the -f
/etc/fstab argument and the following environment variables: ROOTFS with the value and
UNMAP_ROMFS with the value . At startup, the second process receives the -l devfs /dev devfs 0 argument.

ramdisk0,0 / ext2 0
1

The names of the executable �les are not speci�ed, so they will match the names of their respective process
classes.

Starting a process using the KasperskyOS API

This example

Below is the code of the GpMgrOpenSession() function, which starts the server process, connects it to the
client process and initializes IPC transport. The executable �le of the new process must be contained in the
ROMFS storage of the solution.

41

/**
 * The "classname" parameter defines the class name of the started process,
 * the "server" parameter defines a unique name for the process, and the "service"
parameter contains the service name
 * that is used when dynamically creating a channel.
 * Output parameter "transport" contains the initialized transport
 * if an IPC channel to the client was successfully created.
 */
Retcode GpMgrOpenSession(const char *classname, const char *server,
 const char *service, NkKosTransport *transport)
{
 Retcode rc;
 Entity *e;
 EntityInfo tae_info;
 Handle endpoint;
 rtl_uint32_t riid;
 int count = CONNECT_RETRY;

 /* Initializes the process description structure. */
 rtl_memset(&tae_info, 0, sizeof(tae_info));
 tae_info.eiid = classname;
 tae_info.args[0] = server;
 tae_info.args[1] = service;

 /* Creates a process named "server" with the tae_info description.
 * The third parameter is equal to RTL_NULL, therefore the name of the started
 * binary file matches the class name from the tae_info description.
 * The created process is in the stopped state. */
 if ((e = EntityInitEx(&tae_info, server, RTL_NULL)) == NK_NULL)
 {
 rtl_printf("Cannot init entity '%s'\n", tae_info.eiid);
 return rcFail;
 }

 /* Starts the process. */
 if ((rc = EntityRun(e)) != rcOk)
 {
 rtl_printf("Cannot launch entity %" RTL_PRId32 "\n", rc);
 EntityFree(e);
 return rc;
 }

 /* Dynamically creates an IPC channel. */
 while ((rc = KnCmConnect(server, service, INFINITE_TIMEOUT, &endpoint, &riid) ==
 rcResourceNotFound && count--)
 {
 KnSleep(CONNECT_DELAY);
 }
 if (rc != rcOk)
 {
 rtl_printf("Cannot connect to server %" RTL_PRId32 "\n", rc);
 return rc;
 }

 /* Initializes IPC transport. */
 NkKosTransport_Init(transport, endpoint, NK_NULL, 0);
 ...

 return rcOk;
}

42

To enable a process to start other processes, the solution security policy must allow this process to use the
following core endpoints: Handle, Task and VMM (their descriptions are in the directory kl\core\).

A process query to Env rede�nes the arguments and environment variables received through Einit .

Env program code

Example of passing arguments at process startup

Overview: Env program

The Env program is intended for passing arguments and environment variables to started processes. When
started, each process automatically sends a request to the Env process and receives the necessary data.

To use the Env program in your solution, you need to do the following:

1. Develop the code of the Env program by using macros from env/env.h.

2. Build the binary �le of the Env program by linking it to the env_server library.

3. In the init description, indicate that the Env process must be started and connected to the selected processes
(Env acts a server in this case). The channel name is de�ned by the ENV_SERVICE_NAME macro declared in the
env/env.h �le.

4. Include the Env binary �le in the solution image.

The code of the Env program utilizes the following macros and functions declared in the env/env.h �le:

ENV_REGISTER_ARGS(name,argarr) – arguments from the argarr array are passed to the process named
name (the maximum size of one element is bytes).

ENV_REGISTER_VARS(name,envarr) – environment variables from the envarr array are passed to the
process named name (the maximum size of one element is bytes).

ENV_REGISTER_PROGRAM_ENVIRONMENT(name,argarr,envarr) – arguments and environment variables are
passed to the process named name.

envServerRun() – initialize the server part of the Env program so that it can respond to requests.

256

256

Env usage examples

Passing environment variables and arguments using Env

43

env.c

#include <env/env.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
 const char* NetVfsArgs[] = {
 "-l", "devfs /dev devfs 0",
 "-l", "romfs /etc romfs 0"
 };
 ENV_REGISTER_ARGS("NetVfs", NetVfsArgs);

 envServerRun();
 return EXIT_SUCCESS;
}

Example of passing environment variables at process startup

env.c

#include <env/env.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
 const char* Vfs3Envs[] = {
 "ROOTFS=ramdisk0,0 / ext2 0",
 "UNMAP_ROMFS=1"
 };

 ENV_REGISTER_VARS("Vfs3", Vfs3Envs);

 envServerRun();
 return EXIT_SUCCESS;
}

Below is the code of the Env program. When the process named NetVfs starts, the program passes three
arguments to this process: NetVfs, -l devfs /dev devfs 0 and -l romfs /etc romfs 0:

Below is the code of the Env program. When the process named Vfs3 starts, the program passes two
environment variables to this process: ROOTFS=ramdisk0,0 / ext2 0 and UNMAP_ROMFS=1:

File systems and network

Contents of the VFS component

The VFS component contains a set of executable �les, libraries and description �les that let you use �le systems
and/or a network stack combined into a separate Virtual File System (VFS) process. If necessary, you can build
your own VFS implementations.

44

VFS libraries

VFS executable �les

VFS description �les

The vfs CMake package contains the following libraries:

vfs_fs – contains the defvs, ramfs and romfs implementations, and lets you add implementations of other �le
systems to VFS.

vfs_net – contains the defvs implementation and network stack.

vfs_imp – contains the sum of the vfs_fs and vfs_net components.

vfs_remote – client transport library that converts local calls into IPC requests to VFS and receives IPC
responses.

vfs_server – server transport library of VFS that receives IPC requests, converts them into local calls, and
sends IPC responses.

vfs_local – used for statically linking the client to VFS libraries.

The precompiled_vfs CMake package contains the following executable �les:

VfsRamFs

VfsSdCardFs

VfsNet

The VfsRamFs and VfsSdCardFs executable �les include the vfs_server, vfs_fs, vfat and lwext4 libraries.
The VfsNet executable �le includes the vfs_server, vfs_imp and dnet_imp libraries.

Each of these executable �les have their own default values for arguments and environment variables.

If necessary, you can independently build a VFS executable �le with the necessary functionality.

The directory /opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-kos/include/kl/
contains the following VFS �les:

VfsRamFs.edl, VfsSdCardFs.edl, VfsNet.edl and VfsEntity.edl, and the header �les generated from
them, including the transport code.

Vfs.cdl and the generated Vfs.cdl.h.

Vfs*.idl and the header �les generated from them, including the transport code.

Creating an IPC channel to VFS

45

init.yaml

- name: Client
 connections:
 - target: VfsFsnet
 id: {var: _VFS_CONNECTION_ID, include: vfs/defs.h}

- name: VfsFsnet

Building a "�le version" of VFS

CMakeLists.txt

project (vfsfs)

include (platform/nk)

Set compile flags
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

add_executable (VfsFs "src/vfs.c")

Linking with VFS libraries
target_link_libraries (VfsFs
 ${vfs_SERVER_LIB}
 ${LWEXT4_LIB}
 ${vfs_FS_LIB})

Let's examine a Client program using �le systems and Berkeley sockets. To handle its calls, we start one VFS
process (named VfsFsnet). Network calls and �le calls will be sent to this process. This approach is utilized when
there is no need to separate �le data streams from network data streams.

To ensure correct interaction between the Client and VfsFsnet processes, the name of the IPC channel
between them must be de�ned by the _VFS_CONNECTION_ID macro declared in the vfs/defs.h �le.

Below is a fragment of an init description for connecting the Client and VfsFsnet processes.

Building a VFS executable �le

When building a VFS executable �le, you can include whatever speci�c functionality is required in this �le, such as:

Implementation of a speci�c �le system

Network stack

Network driver

For example, you will need to build a "�le version" and a "network version" of VFS to separate �le calls from network
calls. In some cases, you will need to include a network stack and �le systems in the VFS ("full version" of VFS).

Let's examine a VFS program containing only an implementation of the lwext4 �le system without a network stack.
To build this executable �le, the �le containing the main() function must be linked to the vfs_server, vfs_fs
and lwext4 libraries:

46

Prepare VFS to connect to the ramdisk driver process
set_target_properties (VfsFs PROPERTIES ${blkdev_ENTITY}_REPLACEMENT
${ramdisk_ENTITY})

A block device driver cannot be linked to VFS and therefore must also be run as a separate process.

Interaction between three processes: client, "�le version" of VFS, and block device driver.

Building a "network version" of VFS together with a network driver

CMakeLists.txt

project (vfsnet)

include (platform/nk)

Set compile flags
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

add_executable (VfsNet "src/vfs.c")

Linking with VFS libraries
target_link_libraries (VfsNet
 ${vfs_SERVER_LIB}
 ${vfs_IMPLEMENTATION_LIB}
 ${dnet_IMPLEMENTATION_LIB})

Disconnect the block device driver
set_target_properties (VfsNet PROPERTIES ${blkdev_ENTITY}_REPLACEMENT "")

The dnet_implementation library already includes a network driver, therefore it is not necessary to start a
separate driver process.

Let's examine a VFS program containing a network stack with a driver but without implementations of �les
systems. To build this executable �le, the �le containing the main() function must be linked to the vfs_server,
vfs_implementation and dnet_implementation libraries.

47

Interaction between the Client process and the process of the "network version" of VFS

Building a "network version" of VFS with a separate network driver

CMakeLists.txt

project (vfsnet)

include (platform/nk)

Set compile flags
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

add_executable (VfsNet "src/vfs.c")

Linking with VFS libraries
target_link_libraries (VfsNet
 ${vfs_SERVER_LIB}
 ${vfs_IMPLEMENTATION_LIB}
 ${dnet_CLIENT_LIB})

Disconnect the block device driver
set_target_properties (VfsNet PROPERTIES ${blkdev_ENTITY}_REPLACEMENT "")

Interaction between three processes: client, "network version" of VFS, and network driver.

Another option is to build the "network version" of VFS without a network driver. The network driver will need to be
started as a separate process. Interaction with the driver occurs via IPC using the dnet_client library.

In this case, the �le containing the main() function must be linked to the vfs_server, vfs_implementation
and dnet_client libraries.

48

Building a "full version" of VFS

CMakeLists.txt

project (client)

include (platform/nk)

Set compile flags
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

Generates the Client.edl.h file
nk_build_edl_files (client_edl_files NK_MODULE "client" EDL
"${CMAKE_SOURCE_DIR}/resources/edl/Client.edl")

add_executable (Client "src/client.c")
add_dependencies (Client client_edl_files)

Linking with VFS libraries
target_link_libraries (Client ${vfs_LOCAL_LIB} ${vfs_IMPLEMENTATION_LIB}
${dnet_IMPLEMENTATION_LIB}

If the VFS needs to include a network stack and implementations of �le systems, the build should use the
vfs_server library, vfs_implementation library, dnet_implementation library (or dnet_client library for a
separate network driver), and the libraries for implementing �le systems.

Merging a client and VFS into one executable �le

Let's examine a Client program using Berkeley sockets. Calls made by the Client must be sent to VFS. The
normal path consists of starting a separate VFS process and creating an IPC channel. Alternatively, you can
integrate VFS functionality directly into the Client executable �le. To do so, when building the Client executable
�le, you need to link it to the vfs_local library that will receive calls, and link it to the implementation libraries
vfs_implementation and dnet_implementation.

Local linking with VFS is convenient during debugging. In addition, calls for working with the network can be
handled much faster due to the exclusion of IPC calls. Nevertheless, insulation of the VFS in a separate process
and IPC interaction with it is always recommended as a more secure approach.

Below is a build script for the Client executable �le.

49

If the Client uses �le systems, it must also be linked to the vfs_fs library and to the implementation of the
utilized �le system in addition to its linking to vfs_local. You also need to add a block device driver to the
solution.

VFS arguments

VFS environment variables

Default values

Overview: arguments and environment variables of VFS

-l <entry in fstab format>

The -l argument lets you mount the �le system.

-f <path to fstab file>

The -f argument lets you pass the �le containing entries in fstab format for mounting �le systems. The ROMFS
storage will be searched for the �le. If the UMNAP_ROMFS variable is de�ned, the �le system mounted using the
ROOTFS variable will be searched for the �le.

Example of using the -l and -f arguments

UNMAP_ROMFS

If the UNMAP_ROMFS variable is de�ned, the ROMFS storage will be deleted. This helps conserve memory and
change behavior when using the -f argument.

ROOTFS = <entry in fstab format>

The ROOTFS variable lets you mount a �le system to the root directory. In combination with the UNMAP_ROMFS
variable and the -f argument, it lets you search for the fstab �le in the mounted �le system instead of in the
ROMFS storage. ROOTFS usage example

VFS_CLIENT_MAX_THREADS

The VFS_CLIENT_MAX_THREADS environment variable lets you rede�ne the SDK con�guration parameter
VFS_CLIENT_MAX_THREADS during VFS startup.

_VFS_NETWORK_BACKEND=<backend name>:<name of the IPC channel to VFS>

The _VFS_NETWORK_BACKEND variable de�nes the backend used for network calls. You can specify the name of a
standard backend such as , or , and the name of a custom backend. If the backend is used,
the name of the IPC channel is not speci�ed (_VFS_NETWORK_BACKEND=local:). You can specify two or more IPC
channels by separating them with a comma.

client server local local

_VFS_FILESYSTEM_BACKEND=<backend name>:<name of the IPC channel to VFS>

The _VFS_FILESYSTEM_BACKEND variable de�nes the backend used for �le calls. The backend name and name
of the IPC channel to VFS are de�ned the same as way as they were for the _VFS_NETWORK_BACKEND variable.

For the VfsRamFs executable �le:

50

ROOTFS = ramdisk0,0 / ext4 0
VFS_FILESYSTEM_BACKEND = server:kl.VfsRamFs

ROOTFS = mmc0,0 / fat32 0
VFS_FILESYSTEM_BACKEND = server:kl.VfsSdCardFs
-l nodev /tmp ramfs 0
-l nodev /var ramfs 0

VFS_NETWORK_BACKEND = server:kl.VfsNet
VFS_FILESYSTEM_BACKEND = server:kl.VfsNet
-l devfs /dev devfs 0

Mounting with the -l argument

env.c

#include <env/env.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
 const char* Vfs1Args[] = {
 "-l", "devfs /dev devfs 0",
 "-l", "romfs /etc romfs 0"
 };

 ENV_REGISTER_ARGS("Vfs1", Vfs1Args);

 envServerRun();

 return EXIT_SUCCESS;

For the VfsSdCardFs executable �le:

For the VfsNet executable �le:

Mounting a �le system at startup

When the VFS process starts, only the RAMFS �le system is mounted to the root directory by default. If you need
to mount other �le systems, this can be done not only by using the mount() call after the VFS starts but can also
be done immediately when the VFS process starts by passing the necessary arguments and environment variables
to it.

Let's examine three examples of mounting �le systems at VFS startup. The Env program is used to pass arguments
and environment variables to the VFS process.

A simple way to mount a �le system is to pass the -l <entry in fstab format> argument to the VFS process.

In this example, the devfs and romfs �le systems will be mounted when the process named Vfs1 is started.

51

}

Mounting with fstab from ROMFS

env.c

#include <env/env.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
 const char* Vfs2Args[] = { "-f", "fstab" };

 ENV_REGISTER_ARGS("Vfs2", Vfs2Args);

 envServerRun();

 return EXIT_SUCCESS;
}

Mounting with an external fstab

1. ROOTFS. This variable lets you mount the �le system containing the fstab �le into the root directory.

2. UNMAP_ROMFS. If this variable is de�ned, the ROMFS storage is deleted. As a result, the fstab �le will be sought
in the �le system mounted using the ROOTFS variable.

3. -f. This argument is used to de�ne the path to the fstab �le.

env.c

#include <env/env.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
 const char* Vfs3Args[] = { "-f", "/etc/fstab" };

 const char* Vfs3Envs[] = {
 "ROOTFS=ramdisk0,0 / ext2 0",
 "UNMAP_ROMFS=1"

If an fstab �le is added when building a solution, the �le will be available through the ROMFS storage after startup.
It can be used for mounting by passing the -f <path to fstab file> argument to the VFS process.

In this example, the �le systems de�ned via the fstab �le that was added during the solution build will be mounted
when the process named Vfs2 is started.

Let's assume that the fstab �le is located on a drive and not in the ROMFS image of the solution. To use it for
mounting, you need to pass the following arguments and environment variables to VFS:

In the next example, the ext2 �le system containing the /etc/fstab �le used for mounting additional �le systems
will be mounted to the root directory when the process named Vfs3 starts. The ROMFS storage will be deleted.

52

 };

 ENV_REGISTER_PROGRAM_ENVIRONMENT("Vfs3", Vfs3Args, Vfs3Envs);

 envServerRun();

 return EXIT_SUCCESS;
}

 shows a secure development pattern that separates network data streams from �le data
streams.

init.yaml

entities:

- name: Env

- name: Client
 connections:
 - target: Env
 id: {var: ENV_SERVICE_NAME, include: env/env.h}
 - target: VfsFirst
 id: VFS1
 - target: VfsSecond
 id: VFS2

- name: VfsFirst
 connections:
 - target: Env
 id: {var: ENV_SERVICE_NAME, include: env/env.h}

Using VFS backends to separate �le calls and network calls

This example

Let's examine a Client program using �le systems and Berkeley sockets. To handle its calls, we will start not one
but two separate VFS processes from the VfsFirst and VfsSecond executable �les. We will use environment
variables to assign the �le backends to work via the channel to VfsFirst and assign the network backends to
work via the channel to VfsSecond. We will use the standard backends and . This way, we will redirect
the �le calls of the Client to VfsFirst and redirect the network calls to VfsSecond. To pass the environment
variables to processes, we will add the Env program to the solution.

client server

The init description of the solution is provided below. The Client process will be connected to the VfsFirst and
VfsSecond processes, and each of the three processes will be connected to the Env process. Please note that
the name of the IPC channel to the Env process is de�ned by using the ENV_SERVICE_NAME variable.

53

- name: VfsSecond
 connections:
 - target: Env
 id: {var: ENV_SERVICE_NAME, include: env/env.h}

env.c

#include <env/env.h>
#include <stdlib.h>

int main(void)
{
 const char* vfs_first_envs[] = { "_VFS_FILESYSTEM_BACKEND=server:VFS1" };
 ENV_REGISTER_VARS("VfsFirst", vfs_first_envs);

 const char* vfs_second_envs[] = { "_VFS_NETWORK_BACKEND=server:VFS2" };
 ENV_REGISTER_VARS("VfsSecond", vfs_second_envs);

 const char* client_envs[] = { "_VFS_FILESYSTEM_BACKEND=client:VFS1",
"_VFS_NETWORK_BACKEND=client:VFS2" };
 ENV_REGISTER_VARS("Client", client_envs);

 envServerRun();

 return EXIT_SUCCESS;
}

 shows how to change the logic for handling �le calls using a special VFS backend.

To send all �le calls to VfsFirst, we de�ne the value of the _VFS_FILESYSTEM_BACKEND environment variable as
follows:

For VfsFirst: _VFS_FILESYSTEM_BACKEND=server:<name of the IPC channel to VfsFirst>

For Client: _VFS_FILESYSTEM_BACKEND=client:<name of the IPC channel to VfsFirst>

To send network calls to VfsSecond, we use the equivalent _VFS_NETWORK_BACKEND environment variable:

We de�ne the following for VfsSecond: _VFS_NETWORK_BACKEND=server:<name of the IPC channel to
the VfsSecond>

We de�ne the following for the Client: _VFS_NETWORK_BACKEND=client: <name of the IPC channel
to the VfsSecond>

We de�ne the value of environment variables through the Env program, which is presented below.

Writing a custom VFS backend

This example

Let's examine a solution that includes the Client, VfsFirst and VfsSecond processes. Let's assume that the
Client process is connected to VfsFirst and VfsSecond using IPC channels.

54

1. Code of the custom_client backend.

2. Linking of the Client program and the custom_client backend.

3. Env program code.

4. Init description.

Writing a custom_client backend

backend.c

#include <vfs/vfs.h>

#include <stdio.h>
#include <stdlib.h>

#include <platform/compiler.h>
#include <pthread.h>
#include <errno.h>
#include <string.h>

Our task is to ensure that queries from the Client process to the fat32 �le system are handled by the VfsFirst
process, and queries to the ext4 �le system are handled by the VfsSecond process. To accomplish this task, we
can use the VFS backend mechanism and will not even need to change the code of the Client program.

We will write a custom backend named custom_client, which will send calls via the VFS1 or VFS2 channel
depending on whether or not the �le path begins with . To send calls, custom_client will use the standard
backends of the client. In other words, it will act as a proxy backend.

/mnt1

We use the argument to mount fat32 to the directory for the VfsFirst process and mount ext4 to
 for the VfsSecond process. (It is assumed that VfsFirst contains a fat32 implementation and VfsSecond

contains an ext4 implementation.) We use the _VFS_FILESYSTEM_BACKEND environment variable to de�ne the
backends (and) and IPC channels (and) to be used by the processes.

-l /mnt1
/mnt2

custom_client server VFS1 VFS2

Then we use the init description to de�ne the names of the IPC channels: and .VFS1 VFS2

This is examined in more detail below:

This �le contains an implementation of the proxy custom backend that relays calls to one of the two standard
 backends. The backend selection logic depends on the utilized path or on the �le handle and is managed by

additional data structures.
client

55

#include <getopt.h>
#include <assert.h>

/* Code for managing file handles. */
#define MAX_FDS 50

struct entry
{
 Handle handle;
 bool is_vfat;
};

struct fd_array
{
 struct entry entries[MAX_FDS];
 int pos;
 pthread_rwlock_t lock;
};

struct fd_array fds = { .pos = 0, .lock = PTHREAD_RWLOCK_INITIALIZER };

int insert_entry(Handle fd, bool is_vfat)
{
 pthread_rwlock_wrlock(&fds.lock);
 if (fds.pos == MAX_FDS)
 {
 pthread_rwlock_unlock(&fds.lock);
 return -1;
 }

 fds.entries[fds.pos].handle = fd;
 fds.entries[fds.pos].is_vfat = is_vfat;
 fds.pos++;

 pthread_rwlock_unlock(&fds.lock);
 return 0;
}

struct entry *find_entry(Handle fd)
{
 pthread_rwlock_rdlock(&fds.lock);
 for (int i = 0; i < fds.pos; i++)
 {
 if (fds.entries[i].handle == fd)
 {
 pthread_rwlock_unlock(&fds.lock);
 return &fds.entries[i];
 }
 }

 pthread_rwlock_unlock(&fds.lock);
 return NULL;
}

/* Custom backend structure. */
struct context
{
 struct vfs wrapper;
 pthread_rwlock_t lock;
 struct vfs *vfs_vfat;

56

 struct vfs *vfs_ext4;
};

struct context ctx =
{
 .wrapper =
 {
 .dtor = _vfs_backend_dtor,
 .disconnect_all_clients = _disconnect_all_clients,
 .getstdin = _getstdin,
 .getstdout = _getstdout,
 .getstderr = _getstderr,
 .open = _open,
 .read = _read,
 .write = _write,
 .close = _close,
 }
};

/* Implementation of custom backend methods. */
static bool is_vfs_vfat_path(const char *path)
{
 char vfat_path[5] = "/mnt1";
 if (memcmp(vfat_path, path, sizeof(vfat_path)) != 0)
 return false;
 return true;
}

static void _vfs_backend_dtor(struct vfs *vfs)
{
 ctx.vfs_vfat->dtor(ctx.vfs_vfat);
 ctx.vfs_ext4->dtor(ctx.vfs_ext4);
}

static void _disconnect_all_clients(struct vfs *self, int *error)
{
 (void)self;
 (void)error;
 ctx.vfs_vfat->disconnect_all_clients(ctx.vfs_vfat, error);
 ctx.vfs_ext4->disconnect_all_clients(ctx.vfs_ext4, error);
}

static Handle _getstdin(struct vfs *self, int *error)
{
 (void)self;

 Handle handle = ctx.vfs_vfat->getstdin(ctx.vfs_vfat, error);
 if (handle != INVALID_HANDLE)
 {
 if (insert_entry(handle, true))
 {
 *error = ENOMEM;
 return INVALID_HANDLE;
 }
 }

 return handle;
}

static Handle _getstdout(struct vfs *self, int *error)

57

{
 (void)self;

 Handle handle = ctx.vfs_vfat->getstdout(ctx.vfs_vfat, error);
 if (handle != INVALID_HANDLE)
 {
 if (insert_entry(handle, true))
 {
 *error = ENOMEM;
 return INVALID_HANDLE;
 }
 }

 return handle;
}

static Handle _getstderr(struct vfs *self, int *error)
{
 (void)self;

 Handle handle = ctx.vfs_vfat->getstderr(ctx.vfs_vfat, error);
 if (handle != INVALID_HANDLE)
 {
 if (insert_entry(handle, true))
 {
 *error = ENOMEM;
 return INVALID_HANDLE;
 }
 }

 return handle;
}

static Handle _open(struct vfs *self, const char *path, int oflag, mode_t mode, int
*error)
{
 (void)self;

 Handle handle;
 bool is_vfat = false;

 if (is_vfs_vfat_path(path))
 {
 handle = ctx.vfs_vfat->open(ctx.vfs_vfat, path, oflag, mode, error);
 is_vfat = true;
 }
 else
 handle = ctx.vfs_ext4->open(ctx.vfs_ext4, path, oflag, mode, error);

 if (handle == INVALID_HANDLE)
 return INVALID_HANDLE;

 if (insert_entry(handle, is_vfat))
 {
 if (is_vfat)
 ctx.vfs_vfat->close(ctx.vfs_vfat, handle, error);
 *error = ENOMEM;
 return INVALID_HANDLE;
 }

58

 return handle;
}

static ssize_t _read(struct vfs *self, Handle fd, void *buf, size_t count, bool
*nodata, int *error)
{
 (void)self;

 struct entry *found_entry = find_entry(fd);

 if (found_entry != NULL && found_entry->is_vfat)
 return ctx.vfs_vfat->read(ctx.vfs_vfat, fd, buf, count, nodata, error);

 return ctx.vfs_ext4->read(ctx.vfs_ext4, fd, buf, count, nodata, error);
}

static ssize_t _write(struct vfs *self, Handle fd, const void *buf, size_t count, int
*error)
{
 (void)self;

 struct entry *found_entry = find_entry(fd);

 if (found_entry != NULL && found_entry->is_vfat)
 return ctx.vfs_vfat->write(ctx.vfs_vfat, fd, buf, count, error);

 return ctx.vfs_ext4->write(ctx.vfs_ext4, fd, buf, count, error);
}

static int _close(struct vfs *self, Handle fd, int *error)
{
 (void)self;

 struct entry *found_entry = find_entry(fd);

 if (found_entry != NULL && found_entry->is_vfat)
 return ctx.vfs_vfat->close(ctx.vfs_vfat, fd, error);

 return ctx.vfs_ext4->close(ctx.vfs_ext4, fd, error);
}

/* Custom backend builder. ctx.vfs_vfat and ctx.vfs_ext4 are initialized
 * as standard backends named "client". */
static struct vfs *_vfs_backend_create(Handle client_id, const char *config, int
*error)
{
 (void)config;

 ctx.vfs_vfat = _vfs_init("client", client_id, "VFS1", error);
 assert(ctx.vfs_vfat != NULL && "Can't initialize client backend!");
 assert(ctx.vfs_vfat->dtor != NULL && "VFS FS backend has not set the
destructor!");

 ctx.vfs_ext4 = _vfs_init("client", client_id, "VFS2", error);
 assert(ctx.vfs_ext4 != NULL && "Can't initialize client backend!");
 assert(ctx.vfs_ext4->dtor != NULL && "VFS FS backend has not set the
destructor!");

 return &ctx.wrapper;
}

59

/* Registration of the custom backend under the name custom_client. */
static void _vfs_backend(create_vfs_backend_t *ctor, const char **name)
{
 *ctor = &_vfs_backend_create;
 *name = "custom_client";
}

REGISTER_VFS_BACKEND(_vfs_backend)

Linking of the Client program and the custom_client backend

CMakeLists.txt

add_library (backend_client STATIC "src/backend.c")

CMakeLists.txt (fragment)

add_dependencies (Client vfs_backend_client backend_client)

target_link_libraries (Client
 pthread
 ${vfs_CLIENT_LIB}
 "-Wl,--whole-archive" backend_client "-Wl,--no-whole-archive" backend_client
)

Writing the Env program

env.c

#include <env/env.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
 /* Mount fat32 to /mnt1 for the VfsFirst process and mount ext4 to /mnt2 for the
VfsSecond process. */

 const char* VfsFirstArgs[] = {
 "-l", "ahci0 /mnt1 fat32 0"
 };

 ENV_REGISTER_ARGS("VfsFirst", VfsFirstArgs);

 const char* VfsSecondArgs[] = {
 "-l", "ahci1 /mnt2 ext4 0"
 };

Compile the written backend into a library:

Link the prepared backend_client library to the Client program:

We use the Env program to pass arguments and environment variables to processes.

60

 ENV_REGISTER_ARGS("VfsSecond", VfsSecondArgs);

 /* Define the file backends. */

 const char* vfs_first_args[] = { "_VFS_FILESYSTEM_BACKEND=server:VFS1" };
 ENV_REGISTER_VARS("VfsFirst", vfs_first_args);

 const char* vfs_second_args[] = { "_VFS_FILESYSTEM_BACKEND=server:VFS2" };
 ENV_REGISTER_VARS("VfsSecond", vfs_second_args);

 const char* client_fs_envs[] = { "_VFS_FILESYSTEM_BACKEND=custom_client:VFS1,VFS2"
};
 ENV_REGISTER_VARS("Client", client_fs_envs);

 envServerRun();

 return EXIT_SUCCESS;
}

Editing init.yaml

init.yaml

entities:

- name: vfs_backend.Env

- name: vfs_backend.Client
 connections:
 - target: vfs_backend.Env
 id: {var: ENV_SERVICE_NAME, include: env/env.h}
 - target: vfs_backend.VfsFirst
 id: VFS1
 - target: vfs_backend.VfsSecond
 id: VFS2

- name: vfs_backend.VfsFirst
 connections:
 - target: vfs_backend.Env
 id: {var: ENV_SERVICE_NAME, include: env/env.h}

- name: vfs_backend.VfsSecond
 connections:
 - target: vfs_backend.Env
 id: {var: ENV_SERVICE_NAME, include: env/env.h}

For the IPC channels that connect the Client process to the VfsFirst and VfsSecond processes, you must
de�ne the same names that you speci�ed in the _VFS_FILESYSTEM_BACKEND environment variable: and

.
VFS1

VFS2

IPC and transport

61

Statically creating an IPC channel

Dynamically creating an IPC channel

Creating IPC channels

Overview: creating IPC channels

There are two methods for creating IPC channels: static and dynamic.

Static creation of IPC channels is simpler to implement because you can use the init description for this purpose.

Dynamic creation of IPC channels lets you change the topology of interaction between processes on the �y. This is
necessary if it is unknown which speci�c server contains the endpoint required by the client. For example, you may
not know which speci�c drive you will need to write data to.

The static method has the following distinguishing characteristics:

The client and server are in the stopped state when the IPC channel is created.

Creation of this channel is initiated by the parent process that starts the client and server (this is normally
Einit).

The created IPC channel cannot be deleted.

To get the IPC handle and endpoint ID (riid) after the IPC channel is created, the client and server must use the
endpoint locator interface (coresrv/sl/sl_api.h).

The dynamic method has the following distinguishing characteristics:

The client and server are already running at the time of creating the IPC channel.

Creation of the channel is initiated jointly by the client and server.

The created IPC channel can be deleted.

The client and server get the IPC handle and endpoint ID (riid) immediately after the IPC channel is successfully
created.

Creating IPC channels using init.yaml

This section contains init descriptions that demonstrate the speci�c features of creating IPC channels. Examples
of de�ning properties and arguments of processes via init descriptions are examined in a separate article.

62

Examples in KasperskyOS Community Edition may utilize a macro-containing init description format
(init.yaml.in).

Connecting and starting a client process and server process

init.yaml

entities:
- name: Client
 connections:
 - target: Server
 id: server_connection
- name: Server

1. The following processes are started: client, server, and name server.

2. The server connects to the name server by using the NsCreate() call and publishes the server name, interface
name, and endpoint name by using the NsPublishService() call.

3. The client uses the NsCreate() call to connect to the name server and then uses the NsEnumServices() call
to search for the server name and endpoint name based on the interface name.

4. The client uses the KnCmConnect() call to request access to the endpoint and passes the found server name
and endpoint name as arguments.

5. The server calls the KnCmListen() function to check for requests to access the endpoint.

6. The server accepts the client request to access the endpoint by using the KnCmAccept() call and passes the
client name and endpoint name received from the KnCmListen() call as arguments.

Steps 2 and 3 can be skipped if the client already knows the server name and endpoint name in advance.

The �le containing an init description is usually named init.yaml, but it can have any name.

In the next example, two processes will be started: one process of the Client class and one process of the
Server class. The names of the processes are not speci�ed, so they will match the names of their respective
process classes. The names of the executable �les are not speci�ed either, so they will also match the names of
their respective classes. The processes will be connected by an IPC channel named server_connection.

Dynamically created IPC channels

A dynamically created IPC channel uses the following functions:

Name Server interface

Connection Manager interface

An IPC channel is dynamically created according to the following scenario:

63

To use a name server, the solution security policy must allow interaction between a process of the
kl.core.NameServer class and processes between which IPC channels must be dynamically created.

1. In KasperskyOS Community Edition, �nd the executable �le (we'll call it Server) that implements the necessary
functionality. (The term "functionality" used here refers to one or more endpoints that have their own IPC
interfaces)

2. Inhclude the CMake package containing the Server �le and its client library.

3. Add the Server executable �le to the solution image.

4. Edit the init description so that when the solution starts, the Einit program starts a new server process from
the Server executable �le and connects it, using an IPC channel, to the process started from the Client �le.
You must indicate the correct name of the IPC channel so that the transport libraries can identify this channel
and �nd its IPC handles. The correct name of the IPC channel normally matches the name of the server process
class. VFS is an exception in this case.

5. Edit the PSL description to allow startup of the server process and IPC interaction between the client and the
server.

6. In the source code of the Client program, include the server methods header �le.

7. Link the Client program with the client library.

Example of adding a GPIO driver to a solution

.\CMakeLists.txt

...
find_package (gpio REQUIRED COMPONENTS CLIENT_LIB ENTITY)
include_directories (${gpio_INCLUDE})
...

The server can use the NsUnPublishService() call to unpublish endpoints that were previously published on the
name server.

The server can use the KnCmDrop() call to reject requests to access endpoints.

Using endpoints from KasperskyOS Community Edition

Adding an endpoint to a solution

To ensure that a Client program can use some speci�c functionality via the IPC mechanism, the following is
required:

KasperskyOS Community Edition includes a gpio_hw �le that implements GPIO driver functionality.

The following commands connect the gpio CMake package:

64

einit\CMakeLists.txt

...
set (ENTITIES Client ${gpio_HW_ENTITY})
...

init.yaml.in

...
- name: client.Client
 connections:
 - target: kl.drivers.GPIO
 id: kl.drivers.GPIO

- name: kl.drivers.GPIO
 path: gpio_hw

security.psl.in

...
execute src=Einit, dst=kl.drivers.GPIO
{
 grant()
}

request src=client.Client, dst=kl.drivers.GPIO
{
 grant()
}

response src=kl.drivers.GPIO, dst=client.Client
{
 grant()
}
...

client.c

...
#include <gpio/gpio.h>
...

The gpio_hw executable �le is added to a solution image by using the gpio_HW_ENTITY variable, whose name can
be found in the con�guration �le of the package at /opt/KasperskyOS-Community-Edition-
<version>/sysroot-aarch64-kos/lib/cmake/gpio/gpio-config.cmake:

The following strings need to be added to the init description:

The following strings need to be added to the PSL description:

In the code of the Client program, you need to include the header �le in which the GPIO driver methods are
declared:

65

client\CMakeLists.txt

...
target_link_libraries (Client ${gpio_CLIENT_LIB})
...

To ensure correct operation of the GPIO driver, you may need to add the BSP component to the solution. To
avoid overcomplicating this example, BSP is not examined here. For more details, see the gpio_output
example: /opt/KasperskyOS-Community-Edition-<version>/examples/gpio_output

Constant part of a message

Arena

Message structure veri�cation by the security module

Finally, you need to link the Client program with the GPIO client library:

Creating and using your own endpoints

Overview: IPC message structure

In KasperskyOS, all interactions between processes have statically de�ned types. The permissible structures of an
IPC message are de�ned by the description of the interfaces of the process that receives the message (server).

A correct IPC message (request and response) contains a constant part and an arena.

The constant part of a message contains arguments of a �xed size, and the RIID and MID.

Fixed-size arguments can be arguments of any IDL types except the sequence type.

The RIID and MID identify the interface and method being called:

The RIID (Runtime Implementation ID) is the number of the process endpoint being called, starting at zero.

The MID (Method ID) is the number of the method within the interface that contains it, starting at zero.

The type of the constant part of the message is generated by the NK compiler based on the IDL description of the
interface. A separate structure is generated for each interface method. Union types are also generated for
storing any request to a process, component or interface. For more details, refer to Example generation of
transport methods and types.

The arena is a bu�er for storing variable-size arguments (sequence IDL type).

66

Forming a message structure

You do not need to �nd an IPC handle to utilize services that are implemented in executable �les provided in
KasperskyOS Community Edition. The provided transport libraries are used to perform all transport
operations, including �nding IPC handles.
See the gpio_*, net_*, net2_* and multi_vfs_* examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/).

Finding an IPC handle when statically creating a channel

#include <coresrv/sl/sl_api.h>
…
Handle handle = ServiceLocatorConnect("server_connection");

#include <coresrv/sl/sl_api.h>
…
nk_iid_t iid;
Handle handle = ServiceLocatorRegister("server_connection", NULL, 0, &iid);

Prior to calling message-related rules, the Kaspersky Security Module veri�es that the sent message is correct.
Requests and responses are both validated. If the message has an incorrect structure, it will be rejected without
calling the security model methods associated with it.

KasperskyOS Community Edition includes the following tools that make it easier for the developer to create and
package an IPC message:

The transport-kos library for working with NkKosTransport.

The NK compiler that lets you generate special methods and types.

Simple IPC message generation is demonstrated in the echo and ping examples (/opt/KasperskyOS-
Community-Edition-<version>/examples/).

Finding an IPC handle

The client and server IPC handles must be found if there are no ready-to-use transport libraries for the utilized
endpoint (for example, if you wrote your own endpoint). To independently work with IPC transport, you need to �rst
initialize it by using the NkKosTransport_Init() method and pass the IPC handle of the utilized channel as the
second argument.

For more details, see the echo and ping examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/)

When statically creating an IPC channel, both the client and server can �nd out their IPC handles immediately after
startup by using the ServiceLocatorRegister() and ServiceLocatorConnect() methods and specifying the
name of the created IPC channel.

For example, if the IPC channel is named server_connection, the following must be called on the client side:

The following must be called on the server side:

67

Finding an IPC handle when dynamically creating a channel

Filesystem_proxy_init(&proxy, &transport.base, riid);

You do not need to �nd the endpoint ID to utilize services that are implemented in executable �les provided
in KasperskyOS Community Edition. The provided transport libraries are used to perform all transport
operations.
See the gpio_*, net_*, net2_* and multi_vfs_* examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/).

Finding a service ID when statically creating a channel

#include <coresrv/sl/sl_api.h>
…
nk_iid_t riid = ServiceLocatorGetRiid(handle, "OpsComp.FS");

For more details, see the echo and ping examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/), and the header �le /opt/KasperskyOS-Community-Edition-<version>/sysroot-
aarch64-kos/include/coresrv/sl/sl_api.h.

Both the client and server receive their own IPC handles immediately after dynamic creation of an IPC channel is
successful.

The client IPC handle is one of the output (out) arguments of the KnCmConnect() method. The server IPC handle
is an output argument of the KnCmAccept() method. For more details, see the header �le /opt/KasperskyOS-
Community-Edition-<version>/sysroot-aarch64-kos/include/coresrv/cm/cm_api.h.

Finding an endpoint ID (riid)

The endpoint ID (riid) must be found on the client side if there are no ready-to-use transport libraries for the
utilized endpoint (for example, if you wrote your own endpoint). To call methods of the server, you must �rst call
the proxy object initialization method on the client side and pass the endpoint ID as the third argument. For
example, for the Filesystem interface:

For more details, see the echo and ping examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/)

When statically creating an IPC channel, the client can �nd out the ID of the necessary endpoint by using the
ServiceLocatorGetRiid() method and specifying the IPC channel handle and the fully quali�ed name of the
endpoint. For example, if the OpsComp component instance contains the FS endpoint, the following must be called
on the client side:

For more details, see the echo and ping examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/), and the header �le /opt/KasperskyOS-Community-Edition-<version>/sysroot-
aarch64-kos/include/coresrv/sl/sl_api.h.

68

Finding a service ID when dynamically creating a channel

Server.edl

entity Server

/* OpsComp is the named instance of the Operations component */
components {
 OpsComp: Operations
}

Operations.cdl

component Operations

/* FS is the local name of the endpoint implementing the Filesystem interface */
endpoints {
 FS: Filesystem
}

Filesystem.idl

package Filesystem

interface {
 Open(in string<256> name, out UInt32 h);
}

Methods and types that are common to the client and server

The client receives the endpoint ID immediately after dynamic creation of an IPC channel is successful. The client
IPC handle is one of the output (out) arguments of the KnCmConnect() method. For more details, see the header
�le /opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-
kos/include/coresrv/cm/cm_api.h.

Example generation of transport methods and types

When building a solution, the NK compiler uses the EDL, CDL and IDL descriptions to generate a set of special
methods and types that simplify the creation, forwarding, receipt and processing of IPC messages.

As an example, we will examine the Server process class that provides the FS endpoint, which contains a single
Open() method:

These descriptions will be used to generate the �les named Server.edl.h, Operations.cdl.h, and
Filesystem.idl.h, which contain the following methods and types:

In our example, one abstract interface (Filesystem) will be generated:

Abstract interfaces containing the pointers to the implementations of the methods included in them.

69

Methods and types used only on the client

typedef struct Filesystem {
 const struct Filesystem_ops *ops;
 } Filesystem;

typedef nk_err_t
Filesystem_Open_fn(struct Filesystem *, const
 struct Filesystem_Open_req *,
 const struct nk_arena *,
 struct Filesystem_Open_res *,
 struct nk_arena *);

typedef struct Filesystem_ops {
 Filesystem_Open_fn *Open;
 } Filesystem_ops;

When calling an interface method, the corresponding values of the RIID and MID are automatically inserted into
the request.

In our example, a single Filesystem_Open interface method will be generated:

nk_err_t Filesystem_Open(struct Filesystem *self,
 struct Filesystem_Open_req *req,
 const
 struct nk_arena *req_arena,
 struct Filesystem_Open_res *res,
 struct nk_arena *res_arena)

Set of interface methods.

A proxy object is used as an argument in an interface method. In our example, a single Filesystem_proxy
proxy object type will be generated:

typedef struct Filesystem_proxy {
 struct Filesystem base;
 struct nk_transport *transport;
 nk_iid_t iid;
 } Filesystem_proxy;

In our example, the single initializing function Filesystem_proxy_init will be generated:

void Filesystem_proxy_init(struct Filesystem_proxy *self,
 struct nk_transport *transport,
 nk_iid_t iid)

In our example, two such types will be generated: Filesystem_Open_req (for a request) and
Filesystem_Open_res (for a response).

Types of proxy objects.

Functions for initializing proxy objects.

Types that de�ne the structure of the constant part of a message for each speci�c method.

70

Methods and types used only on the server

typedef struct __nk_packed Filesystem_Open_req {
 __nk_alignas(8)
 struct nk_message base_;
 __nk_alignas(4) nk_ptr_t name;
 } Filesystem_Open_req;

typedef struct Filesystem_Open_res {
 union {
 struct {
 __nk_alignas(8)
 struct nk_message base_;
 __nk_alignas(4) nk_uint32_t h;
 };
 struct {
 __nk_alignas(8)
 struct nk_message base_;
 __nk_alignas(4) nk_uint32_t h;
 } res_;
 struct Filesystem_Open_err err_;
 };
 } Filesystem_Open_res;

If there are embedded components, this type also contains their instances, and the initializing function takes
their corresponding initialized structures. Therefore, if embedded components are present, their initialization
must begin with the most deeply embedded component.

In our example, the Operations_component structure and Operations_component_init function will be
generated:

typedef struct Operations_component {
 struct Filesystem *FS;
};

void Operations_component_init(struct Operations_component *self,
 struct Filesystem *FS)

In our example, the Server_entity structure and Server_entity_init function will be generated:

#define Server_entity Server_component
typedef struct Server_component {
 struct : Operations_component *OpsComp;
 } Server_component;

void Server_entity_init(struct Server_entity *self,
 struct Operations_component *OpsComp)

Type containing all endpoints of a component, and the initializing function. (For each server component.)

Type containing all endpoints provided directly by the server; all instances of components included in the
server; and the initializing function.

Types that de�ne the structure of the constant part of a message for any method of a speci�c interface.

71

In our example, two such types will be generated: Filesystem_req (for a request) and Filesystem_res (for a
response).

typedef union Filesystem_req {
 struct nk_message base_;
 struct Filesystem_Open_req Open;
};

typedef union Filesystem_res {
 struct nk_message base_;
 struct Filesystem_Open_res Open;
};

If embedded components are present, these types also contain structures of the constant part of a message
for any method of any endpoint included in all embedded components.

In our example, two such types will be generated: Operations_component_req (for a request) and
Operations_component_res (for a response).

typedef union Operations_component_req {
 struct nk_message base_;
 Filesystem_req FS;
 } Operations_component_req;

typedef union Operations_component_res {
 struct nk_message base_;
 Filesystem_res FS;
 } Operations_component_res;

If embedded components are present, these types also contain structures of the constant part of a message
for any method of any endpoint included in all embedded components.

In our example, two such types will be generated: Server_entity_req (for a request) and
Server_entity_res (for a response).

#define Server_entity_req Server_component_req

typedef union Server_component_req {
 struct nk_message base_;
 Filesystem_req OpsComp_FS;
 } Server_component_req;

#define Server_entity_res Server_component_res

typedef union Server_component_res {
 struct nk_message base_;
 Filesystem_res OpsComp_FS;
 } Server_component_res;

Types that de�ne the structure of the constant part of a message for any method of any endpoint of a
speci�c component.

Types that de�ne the structure of the constant part of a message for any method of any endpoint of a
speci�c component whose instance is included in the server.

Dispatch methods (dispatchers) for a separate interface, component, or process class.

72

Dispatchers analyze the received query (the RIID and MID values), call the implementation of the corresponding
method, and then save the response in the bu�er. In our example, three dispatchers will be generated:
Filesystem_interface_dispatch, Operations_component_dispatch, and Server_entity_dispatch.

The process class dispatcher handles the request and calls the methods implemented by this class. If the
request contains an incorrect RIID (for example, an RIID for a di�erent endpoint that this process class does not
have) or an incorrect MID, the dispatcher returns NK_EOK or NK_ENOENT.

nk_err_t Server_entity_dispatch(struct Server_entity *self,
 const
 struct nk_message *req,
 const
 struct nk_arena *req_arena,
 struct nk_message *res,
 struct nk_arena *res_arena)

In special cases, you can use dispatchers of the interface and the component. They take an additional
argument: interface implementation ID (nk_iid_t). The request will be handled only if the passed argument
and RIID from the request match, and if the MID is correct. Otherwise, the dispatchers return NK_EOK or
NK_ENOENT.

nk_err_t Operations_component_dispatch(struct Operations_component *self,
 nk_iid_t iidOffset,
 const
 struct nk_message *req,
 const
 struct nk_arena *req_arena,
 struct nk_message *res,
 struct nk_arena *res_arena)

nk_err_t Filesystem_interface_dispatch(struct Filesystem *impl,
 nk_iid_t iid,
 const
 struct nk_message *req,
 const
 struct nk_arena *req_arena,
 struct nk_message *res,
 struct nk_arena *res_arena)

73

libkos library

#include <coresrv/io/io_api.h>

Files used by the libkos library

Example

KasperskyOS API

libkos library

Overview of the libkos library

The KasperskyOS kernel has a number of endpoints for managing handles, threads, memory, processes, IPC
channels, I/O resources, and others. The libkos library is used for accessing endpoints.

The libkos library consists of two parts:

The �rst part provides the C interface for accessing KasperskyOS core endpoints. It is available through the
header �les in the coresrv directory.

The second part of the libkos library provides abstractions of synchronization primitives, objects, and queues.
It also contains wrapper functions for simpler memory allocation and thread management. Header �les of the
second part of libkos are in the kos directory.

The libkos library signi�cantly simpli�es the use of core endpoints. The libkos library functions ensure correct
packaging of an IPC message and execution of system calls. Other libraries (including libc) interact with the kernel
through the libkos library.

To use a KasperskyOS core endpoint, you need to include the libkos library header �le corresponding to this
endpoint. For example, to access methods of the IO Manager, you need to include the io_api.h �le:

An intrinsic implementation of the libkos library can use the following �les exported by the kernel:

Files in the IDL language (IDL descriptions). They contain descriptions of the interfaces of endpoints. They are
used by IPC transport for correct packaging of messages.

Header �les of the kernel. These �les are included in the libkos library.

The I/O Manager is provided for the user in the following �les:

coresrv/io/io_api.h is a header �le of the libkos library.

services/io/IO.idl is the IDL description of the I/O manager.

74

Transitions between memory page states

void *KnVmAllocate(void *addr, rtl_size_t size, int flags);

io/io_dma.h and io/io_irq.h are header �les of the kernel.

Memory

Memory states

Each page of virtual memory can be free, reserved, or committed.

The transition from a free state to a reserved state is called allocation. Pre-reserving memory (without committing
physical pages) enables an application to mark its address space in advance. The transition from a reserved state
back to a free state is referred to as freeing memory.

The assignment of physical memory for a previously reserved page of virtual memory is referred to as committing
memory, and the inverse transition from the committed state to the reserved state is called returning memory.

KnVmAllocate()

This function is declared in the coresrv/vmm/vmm_api.h �le.

Reserves a range of physical pages de�ned by the addr and size parameters. If the �ag
is indicated, the function reserves and commits pages for one call.

VMM_FLAG_COMMIT

Parameters:

addr is the page-aligned base physical address; if addr is set equal to , the system chooses a free area of
physical memory.

0

75

Allocation �ags

Example

coredump->base = KnVmAllocate(RTL_NULL, vmaSize,
 VMM_FLAG_READ | VMM_FLAG_RESERVE |
 VMM_FLAG_WRITE | VMM_FLAG_COMMIT |
 VMM_FLAG_LOCKED).

size is the size of the memory area in bytes (must be a multiple of the page size).

flags refers to allocation �ags.

Returns the base virtual address of the reserved area. If it is not possible to reserve a memory area, the function
returns .RTL_NULL

In the flags parameter, you can use the following �ags (vmm/flags.h):

 is a required �ag.

 lets you reserve and commit memory pages to one KnVmAllocate() call in so-called
"lazy" mode.

 is used together with and lets you immediately commit
physical memory pages instead of "lazy" commitment.

, , ,
 and manage caching of memory pages.

, , and are
memory protection attributes.

 and add a protective page before and after the
allocated memory, respectively.

 de�nes the direction of memory access (from older addresses to newer
addresses).

VMM_FLAG_RESERVE

VMM_FLAG_COMMIT

VMM_FLAG_LOCKED VMM_FLAG_COMMIT

VMM_FLAG_WRITE_BACK VMM_FLAG_WRITE_THROUGH VMM_FLAG_WRITE_COMBINE
VMM_FLAG_CACHE_DISABLE VMM_FLAG_CACHE_MASK

VMM_FLAG_READ VMM_FLAG_WRITE VMM_FLAG_EXECUTE VMM_FLAG_RWX_MASK

VMM_FLAG_LOW_GUARD VMM_FLAG_HIGH_GUARD

VMM_FLAG_GROW_DOWN

Permissible combinations of memory protection attributes:

 allows reading page contents.

 allows reading and modifying page contents.

 allows reading and executing page contents.

 or refers to
full access to page contents (these entries are equivalent).

VMM_FLAG_READ

VMM_FLAG_READ | VMM_FLAG_WRITE

VMM_FLAG_READ | VMM_FLAG_EXECUTE

VMM_FLAG_RWX_MASK VMM_FLAG_READ | VMM_FLAG_WRITE | VMM_FLAG_EXECUTE

The KnVmProtect() function can be used to modify the de�ned memory area protection attributes if necessary.

KnVmCommit()

76

Retcode KnVmCommit(void *addr, rtl_size_t size, int flags);

Retcode KnVmDecommit(void *addr, rtl_size_t size);

Retcode KnVmProtect(void *addr, rtl_size_t size, int newFlags);

This function is declared in the coresrv/vmm/vmm_api.h �le.

Commits a range of physical pages de�ned by the "addr" and "size" parameters.

All committed pages must be reserved in advance.

Parameters:

addr is the page-aligned base virtual address of the memory area.

size is the size of the memory area in bytes (must be a multiple of the page size).

flags is an unused parameter (indicate the �ag in this parameter value to ensure
compatibility).

VMM_FLAG_LOCKED

If pages are successfully committed, the function returns .rcOk

KnVmDecommit()

This function is declared in the coresrv/vmm/vmm_api.h �le.

Frees a range of pages (switches them to the reserved state).

Parameters:

addr is the page-aligned base virtual address of the memory area.

size is the size of the memory area in bytes (must be a multiple of the page size).

If pages are successfully freed, the function returns .rcOk

KnVmProtect()

This function is declared in the coresrv/vmm/vmm_api.h �le.

Modi�es the protection attributes of reserved or committed memory pages.

Parameters:

addr is the page-aligned base virtual address of the memory area.

size is the size of the memory area in bytes (must be a multiple of the page size).

77

Retcode KnVmUnmap(void *addr, rtl_size_t size);

void *KosMemAlloc(rtl_size_t size);

newFlags refers to new protection attributes.

If the protection attributes are successfully changed, the function returns .rcOk

Permissible combinations of memory protection attributes:

 allows reading page contents.

 allows reading and modifying page contents.

 allows reading and executing page contents.

 or refers to
full access to page contents (these entries are equivalent).

VMM_FLAG_READ

VMM_FLAG_READ | VMM_FLAG_WRITE

VMM_FLAG_READ | VMM_FLAG_EXECUTE

VMM_FLAG_RWX_MASK VMM_FLAG_READ | VMM_FLAG_WRITE | VMM_FLAG_EXECUTE

KnVmUnmap()

This function is declared in the coresrv/vmm/vmm_api.h �le.

Frees the memory area.

Parameters:

addr refers to the page-aligned address of the memory area.

size refers to the memory area size.

If pages are successfully freed, the function returns .rcOk

Memory allocation

KosMemAlloc()

This function is declared in the kos/alloc.h �le.

This function allocates (reserves and commits) a memory area equal to the speci�c size of bytes.

This function returns a pointer to the allocated area or if memory could not be allocated.RTL_NULL

78

Memory allocated by using the KosMemAlloc() function has the following allocation �ags:
, ,

. To allocate memory with other allocation �ags, use the KnVmAllocate() function.

void *KosMemAllocEx(rtl_size_t size, rtl_size_t align, int zeroed);

void KosMemFree(void *ptr);

rtl_size_t KosMemGetSize(void *ptr);

VMM_FLAG_READ | VMM_FLAG_WRITE VMM_FLAG_RESERVE, VMM_FLAG_COMMIT
VMM_FLAG_LOCKED

KosMemAllocEx()

This function is declared in the kos/alloc.h �le.

This function is analogous to KosMemAlloc(), but it also has additional parameters:

align refers to the alignment of the memory area in bytes (power of two).

zeroed determines whether or not the memory area needs to be �lled with zeros (means �ll, means do not
�ll).

1 0

KosMemFree()

This function is declared in the kos/alloc.h �le.

This function frees a memory area that was allocated using the KosMemAlloc(), KosMemZalloc() or
KosMemAllocEx() function.

ptr is the pointer to the freed memory area.

KosMemGetSize()

This function is declared in the kos/alloc.h �le.

This function returns the size (in bytes) of the memory area allocated using the KosMemAlloc(),
KosMemZalloc() or KosMemAllocEx() function.

ptr is the pointer to the memory area.

KosMemZalloc()

79

void *KosMemZalloc(rtl_size_t size);

typedef void KosThreadCallback(KosThreadCallbackReason reason);

/* Callback function argument */
typedef enum KosThreadCallbackReason {
 KosThreadCallbackReasonCreate,
 KosThreadCallbackReasonDestroy,
} KosThreadCallbackReason;

Retcode KosThreadCallbackRegister(KosThreadCallback *callback);

Retcode KosThreadCallbackUnregister(KosThreadCallback *callback);

This function is declared in the kos/alloc.h �le.

This function is analogous to KosMemAlloc(), but it also �lls the allocated memory area with zeros.

Threads

KosThreadCallback()

The callback function prototype is declared in the kos/thread.h �le.

When a new thread is created, all registered callback functions will be called with the
KosThreadCallbackReasonCreate argument. When the thread is terminated, they will be called with the
KosThreadCallbackReasonDestroy argument.

KosThreadCallbackRegister()

This function is declared in the kos/thread.h �le.

This function registers a custom callback function. When a thread is created and terminated, all registered callback
functions will be called.

KosThreadCallbackUnregister()

This function is declared in the kos/thread.h �le.

This function deregisters the custom callback function (removes it from the list of called functions).

80

Retcode KosThreadCreate(Tid *tid,
 rtl_uint32_t priority,
 rtl_uint32_t stackSize,
 ThreadRoutine routine,
 void *context,
 int suspended);

Example

int main(int argc, char **argv)
{
 Tid tidB;
 Tid tidC;
 Retcode rcB;
 Retcode rcC;

 static ThreadContext threadContext[] = {
 {.ddi = "B", .deviceName = "/pci/bus0/dev2/fun0/DDI_B"},
 {.ddi = "C", .deviceName = "/pci/bus0/dev2/fun0/DDI_C"},
 };

 rcB = KosThreadCreate(&tidB, ThreadPriorityNormal,
 ThreadStackSizeDefault,
 FbHotplugThread,
 &threadContext[0], 0);
 if (rcB != rcOk)
 ERR("Failed to start thread %s", threadContext[0].ddi);

 rcC = KosThreadCreate(&tidC, ThreadPriorityNormal,

KosThreadCreate()

This function is declared in the kos/thread.h �le.

This function creates a new thread.

Input parameters:

priority must be within the interval from to ; the following priority constants are available:
ThreadPriorityLowest (), ThreadPriorityNormal () and ThreadPriorityHighest ().

stackSize is the size of the stack.

routine is the function that will be executed in the thread.

context is the argument that will be passed to the routine function.

suspended lets you create a thread in the suspended state (means create suspended, means create not
suspended).

0 31
0 15 31

1 0

Output parameters:

tid is the ID of the created thread.

81

 ThreadStackSizeDefault,
 FbHotplugThread,
 &threadContext[1], 0);

 if (rcC != rcOk)
 ERR("Failed to start thread %s", threadContext[1].ddi);

 /* Waiting for the threads to complete */
 ...
}

Tid KosThreadCurrentId(void);

void KosThreadExit(rtl_int32_t exitCode);

void *KosThreadGetStack(Tid tid, rtl_uint32_t *size);

KosThreadCurrentId()

This function is declared in the kos/thread.h �le.

This function requests the TID of the calling thread.

If successful, the function returns the thread ID (TID).

KosThreadExit()

This function is declared in the kos/thread.h �le.

This function forcibly terminates the current thread with the exitCode.

KosThreadGetStack()

This function is declared in the kos/thread.h �le.

This function gets the stack of the thread with the speci�c tid.

Output parameter size contains the stack size.

If successful, the function returns the pointer to the beginning of the stack.

KosThreadOnce()

82

typedef int KosThreadOnceState;

Retcode KosThreadOnce(KosThreadOnceState *onceControl,
 void (* initRoutine) (void));

Retcode KosThreadResume(Tid tid);

Retcode KosThreadSleep(rtl_uint32_t mdelay);

Retcode KosThreadSuspend(Tid tid);

This function is declared in the kos/thread.h �le.

This function lets you call the de�ned initRoutine procedure precisely one time, even when it is called from
multiple threads.

The onceControl parameter is designed to control the one-time call of the procedure.

If the procedure is successfully called, and if it was called previously, the KosThreadOnce() function returns .rcOk

KosThreadResume()

This function is declared in the kos/thread.h �le.

This function resumes the thread with the identi�er tid that was created in the suspended state.

If successful, the function returns .rcOk

KosThreadSleep()

This function is declared in the kos/thread.h �le.

Suspends execution of the current thread for mdelay (in milliseconds).

If successful, the function returns .rcOk

KosThreadSuspend()

This function is declared in the kos/thread.h �le.

Permanently stops the current thread without �nishing it.

The tid parameter must be equal to the identi�er of the current thread (a limitation of the current
implementation).

83

Retcode KosThreadTerminate(Tid tid, rtl_int32_t exitCode);

void *KosThreadTlsGet(void);

Retcode KosThreadTlsSet(void *tls);

int KosThreadWait(rtl_uint32_t tid, rtl_uint32_t timeout);

If successful, the function returns .rcOk

KosThreadTerminate()

This function is declared in the kos/thread.h �le.

This function terminates the thread of the calling process. The tid parameter de�nes the ID of the thread.

If the tid points to the current thread, the exitCode parameter de�nes the thread exit code.

If successful, the function returns .rcOk

KosThreadTlsGet()

This function is declared in the kos/thread.h �le.

This function returns the pointer to the local storage of the thread (TLS) or if there is no TLS.RTL_NULL

KosThreadTlsSet()

This function is declared in the kos/thread.h �le.

This function de�nes the address of the local storage for the thread (TLS).

Input argument tls contains the TLS address.

KosThreadWait()

This function is declared in the kos/thread.h �le.

This function suspends execution of the current thread until termination of the thread with the identi�er tid or
until the timeout (in milliseconds).

The KosThreadWait() call with a zero value for timeout is analogous to the KosThreadYield() call .

84

void KosThreadYield(void);

Retcode KnHandleClose(Handle handle);

Deleting a handle does not invalidate its ancestors and descendants (in contrast to revoking a handle, which
actually invalidates the descendants of the handle – see KnHandleRevoke() and
KnHandleRevokeSubtree()). When a handle is deleted, the integrity of the handle inheritance tree is also
preserved. The location of a deleted handle is taken over by its parent, which becomes the immediate
ancestor of the descendants of the deleted handle.

Retcode KnHandleCreateBadge(Notice notice, rtl_uintptr_t eventId,
 void *context, Handle *handle);

If successful, the function returns . In case of timeout, it returns .rcOk rcTimeout

KosThreadYield()

This function is declared in the kos/thread.h �le.

Passes execution of the thread that called it to the next thread.

The KosThreadYield() call is analogous to the KosThreadSleep() call with a zero value for mdelay.

Handles

KnHandleClose()

This function is declared in the coresrv/handle/handle_api.h �le.

Deletes the handle.

If successful, the function returns , otherwise it returns an error code.rcOk

KnHandleCreateBadge()

This function is declared in the coresrv/handle/handle_api.h �le.

This function creates a resource transfer context object for the speci�ed resource transfer context and
con�gures a noti�cation receiver named notice for receiving noti�cations about this object. The noti�cation
receiver is con�gured to receive noti�cations about events that match the EVENT_OBJECT_DESTROYED and
EVENT_BADGE_CLOSED �ags of the event mask.

85

Retcode KnHandleCreateUserObject(rtl_uint32_t type, rtl_uint32_t rights,
 void *context, Handle *handle);

Example

Retcode ServerPortInit(ServerPort *serverPort)
{
 Retcode rc = rcInvalidArgument;
 Notice serverEventNotice;

 rc = KnHandleCreateUserObject(HANDLE_TYPE_USER_FIRST, OCAP_HANDLE_SET_EVENT |
OCAP_HANDLE_GET_EVENT,
 serverPort, &serverPort->handle);
 if (rc == rcOk) {
 KosRefObject(serverPort);
 rc = KnNoticeSubscribeToObject(serverEventNotice,
 serverPort->handle,
 EVENT_OBJECT_DESTROYED,
 (rtl_uintptr_t) serverPort);
 if (rc != rcOk) {
 KosPutObject(serverPort);
 KnHandleClose(serverPort->handle);
 serverPort->handle = INVALID_HANDLE;
 }
 }

 return rc;
}

Input parameter eventId de�nes the ID of a "resource–event mask" entry in the noti�cation receiver.

Output parameter handle contains the handle of the resource transfer context object.

If successful, the function returns , otherwise it returns an error code.rcOk

KnHandleCreateUserObject()

This function is declared in the coresrv/handle/handle_api.h �le.

Creates the speci�ed handle of the speci�ed type with the rights permissions mask.

The type parameter can take values ranging from HANDLE_TYPE_USER_FIRST to HANDLE_TYPE_USER_LAST.

The HANDLE_TYPE_USER_FIRST and HANDLE_TYPE_USER_LAST macros are de�ned in the
handle/handletype.h header �le.

The context parameter de�nes the context of the user resource. If successful, the function returns ,
otherwise it returns an error code.

rcOk

KnHandleRevoke()

86

Retcode KnHandleRevoke(Handle handle);

Revoked handles are not deleted. However, you cannot query resources via revoked handles. Any function
that accepts a handle will end with the error if this function is called with a revoked handle.

Retcode KnHandleRevokeSubtree(Handle handle, Handle badge);

Revoked handles are not deleted. However, you cannot query resources via revoked handles. Any function
that accepts a handle will end with the error if this function is called with a revoked handle.

static inline
nk_err_t nk_get_badge_op(const nk_handle_desc_t *desc,
 nk_rights_t operation,
 nk_badge_t *badge);

This function is declared in the coresrv/handle/handle_api.h �le.

Deletes the handle and revokes all of its descendants.

If successful, the function returns , otherwise it returns an error code.rcOk

rcHandleRevoked

KnHandleRevokeSubtree()

This function is declared in the coresrv/handle/handle_api.h �le.

This function revokes the handles that make up the handle inheritance subtree of the speci�ed handle.

The root node of the inheritance subtree is the handle that was generated by the transfer of the speci�ed handle
associated with the badge resource transfer context object.

If successful, the function returns , otherwise it returns an error code.rcOk

rcHandleRevoked

nk_get_badge_op()

This function is declared in the nk/types.h �le.

This function extracts the pointer to the badge resource transfer context from the transport container of desc if
the operation �ags are set in the permissions mask that is placed in the transport container of desc.

If successful, the function returns , otherwise it returns an error code.NK_EOK

nk_is_handle_dereferenced()

87

static inline
nk_bool_t nk_is_handle_dereferenced(const nk_handle_desc_t *desc);

Handle permissions mask

Creating handles

This function is declared in the nk/types.h �le.

This function returns a non-zero value if the handle in the transport container of desc was obtained as a result of
a handle dereferencing operation.

This function returns zero if the handle in the transport container of desc was obtained as a result of a handle
transfer operation.

Managing handles

Handles are managed by using functions of the Handle Manager and Noti�cation Subsystem.

The Handle Manager is provided for the user in the following �les:

coresrv/handle/handle_api.h is a header �le of the libkos library.

services/handle/Handle.idl is an IDL description of the Handle Manager's IPC interface.

The Noti�cation Subsystem is provided for the user in the following �les:

coresrv/handle/notice_api.h is a header �le of the libkos library.

services/handle/Notice.idl is an IDL description of the IPC interface of the Noti�cation Subsystem.

A handle permissions mask has a size of 32 bits and consists of a general part and a specialized part. The general
part describes the general rights that are not speci�c to any particular resource (the �ags of these rights are
de�ned in the services/ocap.h header �le). For example, the general part contains the
OCAP_HANDLE_TRANSFER �ag, which de�nes the permission to transfer the handle. The specialized part describes
the rights that are speci�c to the particular user resource or system resource. The �ags of the specialized part's
permissions for system resources are de�ned in the services/ocap.h header �le. The structure of the
specialized part for user resources is de�ned by the resource provider by using the OCAP_HANDLE_SPEC() macro
that is de�ned in the services/ocap.h header �le. The resource provider must export the public header �les
describing the structure of the specialized part.

When the handle of a system resource is created, the permissions mask is de�ned by the KasperskyOS kernel,
which applies permissions masks from the services/ocap.h header �le. It applies permissions masks with names
such as OCAP_*_FULL (for example, OCAP_IOPORT_FULL, OCAP_TASK_FULL, OCAP_FILE_FULL) and OCAP_IPC_*
(for example, OCAP_IPC_SERVER, OCAP_IPC_LISTENER, OCAP_IPC_CLIENT).

When the handle of a user resource is created, the permissions mask is de�ned by the user.

When a handle is transferred, the permissions mask is de�ned by the user but the transferred access rights cannot
be elevated above the access rights of the process.

88

handle_api.h (fragment)

/**
 * Creates the specified handle of the specified type with the rights permissions
mask.
 * The "type" parameter can take values ranging from HANDLE_TYPE_USER_FIRST to
 * HANDLE_TYPE_USER_LAST. The HANDLE_TYPE_USER_FIRST and HANDLE_TYPE_USER_LAST macros
 * are defined in the handletype.h header file. The "context" parameter defines the
context
 * of the user resource.
 * If successful, the function returns rcOk, otherwise it returns an error code.
 */
Retcode KnHandleCreateUserObject(rtl_uint32_t type, rtl_uint32_t rights,
 void *context, Handle *handle);

The type parameter of the KnHandleCreateUserObject() function is reserved for potential future use
and does not a�ect the behavior of the function, but it must take a value from the interval speci�ed in the
function comments.

Transferring handles

Overview

The handles of user resources are created by the providers of the resources. The
KnHandleCreateUserObject() function declared in the coresrv/handle/handle_api.h header �le is used to
create handles of user resources.

The user resource context is the data that allows the resource provider to identify the resource and its state when
access to the resource is requested by other programs. This normally consists of a data set with various types of
data (structure). For example, the context of a �le may include the name, path, and cursor position. The user
resource context is used as the resource transfer context or is used together with multiple resource transfer
contexts.

For details about a handle permissions mask, see "Handle permissions mask".

Handles are transferred between programs so that clients (programs that utilize resources) can obtain access to
required resources. Due to the speci�c locality of handles, a handle transfer initiates the creation of a handle from
the handle space of the recipient program. This handle is registered as a descendant of the transferred handle and
identi�es the same resource.

One handle can be transferred multiple times by one or multiple programs. Each transfer initiates the creation of a
new descendant of the transferred handle on the recipient program side. A program can transfer the handles that
it received from other programs or from the KasperskyOS kernel (when creating handles of system resources). For
this reason, a handle may have multiple generations of descendants. The generation hierarchy of handles for each
resource is stored in the KasperskyOS kernel in the form of a handle inheritance tree.

A program can transfer handles for user resources and system resources if the access rights of these handles
permit such a transfer. A descendant may have less access rights than an ancestor. For example, a transferring
program with read-and-write permissions for a �le can transfer read-only permissions. The transferring program
can also prohibit the recipient program from further transferring the handle. Access rights are de�ned in the
transferred permissions mask for the handle.

89

Conditions for transferring handles

1. An IPC channel is created between the programs.

2. The solution security policy (security.psl) allows interaction between the programs.

3. Interface methods are implemented for transferring handles.

4. The client program received the endpoint ID (RIID) of the server program that has methods for transferring
handles.

package IpcTransfer
interface {
 PublishResource1(in Handle handle, out UInt32 result);
 PublishResource7(in Handle handle1, in Handle handle2,
 in Handle handle3, in Handle handle4,
 in Handle handle5, in Handle handle6,
 in Handle handle7, out UInt32 result);
 OpenResource(in UInt32 ID, out Handle handle);
}

Resource transfer context

For programs to transfer handles to other programs, the following conditions must be met:

Interface methods for transferring handles are declared in the IDL language with input (in) and/or output (out)
parameters of the Handle type. Methods with input parameters of the Handle type are intended for transferring
handles from the client program to the server program. Methods with output parameters of the Handle type are
intended for transferring handles from the server program to the client program. No more than seven input and
seven output parameters of the Handle type can be declared for one method.

Example IDL description containing declarations of interface methods for transferring handles:

For each parameter of the Handle type, the NK compiler generates a �eld in the *_req request structure and/or
*_res response structure of the nk_handle_desc_t type (hereinafter also referred to as the transport
container of the handle). This type is declared in the nk/types.h header �le and comprises a structure consisting
of the following three �elds: handle �eld for the handle, rights �eld for the handle permissions mask, and the
badge �eld for the resource transfer context.

The resource transfer context is the data that allows the server program to identify the resource and its state
when access to the resource is requested via descendants of the transferred handle. This normally consists of a
data set with various types of data (structure). For example, the transfer context of a �le may include the name,
path, and cursor position. A server program receives a pointer to the resource transfer context when
dereferencing a handle.

Regardless of whether or not a server program is the resource provider, it can associate each handle transfer with
a separate resource transfer context. This resource transfer context is bound only to the handle descendants
(handle inheritance subtree) that were generated as a result of a speci�c transfer of the handle. This lets you
de�ne the state of a resource in relation to a separate transfer of the handle of this resource. For example, for
cases when one �le may be accessed multiple times, the �le transfer context lets you de�ne which speci�c
opening of this �le corresponds to a received request.

90

handle_api.h (fragment)

/**
 * Creates a resource transfer context object for
 * the resource transfer "context" and configures the
 * notification receiver "notice" to receive notifications about
 * this object. The notification receiver is configured to
 * receive notifications about events that match the
 * event mask flags OBJECT_DESTROYED and EVENT_BADGE_CLOSED.
 * Input parameter eventId defines the identifier of the
 * "resource–event mask" entry in the notification receiver.
 * Output parameter handle contains the handle of the
 * resource transfer context.
 * If successful, the function returns rcOk, otherwise it returns an error code.
 */
Retcode KnHandleCreateBadge(Notice notice, rtl_uintptr_t eventId,
 void *context, Handle *handle);

Packaging data into the transport container of a handle

If the server program is the resource provider, each transfer of the handle of this resource is associated with the
user resource context by default. In other words, the user resource context is used as the resource transfer
context for each handle transfer if the particular transfer is not associated with a separate resource transfer
context.

A server program that is the resource provider can use the user resource context and the resource transfer
context together. For example, the name, path and size of a �le is stored in the user resource context while the
cursor position can be stored in multiple resource transfer contexts because each client can work with di�erent
parts of the �le. Technically, joint use of the user resource context and resource transfer contexts is possible
because the resource transfer contexts store a pointer to the user resource context.

If the client program uses multiple various-type resources of the server program, the resource transfer contexts
(or contexts of user resources if they are used as resource transfer contexts) must be specialized objects of the
KosObject type. This is necessary so that the server program can verify that the client program using a resource
has sent the interface method the handle of the speci�c resource that corresponds to this method. This
veri�cation is required because the client program could mistakenly send the interface method a resource handle
that does not correspond to this method. For example, a client program receives a �le handle and sends it to an
interface method for working with volumes.

To associate a handle transfer with a resource transfer context, the server program puts the handle of the
resource transfer context object into the badge �eld of the nk_handle_desc_t structure. The resource transfer
context object is the object that stores the pointer to the resource transfer context. The resource transfer
context object is created by the KnHandleCreateBadge() function, which is declared in the
coresrv/handle/handle_api.h header �le. This function is bound to the Noti�cation Subsystem regarding the
state of resources because a server program needs to know when a resource transfer context object will be
closed and terminated. The server program needs this information to free up or re-use memory that was allotted
for storing the resource transfer context.

The resource transfer context object will be closed when deleting or revoking the handle descendants (see
Deleting handles, Revoking handles) that were generated during its transfer in association with this object. (A
transferred handle may be deleted intentionally or unintentionally, such as when a recipient client program is
unexpectedly terminated.) After receiving a noti�cation regarding the closure of a resource transfer context
object, the server program deletes the handle of this object. After this, the resource transfer context object is
terminated. After receiving a noti�cation regarding the termination of the resource transfer context object, the
server program frees up or re-uses the memory that was allotted for storing the resource transfer context.

One resource transfer context object can be associated with only one handle transfer.

91

Extracting data from the transport container of a handle

Handle transfer scenarios

1. The transferring client program packages the handles and handle permissions masks into the �elds of the
*_req requests structure of the nk_handle_desc_t type.

2. The transferring client program calls the interface method for transferring handles to the server program. This
method executes the Call() system call.

3. The recipient server program receives the request by executing the Recv() system call.

4. The dispatcher on the recipient server program side calls the method corresponding to the request. This
method extracts the handles and handle permissions masks from the �elds of the *_req request structure of
the nk_handle_desc_t type.

1. The recipient client program calls the interface method for receiving handles from the server program. This
method executes the Call() system call.

2. The transferring server program receives the request by executing the Recv() system call.

3. The dispatcher on the transferring server program side calls the method corresponding to the request. This
method packages the handles, handle permissions masks and resource transfer context object handles into the
�elds of the *_res response structure of the nk_handle_desc_t type.

4. The transferring server program responds to the request by executing the Reply() system call.

5. On the recipient client program side, the interface method returns control. After this, the recipient client
program extracts the handles and handle permissions masks from the �elds of the *_res response structure

The nk_handle_desc() macro declared in the nk/types.h header �le is used to package a handle, handle
permissions mask and resource transfer context object handle into a handle transport container. This macro
receives a variable number of arguments.

If no argument is passed to the macro, the NK_INVALID_HANDLE value will be written in the handle �eld of the
nk_handle_desc_t structure.

If one argument is passed to the macro, this argument is interpreted as the handle.

If two arguments are passed to the macro, the �rst argument is interpreted as the handle and the second
argument is interpreted as the handle permissions mask.

If three arguments are passed to the macro, the �rst argument is interpreted as the handle, the second argument
is interpreted as the handle permissions mask, and the third argument is interpreted as the resource transfer
context object handle.

The nk_get_handle(), nk_get_rights() and nk_get_badge_op() (or nk_get_badge()) functions that are
declared in the nk/types.h header �le are used to extract the handle, handle permissions mask, and pointer to
the resource transfer context, respectively, from the transport container of a handle. The nk_get_badge_op()
and nk_get_badge() functions are used only when dereferencing handles.

A scenario for transferring handles from a client program to the server program includes the following steps:

A scenario for transferring handles from the server program to a client program includes the following steps:

92

of the nk_handle_desc_t type.

Dereferencing handles

1. The client program packages the handle into a �eld of the *_req request structure of the nk_handle_desc_t
type.

2. The client program calls the interface method for sending the handle to the server program for the purpose of
performing operations with the resource. This method executes the Call() system call.

3. The server program receives the request by executing the Recv() system call.

4. The dispatcher on the server program side calls the method corresponding to the request. This method veri�es
that the dereferencing operation was speci�cally executed instead of a handle transfer. Then the called
method has the option to verify that the access rights of the dereferenced handle (that was sent by the client
program) permit the requested actions with the resource, and extracts the pointer to the resource transfer
context from the �eld of the *_req request structure of the nk_handle_desc_t type.

types.h (fragment)

/**
 * Returns a value different from null if
 * the handle in the transport container of
 * "desc" is received as a result of dereferencing
 * the handle. Returns null if the handle
 * in the transport container of "desc" is received
 * as a result of a handle transfer.
 */
static inline
nk_bool_t nk_is_handle_dereferenced(const nk_handle_desc_t *desc)

/**
 * Extracts the pointer to the resource transfer context
 * "badge" from the transport container of "desc"
 * if the permissions mask that was put in the transport
 * container of the desc handle has the operation flags set.
 * If successful, the function returns NK_EOK, otherwise it returns an error code.
 */
static inline
nk_err_t nk_get_badge_op(const nk_handle_desc_t *desc,

If the transferring program de�nes more access rights in the transferred handle permissions mask than the access
rights de�ned for the transferred handle (which it owns), the transfer is not completed. In this case, the Call()
system call made by the transferring or recipient client program or the Reply() system call made by the
transferring server program ends with the rcSecurityDisallow error.

When dereferencing a handle, the client program sends the server program the handle, and the server program
receives a pointer to the resource transfer context, the permissions mask of the sent handle, and the ancestor of
the handle sent by the client program and already owned by the server program. Dereferencing occurs when a
client program that called methods for working with a resource (such as read/write or access closure) sends the
server program the handle that was received from this server program when access to the resource was opened.

Dereferencing handles requires ful�llment of the same conditions and utilizes the same mechanisms and data
types as when transferring handles. A handle dereferencing scenario includes the following steps:

To perform veri�cations, the server program utilizes the nk_is_handle_dereferenced() and
nk_get_badge_op() functions that are declared in the nk/types.h header �le.

93

 nk_rights_t operation,
 nk_badge_t *badge)

Revoking handles

handle_api.h (fragment)

/**
 * Deletes the handle and revokes all of its descendants.
 * If successful, the function returns rcOk, otherwise it returns an error code.
 */
Retcode KnHandleRevoke(Handle handle);

/**
 * Revokes handles that form the
 * inheritance subtree of the handle. The root node of the inheritance subtree
 * is the handle that is generated by transferring
 * the handle associated with the object of the
 * "badge" resource transfer context.
 * If successful, the function returns rcOk, otherwise it returns an error code.
 */
Retcode KnHandleRevokeSubtree(Handle handle, Handle badge);

Notifying about the state of resources

Generally, the server program does not require the handle that was received from dereferencing because the
server program normally retains the handles that it owns, for example, within the contexts of user resources.
However, the server program can extract this handle from the handle transport container if necessary.

A program can revoke descendants of a handle that it owns. Handles are revoked according to the handle
inheritance tree.

Revoked handles are not deleted. However, you cannot query resources via revoked handles. Any function that
accepts a handle will end with the rcHandleRevoked error if this function is called with a revoked handle.

Handles are revoked by using the KnHandleRevoke() and KnHandleRevokeSubtree() functions declared in the
coresrv/handle/handle_api.h header �le. The KnHandleRevokeSubtree() function uses the resource
transfer context object that is created when transferring handles.

Programs can track events that occur with resources (system resources as well as user resources), and inform
other programs about events involving user resources.

Functions of the Noti�cation Subsystem are declared in the coresrv/handle/notice_api.h header �le. The
Noti�cation Subsystem provides for the use of event masks.

94

1. The KnNoticeCreate() function creates a noti�cation receiver (object that stores noti�cations).

2. The KnNoticeSubscribeToObject() function adds "resource–event mask" entries to the noti�cation
receiver to con�gure it to receive noti�cations about events that occur with relevant resources. The set of
tracked events is de�ned for each resource by an event mask.

3. The KnNoticeGetEvent() function is called to extract noti�cations from the noti�cation receiver.

notice_api.h (fragment)

/**
 * Creates the notification receiver named "notice".
 * If successful, the function returns rcOk, otherwise it returns an error code.
 */
Retcode KnNoticeCreate(Notice *notice);

/**
 * Adds a "resource–event mask" entry
 * to the "notice" notification receiver so that it will receive notifications about
 * events that occur with the "object" resource and that match the
 * evMask event mask. Input parameter evId defines the identifier
 * of the entry that is assigned by the user and used to
 * identify the entry in received notifications.
 * If successful, the function returns rcOk, otherwise it returns an error code.
 */
Retcode KnNoticeSubscribeToObject(Notice notice,
 Handle object,
 rtl_uint32_t evMask,
 rtl_uintptr_t evId);

/**
 * Extracts notifications from the "notice" notification receiver
 * while waiting for events to occur within the specific number of milliseconds.
 * Input parameter countMax defines the maximum number
 * of notifications that can be extracted. Output parameter
 * "events" contains a set of extracted notifications of the EventDesc type.
 * Output parameter "count" contains the number of notifications that
 * were extracted.
 * If successful, the function returns rcOk, otherwise it returns an error code.
 */
Retcode KnNoticeGetEvent(Notice notice,
 rtl_uint64_t msec,
 rtl_size_t countMax,

An event mask is a value whose bits are interpreted as events that should be tracked or that have already
occurred. An event mask has a size of 32 bits and consists of a general part and a specialized part. The general
part describes the general events that are not speci�c to any particular resource (the �ags of these events are
de�ned in the handle/event_descr.h header �le). For example, the general part contains the
EVENT_OBJECT_DESTROYED �ag, which de�nes the "resource termination" event. The specialized part describes
the events that are speci�c to a particular user resource. The structure of the specialized part is de�ned by the
resource provider by using the OBJECT_EVENT_SPEC() macro that is de�ned in the handle/event_descr.h
header �le. The resource provider must export the public header �les describing the structure of the specialized
part.

The scenario for receiving noti�cations about events that occur with a resource consists of the following steps:

The KnNoticeSetObjectEvent() function is used to notify a program about events that occur with a user
resource. A call of this function initiates the corresponding noti�cations in the noti�cation receivers that are
con�gured to track these events that occur with this resource.

95

 EventDesc *events,
 rtl_size_t *count);

/* Notification structure */
typedef struct {
 /* Identifier of the "resource–event mask" entry
 * in the notification receiver */
 rtl_uintptr_t eventId;
 /* Mask of events that occurred. */
 rtl_uint32_t eventMask;
} EventDesc;

/**
 * Signals that events from event mask
 * evMask occurred with the "object" user resource.
 * You cannot set flags of the general part of an event mask
 * because events from the general part of an event mask can be
 *signaled only by the KasperskyOS kernel.
 * If successful, the function returns rcOk, otherwise it returns an error code.
 */
Retcode KnNoticeSetObjectEvent(Handle object, rtl_uint32_t evMask);

Deleting handles

handle_api.h (fragment)

/**
 * Deletes the handle.
 * If successful, the function returns rcOk, otherwise it returns an error code.
 */
Retcode KnHandleClose(Handle handle);

OCap usage example

A program can delete the handles that it owns. Deleting a handle does not invalidate its ancestors and
descendants (in contrast to revoking a handle, which actually invalidates the descendants of the handle). In other
words, the ancestors and descendants of a deleted handle can still be used to provide access to the resource that
they identify. Also, deleting a handle does not disrupt the handle inheritance tree associated with the resource
identi�ed by the particular handle. The place of a deleted handle is occupied by its ancestor. In other words, the
ancestor of a deleted handle becomes the direct ancestor of the descendants of the deleted handle.

Handles are deleted by using the KnHandleClose() function, which is declared in the
coresrv/handle/handle_api.h header �le.

This article describes an OCap usage scenario in which the server program provides the following methods for
accessing its resources:

OpenResource() – opens access to the resource.

UseResource() – uses the resource.

CloseResource() – closes access to the resource.

96

package SimpleOCap
interface {
 OpenResource(in UInt32 ID, out Handle handle);
 UseResource(in Handle handle, in UInt8 param, out UInt8 result);
 CloseResource(in Handle handle);
}

1. The resource provider creates the user resource context and calls the KnHandleCreateUserObject()
function to create the resource handle. The resource provider saves the resource handle in the user resource
context.

2. The client calls the OpenResource() method to open access to the resource.

a. The resource provider creates the resource transfer context and calls the KnHandleCreateBadge()
function to create a resource transfer context object and con�gure the noti�cation receiver to receive
noti�cations regarding the closure or termination of the resource transfer context object. The resource
provider saves the handle of the resource transfer context object and the pointer to the user resource
context in the resource transfer context.

b. The resource provider uses the nk_handle_desc() macro to package the resource handle, permissions
mask of the handle, and pointer to the resource transfer context object into the handle transport container.

c. The handle is transferred from the resource provider to the client, which means that the client receives a
descendant of the handle owned by the resource provider.

d. The OpenResource() method call completes successfully. The client extracts the handle and permissions
mask of the handle from the handle transport container by using the nk_get_handle() and
nk_get_rights() functions, respectively. The handle permissions mask is not required by the client to
query the resource, but is transferred so that the client can �nd out its permissions for accessing the
resource.

3. The client calls the UseResource() method to utilize the resource.

a. The handle that was received from the resource provider at step 2 is used as an argument of the
UseResource() method. Before calling this method, the client uses the nk_handle_desc() macro to
package the handle into the handle transport container.

b. The handle is dereferenced, after which the resource provider receives the pointer to the resource transfer
context.

c. The resource provider uses the nk_is_handle_dereferenced() function to verify that the dereferencing
operation was completed instead of a handle transfer.

d. The resource provider veri�es that the access rights of the dereferenced handle (that was sent by the
client) allows the requested operation with the resource, and extracts the pointer to the resource transfer
context from the handle transport container. To do so, the resource provider uses the nk_get_badge_op()
function, which extracts the pointer to the resource transfer context from the handle transport container if
the received permissions mask has the corresponding �ags set for the requested operation.

The client program uses these methods.

IDL description of interface methods:

The scenario includes the following steps:

97

e. The resource provider uses the resource transfer context and the user resource context to perform the
corresponding operation with the resource as requested by the client. Then the resource provider sends the
client the results of this operation.

f. The UseResource() method call completes successfully. The client receives the results of the operation
performed on the resource.

4. The client calls the CloseResource() method to close access to the resource.

a. The handle that was received from the resource provider at step 2 is used as an argument of the
CloseResource() method. Before calling this method, the client uses the nk_handle_desc() macro to
package the handle into the handle transport container. After the CloseResource() method is called, the
client uses the KnHandleClose() function to delete the handle.

b. The handle is dereferenced, after which the resource provider receives the pointer to the resource transfer
context.

c. The resource provider uses the nk_is_handle_dereferenced() function to verify that the dereferencing
operation was completed instead of a handle transfer.

d. The resource provider uses the nk_get_badge() function to extract the pointer to the resource transfer
context from the handle transport container.

e. The resource provider uses the KnHandleRevokeSubtree() function to revoke the handle owned by the
client. The resource handle owned by the resource provider and the handle of the resource transfer context
object are used as arguments of this function. The resource provider obtains access to these handles
through the pointer to the resource transfer context. (Technically, the handle owned by the client does not
have to be revoked because the client already deleted it. However, the revoke operation is performed in
case the resource provider is not sure if the client actually deleted the handle).

f. The CloseResource() method call completes successfully.

5. The resource provider frees up the memory that was allocated for the resource transfer context and the user
resource context.

a. The resource provider calls the KnNoticeGetEvent() function to receive a noti�cation that the resource
transfer context object was closed, and uses the KnHandleClose() function to delete the handle of the
resource transfer context object.

b. The resource provider calls the KnNoticeGetEvent() function to receive a noti�cation that the resource
transfer context object has been terminated, and frees up the memory that was allocated for the resource
transfer context.

c. The resource provider uses the KnHandleClose() function to delete the resource handle and to free up
the memory that was allocated for the user resource context.

Noti�cations

Event mask

98

typedef struct {
 rtl_uintptr_t eventId;
 rtl_uint32_t eventMask;
} EventDesc;

Retcode KnNoticeCreate(Notice *notice);

Retcode KnNoticeGetEvent(Notice notice,
 rtl_uint64_t msec,
 rtl_size_t countMax,
 EventDesc *events,
 rtl_size_t *count);

An event mask is a value whose bits are interpreted as events that should be tracked or that have already
occurred. An event mask has a size of 32 bits and consists of a general part and a specialized part. The general
part describes the general events that are not speci�c to any particular resource (the �ags of these events are
de�ned in the handle/event_descr.h header �le). For example, the general part contains the
EVENT_OBJECT_DESTROYED �ag, which de�nes the "resource termination" event. The specialized part describes
the events that are speci�c to a particular user resource. The structure of the specialized part is de�ned by the
resource provider by using the OBJECT_EVENT_SPEC() macro that is de�ned in the handle/event_descr.h
header �le. The resource provider must export the public header �les describing the structure of the specialized
part.

EventDesc

The structure describing the noti�cation is declared in the �le coresrv/handle/notice_api.h.

eventId is the ID of the "resource–event mask" entry in the noti�cation receiver.

eventMask is the mask of events that occurred.

KnNoticeCreate()

This function is declared in the �le coresrv/handle/notice_api.h.

This function creates a noti�cation receiver named notice (object that stores noti�cations).

If successful, the function returns , otherwise it returns an error code.rcOk

KnNoticeGetEvent()

This function is declared in the �le coresrv/handle/notice_api.h.

This function extracts noti�cations from the notice noti�cation receiver while waiting for events to occur within
the speci�c number of milliseconds (msec).

Input parameter countMax de�nes the maximum number of noti�cations that can be extracted.

99

Example

const int maxEventsPerNoticeCall = 10;
Retcode rc;
EventDesc events[maxEventsPerNoticeCall];
rtl_size_t eventCount;

rc = KnNoticeGetEvent(notice, INFINITE_TIMEOUT, rtl_countof(events),
 &events[0], &eventCount);

Retcode KnNoticeSetObjectEvent(Handle object, rtl_uint32_t evMask);

Retcode KnNoticeSubscribeToObject(Notice notice,
 Handle object,
 rtl_uint32_t evMask,
 rtl_uintptr_t evId);

Output parameter events contains a set of extracted noti�cations of the EventDesc type.

Output parameter count contains the number of noti�cations that were extracted.

If successful, the function returns , otherwise it returns an error code.rcOk

KnNoticeSetObjectEvent()

This function is declared in the �le coresrv/handle/notice_api.h.

This function signals that events from the event mask evMask occurred with the object resource.

You cannot set �ags of the general part of an event mask because only the KasperskyOS kernel can provide
signals regarding events from the general part of an event mask.

If successful, the function returns , otherwise it returns an error code.rcOk

KnNoticeSubscribeToObject()

This function is declared in the �le coresrv/handle/notice_api.h.

This function adds a "resource–event mask" entry to the notice noti�cation receiver so that it can receive
noti�cations about events that occur with the object resource and match the event mask evMask.

Input parameter evId de�nes the entry ID that is assigned by the user and is used to identify the entry in received
noti�cations.

If successful, the function returns , otherwise it returns an error code.rcOk

For a usage example, see KnHandleCreateUserObject().

100

Retcode EntityConnect(Entity *cl, Entity *sr);

Retcode EntityConnectToService(Entity *cl, Entity *sr, const char *name);

typedef struct EntityInfo {
 /* process class name */
 const char *eiid;
 /* maximum number of endpoints */
 nk_iid_t max_endpoints;
 /* information about the process endpoints */
 const EndpointInfo *endpoints;
 /* arguments to be passed to the process when it is started */
 const char *args[ENTITY_ARGS_MAX + 1];
 /* environment variables to be passed to the process when it is started */
 const char *envs[ENTITY_ENV_MAX + 1];
 /* process flags */
 EntityFlags flags;

Processes

EntityConnect()

This function is declared in the header �le coresrv/entity/entity_api.h.

This function connects processes with an IPC channel. To do so, the function creates IPC handles for the client
process cl and the server process sr, and then binds the handles to each other. The created channel will be
included into the default group of channels (the name of this group matches the name of the server process). The
connected processes must be in the stopped state.

If successful, the function returns .rcOk

EntityConnectToService()

This function is declared in the header �le coresrv/entity/entity_api.h.

This function connects processes with an IPC channel. To do so, the function creates IPC handles for the client
process cl and the server process sr, and then binds the handles to each other. The created channel will be
added to the group of channels with the speci�ed name. The connected processes must be in the stopped state.

If successful, the function returns .rcOk

EntityInfo

The EntityInfo structure describing the process is declared in the �le named if_connection.h.

101

 /* process components tree */
 const struct nk_component_node *componentTree;
} EntityInfo;

typedef struct EndpointInfo {
 char *name; /* fully qualified name of the endpoint */
 nk_iid_t riid; /* endpoint ID */
 char *iface_name; /* name of the interface implemented by the endpoint */
} EndpointInfo;
typedef enum {
 ENTITY_FLAGS_NONE = 0,
 /* the process is reset if an unhandled exception occurs */
 ENTITY_FLAG_DUMPABLE = 1,
} EntityFlags;

Entity *EntityInit(const EntityInfo *info);

Entity *EntityInitEx(const EntityInfo *info, const char *name,
 const char *path);

EntityInit()

This function is declared in the header �le coresrv/entity/entity_api.h.

This function creates a process. The info parameter de�nes the name of the process class and (optionally) its
endpoints, arguments and environment variables.

The created process will have the default name (matching the process class name), and the default name for the
executable �le (also matching the process class name).

If successful, the function returns the structure describing the new process. The created process is in the stopped
state.

If an error occurs, the function returns .RTL_NULL

EntityInitEx()

This function is declared in the header �le coresrv/entity/entity_api.h.

This function creates a process.

The info parameter de�nes the name of the process class and (optionally) its endpoints, arguments and
environment variables.

The name parameter de�nes the name of the process. If it has the value, the process class name from
the info parameter will be used as the process name.

RTL_NULL

The path parameter de�nes the name of the executable �le in the solution's ROMFS image. If it has the
 value, the process class name from the info parameter will be used as the �le name.RTL_NULL

102

Retcode EntityRun(Entity *entity);

Retcode KnCmAccept(const char *client, const char *service, rtl_uint32_t rsid,
 Handle listener, Handle *handle);

If successful, the function returns the structure describing the new process. The created process is in the stopped
state.

If an error occurs, the function returns .RTL_NULL

EntityRun()

This function is declared in the header �le coresrv/entity/entity_api.h.

This function starts a process that is in the stopped state. The process is described by the entity structure.

If successful, the function returns .rcOk

Dynamically created channels

KnCmAccept()

This function is declared in the coresrv/cm/cm_api.h �le.

This function accepts the client process channel creation request that was previously received using the
KnCmListen() call. This function is called by the server process.

Input parameters:

client is the name of the client process that sent the request to create the channel.

service is the fully quali�ed name of the endpoint requested by the client process (for example, blkdev.ata).

rsid is the endpoint ID.

listener is the listener handle; if it has the value, a new listener handle is created and will
be used as the server IPC handle of the channel being created.

INVALID_HANDLE

Output parameter handle contains the server IPC handle of the channel being created.

If successful, the function returns , otherwise it returns an error code.rcOk

KnCmConnect()

This function is declared in the coresrv/cm/cm_api.h �le.

103

Retcode KnCmConnect(const char *server, const char *service,
 rtl_uint32_t msecs, Handle *handle,
 rtl_uint32_t *rsid);

Retcode KnCmDrop(const char *client, const char *service);

Retcode KnCmListen(const char *filter, rtl_uint32_t msecs, char *client,
 char *service);

This function sends a request to create a channel with the server process. This function is called by the client
process.

Input parameters:

server is the name of the server process that provides the endpoint.

service is the fully quali�ed name of the endpoint (for example, blkdev.ata).

msecs is the timeout for accepting the request, in milliseconds.

Output parameters:

handle is the client IPC handle.

rsid is the endpoint ID.

If successful, the function returns , otherwise it returns an error code.rcOk

KnCmDrop()

This function is declared in the coresrv/cm/cm_api.h �le.

This function rejects the client process channel creation request that was previously received using the
KnCmListen() call. This function is called by the server process.

Parameters:

client is the name of the client process that sent the request to create the channel.

service is the fully quali�ed name of the endpoint requested by the client process (for example, blkdev.ata).

If successful, the function returns , otherwise it returns an error code.rcOk

KnCmListen()

This function is declared in the coresrv/cm/cm_api.h �le.

104

Retcode NsCreate(const char *name, rtl_uint32_t msecs, NsHandle *ns);

Retcode NsEnumServices(NsHandle ns, const char *type, unsigned index,
 char *server, rtl_size_t serverSize,
 char *service, rtl_size_t serviceSize);

This function checks for channel creation requests from client processes. This function is called by the server
process.

Input parameters:

filter is an unused parameter.

msecs is the request timeout, in milliseconds.

Output parameters:

client is the name of the client process.

service is the fully quali�ed name of the endpoint requested by the client process (for example, blkdev.ata).

If successful, the function returns , otherwise it returns an error code.rcOk

NsCreate()

This function is declared in the coresrv/ns/ns_api.h �le.

This function attempts to connect to name server name for the speci�ed number of milliseconds (msecs). If the
name parameter has the value, the function attempts to connect to name server ns (the default name
server).

RTL_NULL

Output parameter ns contains the handle for the connection with the name server.

If successful, the function returns , otherwise it returns an error code.rcOk

NsEnumServices()

This function is declared in the coresrv/ns/ns_api.h �le.

This function enumerates the endpoints with the de�ned interface that are published on the name server.

Input parameters:

ns is the handle of the connection with the name server that was previously received by using the NsCreate()
call.

type is the name of the interface implemented by the endpoint (for example, kl.drivers.Block).

index is the index for enumerating endpoints.

105

rc = NsEnumServices(ns, "kl.drivers.Block", 0, outServerName, ServerNameSize,
outServiceName, ServiceNameSize);
rc = NsEnumServices(ns, "kl.drivers.Block", 1, outServerName, ServerNameSize,
outServiceName, ServiceNameSize);
 ...
rc = NsEnumServices(ns, "kl.drivers.Block", N, outServerName, ServerNameSize,
outServiceName, ServiceNameSize);

Retcode NsPublishService(NsHandle ns, const char *type, const char *server,
 const char *service);

serverSize is the maximum size of the bu�er for the server output parameter in bytes.

serviceSize is the maximum size of the bu�er for the service output parameter in bytes.

Output parameters:

server is the name of the server process that provides the endpoint (for example, kl.drivers.Ata).

service is the fully quali�ed name of the endpoint (for example, blkdev.ata).

For example, you can receive a full list of server processes that provide an endpoint with the kl.drivers.Block
interface as follows.

Function calls with index incrementation continue until the function returns .rcResourceNotFound

If successful, the function returns , otherwise it returns an error code.rcOk

NsPublishService()

This function is declared in the coresrv/ns/ns_api.h �le.

This function publishes the endpoint with the de�ned interface on the name server.

Parameters:

ns is the handle of the connection with the name server that was previously received by using the NsCreate()
call.

type is the name of the interface implemented by the published endpoint (for example, kl.drivers.Block).

server is the name of the server process (for example, kl.drivers.Ata).

service is the fully quali�ed name of the endpoint (for example, blkdev.ata).

If successful, the function returns , otherwise it returns an error code.rcOk

NsUnPublishService()

This function is declared in the coresrv/ns/ns_api.h �le.

106

Retcode NsUnPublishService(NsHandle ns, const char *type, const char *server,
 const char *service);

void KosCondvarBroadcast(KosCondvar *condvar);

void KosCondvarDeinit(KosCondvar *condvar);

void KosCondvarInit(KosCondvar *condvar);

This function unpublishes the endpoint on the name server.

Parameters:

ns is the handle of the connection with the name server that was previously received by using the NsCreate()
call.

type is the name of the interface implemented by the published endpoint (for example, kl.drivers.Block).

server is the name of the server process (for example, kl.drivers.Ata).

service is the fully quali�ed name of the endpoint (for example, blkdev.ata).

If successful, the function returns , otherwise it returns an error code.rcOk

Synchronization primitives

KosCondvarBroadcast()

This function is declared in the kos/condvar.h �le.

This function wakes all threads from the queue of threads that are blocked by the conditional variable condvar.

KosCondvarDeinit()

This function is declared in the kos/condvar.h �le.

De-initializes the conditional variable condvar.

KosCondvarInit()

This function is declared in the kos/condvar.h �le.

107

void KosCondvarSignal(KosCondvar *condvar);

Retcode KosCondvarWait(KosCondvar *condvar, KosMutex *mutex);

Retcode KosCondvarWaitTimeout(KosCondvar *condvar, KosMutex *mutex,
 rtl_uint32_t mdelay);

void KosEventDeinit(KosEvent *event);

Initializes the conditional variable condvar.

KosCondvarSignal()

This function is declared in the kos/condvar.h �le.

This function wakes one thread from the queue of threads that are blocked by the conditional variable condvar.

KosCondvarWait()

This function is declared in the kos/condvar.h �le.

This function blocks execution of the current thread via the conditional variable condvar until it is awakened using
KosCondvarSignal() or KosCondvarBroadcast().

mutex refers to the mutex that will be used for protecting the critical section.

If successful, the function returns .rcOk

KosCondvarWaitTimeout()

This function is declared in the kos/condvar.h �le.

This function blocks execution of the current thread via the conditional variable condvar until it is awakened using
KosCondvarSignal() or KosCondvarBroadcast(). The thread is blocked for no more than mdelay (in milliseconds).

mutex refers to the mutex that will be used for protecting the critical section.

This function returns if successful, or if it times out.rcOk rcTimeout

KosEventDeinit()

This function is declared in the kos/event.h �le.

108

void KosEventInit(KosEvent *event);

void KosEventReset(KosEvent *event);

void KosEventSet(KosEvent *event);

void KosEventWait(KosEvent *event, rtl_bool reset);

This function frees the resources associated with an event (deletes the event).

KosEventInit()

This function is declared in the kos/event.h �le.

This function creates an event.

The created event is in a non-signaling state.

KosEventReset()

This function is declared in the kos/event.h �le.

This function switches an event to the non-signaling state (resets the event).

KosEventSet()

This function is declared in the kos/event.h �le.

This function switches an event to the signaling state (signals the event) and thereby wakes all threads that are
waiting for it.

KosEventWait()

This function is declared in the kos/event.h �le.

Waits for the event to switch to signaling state.

The reset parameter indicates whether the event should be automatically reset when the wait successfully ends.

Returns if successful.rcOk

KosEventWaitTimeout()

109

Retcode KosEventWaitTimeout(KosEvent *event, rtl_bool reset,
 rtl_uint32_t msec);

void KosMutexDeinit(KosMutex *mutex);

void KosMutexInit(KosMutex *mutex);

void KosMutexInitEx(KosMutex *mutex, int recursive);

void KosMutexLock(KosMutex *mutex);

This function is declared in the kos/event.h �le.

Waits for the event to switch to signaling state for a period of msec (milliseconds).

The reset parameter indicates whether the event should be automatically reset when the wait successfully ends.

This function returns if successful, or if the timeout is exceeded.rcOk rcTimeout

KosMutexDeinit()

This function is declared in the kos/mutex.h �le.

Deletes the speci�ed mutex.

KosMutexInit()

This function is declared in the kos/mutex.h �le.

Initializes the mutex in an unlocked state.

KosMutexInitEx()

This function is declared in the kos/mutex.h �le.

Initializes the mutex in an unlocked state.

To initialize a recursive mutex, you need to pass the value to the recursive parameter.1

KosMutexLock()

This function is declared in the kos/mutex.h �le.

110

Retcode KosMutexLockTimeout(KosMutex *mutex, rtl_uint32_t mdelay);

Retcode KosMutexTryLock(KosMutex *mutex);

void KosMutexUnlock(KosMutex *mutex);

void KosRWLockDeinit(KosRWLock *rwlock);

Captures the speci�ed mutex.

If the mutex is already captured, the thread is locked and waits to be unlocked.

KosMutexLockTimeout()

This function is declared in the kos/mutex.h �le.

Captures the speci�ed mutex.

If the mutex is already captured, the thread is locked for mdelay and waits to be unlocked.

This function returns if successful, or if it times out.rcOk rcTimeout

KosMutexTryLock()

This function is declared in the kos/mutex.h �le.

Attempts to capture the speci�ed mutex.

This function returns if the mutex could be captured, and returns if the mutex could not be captured
because it is already captured.

rcOk rcBusy

KosMutexUnlock()

This function is declared in the kos/mutex.h �le.

Unlocks the speci�ed mutex.

To unlock a recursive mutex, you need to perform the same amount of KosMutexUnlock() calls to match the
amount of times the recursive mutex was locked.

KosRWLockDeinit()

This function is declared in the kos/rwlock.h �le.

111

void KosRWLockInit(KosRWLock *rwlock);

void KosRWLockRead(KosRWLock *rwlock);

Retcode KosRWLockTryRead(KosRWLock *rwlock);

Retcode KosRWLockTryWrite(KosRWLock *rwlock);

De-initializes the read-write lock rwlock.

KosRWLockInit()

This function is declared in the kos/rwlock.h �le.

Initializes the read-write lock rwlock.

KosRWLockRead()

This function is declared in the kos/rwlock.h �le.

Locks the read threads.

KosRWLockTryRead()

This function is declared in the kos/rwlock.h �le.

Attempts to lock the read threads.

If successful, the function returns .rcOk

KosRWLockTryWrite()

This function is declared in the kos/rwlock.h �le.

Attempts to lock the write threads.

If successful, the function returns .rcOk

KosRWLockUnlock()

This function is declared in the kos/rwlock.h �le.

112

void KosRWLockUnlock(KosRWLock *rwlock);

void KosRWLockWrite(KosRWLock *rwlock);

Retcode KosSemaphoreDeinit(KosSemaphore *semaphore);

It is safe to destroy an initialized semaphore on which there are currently no locked threads. There could be
an unpredictable e�ect from destroying a semaphore on which other threads are currently locked.

Retcode KosSemaphoreInit(KosSemaphore *semaphore, unsigned count);

Removes the read-write lock rwlock.

KosRWLockWrite()

This function is declared in the kos/rwlock.h �le.

Locks the write threads.

KosSemaphoreDeinit()

This function is declared in the kos/semaphore.h �le.

This function destroys the speci�ed semaphore that was previously initialized by the KosSemaphoreInit()
function.

The function returns the following:

 if successful;

, if the semaphore points to an invalid semaphore;

 if there are threads being locked by this semaphore.

rcOk

rcInvalidArgument

rcFail

KosSemaphoreInit()

This function is declared in the kos/semaphore.h �le.

Initializes the de�ned semaphore with the initial count value.

The function returns the following:

113

Retcode KosSemaphoreSignal(KosSemaphore *semaphore);

Retcode KosSemaphoreTryWait(KosSemaphore *semaphore);

Retcode KosSemaphoreWait(KosSemaphore *semaphore);

 if successful;

, if the semaphore points to an invalid semaphore;

 if the count value exceeds .

rcOk

rcInvalidArgument

rcFail KOS_SEMAPHORE_VALUE_MAX

KosSemaphoreSignal()

This function is declared in the kos/semaphore.h �le.

Frees (signals) the de�ned semaphore.

The function returns the following:

 if successful;

, if the semaphore points to an invalid semaphore.

rcOk

rcInvalidArgument

KosSemaphoreTryWait()

This function is declared in the kos/semaphore.h �le.

Attempts to acquire the de�ned semaphore.

The function returns the following:

 if successful;

, if the semaphore points to an invalid semaphore;

 if the semaphore is already acquired.

rcOk

rcInvalidArgument

rcBusy

KosSemaphoreWait()

This function is declared in the kos/semaphore.h �le.

Waits for acquisition of the de�ned semaphore.

114

Retcode KosSemaphoreWaitTimeout(KosSemaphore *semaphore, rtl_uint32_t mdelay);

typedef struct {
 /** DMA flags (attributes). */
 DmaAttr flags;

 /** Minimum order of DMA blocks in the buffer. */
 rtl_size_t orderMin;

 /** DMA buffer size. */
 rtl_size_t size;

 /** Number of DMA blocks (less than or equal to DMA_FRAMES_COUNT_MAX).
 * It may be equal to 0 if a DMA buffer is not available for the device. */
 rtl_size_t count;

 /** Array of DMA block descriptors. */
 union DmaFrameDescriptor {
 struct {
 /** Order of the DMA block. The number of pages in a block is equal to two
 * to the power of the specified order. */

The function returns the following:

 if successful;

, if the semaphore points to an invalid semaphore.

rcOk

rcInvalidArgument

KosSemaphoreWaitTimeout()

This function is declared in the kos/semaphore.h �le.

Waits for acquisition of the de�ned semaphore for a period of mdelay in milliseconds.

The function returns the following:

 if successful;

, if the semaphore points to an invalid semaphore;

 if the timeout expired.

rcOk

rcInvalidArgument

rcTimeout

DMA bu�ers

DmaInfo

The structure describing the DMA bu�er is declared in the io/io_dma.h �le.

115

 DmaAddr order: DMA_FRAME_ORDER_BITS;

 /** Physical or IOMMU address of the DMA block. */
 DmaAddr frame: DMA_FRAME_BASE_BITS;
 };

 /** DMA block descriptor */
 DmaAddr raw;
 } descriptors[1];
} DmaInfo;

Retcode KnIoDmaBegin(Handle rid, Handle *handle);

To prevent a device from accessing the DMA bu�er, you need to call the KnIoClose() function while
passing the speci�ed handle of the permission in this function.

DMA �ags

DMA �ags (attributes) are declared in the io/io_dma.h �le.

 allows transactions from the main memory to the device memory.

 allows transactions from the device memory to the main memory.

 allows transactions from the main memory to the device memory, and vice versa.

 allows the use of only the �rst 4 GB of memory for the bu�er.

, , , and
 are for managing the cache of memory pages.

DMA_DIR_TO_DEVICE

DMA_DIR_FROM_DEVICE

DMA_DIR_BIDIR

DMA_ZONE_DMA32

DMA_ATTR_WRITE_BACK DMA_ATTR_WRITE_THROUGH DMA_ATTR_CACHE_DISABLE
DMA_ATTR_WRITE_COMBINE

KnIoDmaBegin()

This function is declared in the coresrv/io/dma.h �le.

Allows the device to access the DMA bu�er with the handle rid.

Output parameter handle contains the handle of this permission.

If successful, the function returns .rcOk

For a usage example, see KnIoDmaCreate().

KnIoDmaCreate()

116

Retcode KnIoDmaCreate(rtl_uint32_t order, rtl_size_t size, DmaAttr flags,
 Handle *outRid);

If a DMA bu�er is no longer being used, it must be freed by using the KnIoClose() function.

Example

Retcode RegisterDmaMem(rtl_size_t size,
 DmaAttr attr,
 Handle *handle,
 Handle *dmaHandle,
 Handle *mappingHandle,
 void **addr)
{
 Retcode ret;

 *handle = INVALID_HANDLE;
 *dmaHandle = INVALID_HANDLE;
 *mappingHandle = INVALID_HANDLE;

 ret = KnIoDmaCreate(rtl_roundup_order(size >> PAGE_SHIFT),
 size,
 attr,
 handle);

 if (ret == rcOk) {
 ret = KnIoDmaBegin(*handle, dmaHandle);
 }

 if (ret == rcOk) {
 ret = KnIoDmaMap(*handle,
 0,
 size,
 RTL_NULL,
 VMM_FLAG_READ | VMM_FLAG_WRITE,

This function is declared in the coresrv/io/dma.h �le.

This function registers and allocates a physical DMA bu�er.

Input parameters:

order is the minimum permissible order of DMA block allocation; the actual order of each block in the DMA
bu�er is chosen by the kernel (but will not be less than the speci�ed order) and is indicated in the block handle;
the order of a block determines the number of pages in it. For example, a block with an order of consists of

 pages.

size refers to the size of the DMA bu�er, in bytes (must be a multiple of the page size); the sum of all sizes of
allocated DMA blocks will be no less than the speci�ed size.

flags refers to DMA �ags.

N
2^N

Output parameter outRid contains the handle of the allocated DMA bu�er.

If successful, the function returns .rcOk

117

 addr,
 mappingHandle);
 }

 if (ret != rcOk) {
 if (*mappingHandle != INVALID_HANDLE)
 KnHandleClose(*mappingHandle);

 if (*dmaHandle != INVALID_HANDLE)
 KnHandleClose(*dmaHandle);

 if (*handle != INVALID_HANDLE)
 KnHandleClose(*handle);
 }

 return ret;
}

Retcode KnIoDmaGetInfo(Handle rid, DmaInfo **outInfo);

In contrast to KnIoDmaGetPhysInfo(), the outInfo parameter contains IOMMU addresses of DMA blocks
instead of physical addresses.

Retcode KnIoDmaGetPhysInfo(Handle rid, DmaInfo **outInfo);

KnIoDmaGetInfo()

This function is declared in the coresrv/io/dma.h �le.

This function gets information about the DMA bu�er with the handle rid.

Output parameter outInfo contains information about the DMA bu�er.

If successful, the function returns .rcOk

KnIoDmaGetPhysInfo()

This function is declared in the coresrv/io/dma.h �le.

This function gets information about the DMA bu�er with the handle rid.

Output parameter outInfo contains information about the DMA bu�er.

If successful, the function returns .rcOk

118

In contrast to KnIoDmaGetInfo(), the outInfo parameter contains physical addresses of DMA blocks
instead of IOMMU addresses.

Retcode KnIoDmaMap(Handle rid, rtl_size_t offset, rtl_size_t length, void *hint,
 int vmflags, void **addr, Handle *handle);

KnIoDmaMap()

This function is declared in the coresrv/io/dma.h �le.

This function maps a DMA bu�er area to the address space of a process.

Input parameters:

rid is the handle of the DMA bu�er allocated using KnIoDmaCreate().

offset refers to the page-aligned o�set of the start of the area from the start of the bu�er, indicated in
bytes.

length refers to the size of the area; it must be a multiple of the page size and must not exceed <bu�er size -
offset>.

hint is the virtual address of the start of mapping; if it is equal to , the address is selected by the kernel.

vmflags refers to allocation �ags.

0

In the vmflags parameter, you can use the following allocation �ags (vmm/flags.h):

 and are memory protection attributes.

 and add a protective page before and after the
allocated memory, respectively.

VMM_FLAG_READ VMM_FLAG_WRITE

VMM_FLAG_LOW_GUARD VMM_FLAG_HIGH_GUARD

Permissible combinations of memory protection attributes:

 allows reading page contents.

 allows modi�cation of page contents.

 allows reading and modifying page contents.

VMM_FLAG_READ

VMM_FLAG_WRITE

VMM_FLAG_READ | VMM_FLAG_WRITE

Output parameters:

addr is the pointer to the virtual address of the start of the mapped area.

handle refers to the handle of the created mapping.

If successful, the function returns .rcOk

For a usage example, see KnIoDmaCreate().

119

To delete a created mapping, you must call the KnIoClose() function and pass the speci�ed mapping
handle in this function.

Retcode KnIommuAttachDevice(rtl_uint16_t bdf);

Retcode KnIommuDetachDevice(rtl_uint16_t bdf);

rtl_uint8_t IoReadIoPort8(rtl_size_t port);
rtl_uint16_t IoReadIoPort16(rtl_size_t port);
rtl_uint32_t IoReadIoPort32(rtl_size_t port);

IOMMU

KnIommuAttachDevice()

This function is declared in the coresrv/iommu/iommu_api.h �le.

This function adds the PCI device with the bdf identi�er to the IOMMU group of the calling process (IOMMU
domain).

Returns if successful.rcOk

KnIommuDetachDevice()

This function is declared in the coresrv/iommu/iommu_api.h �le.

This function removes the PCI device with the bdf identi�er from the IOMMU group of the calling process (IOMMU
domain).

If successful, the function returns .rcOk

I/O ports

IoReadIoPort8(), IoReadIoPort16(), IoReadIoPort32()

These functions are declared in the coresrv/io/ports.h �le.

These functions read one, two, or four bytes, respectively, from the speci�ed port and return the read value.

120

void IoReadIoPortBuffer8(rtl_size_t port, rtl_uint8_t *dst, rtl_size_t cnt);
void IoReadIoPortBuffer16(rtl_size_t port, rtl_uint16_t *dst, rtl_size_t cnt);
void IoReadIoPortBuffer32(rtl_size_t port, rtl_uint32_t *dst, rtl_size_t cnt);

void IoWriteIoPort8(rtl_size_t port, rtl_uint8_t data);
void IoWriteIoPort16(rtl_size_t port, rtl_uint16_t data);
void IoWriteIoPort32(rtl_size_t port, rtl_uint32_t data);

void IoWriteIoPortBuffer8(rtl_size_t port, const rtl_uint8_t *src,
 rtl_size_t cnt);
void IoWriteIoPortBuffer16(rtl_size_t port, const rtl_uint16_t *src,
 rtl_size_t cnt);
void IoWriteIoPortBuffer32(rtl_size_t port, const rtl_uint32_t *src,
 rtl_size_t cnt);

IoReadIoPortBu�er8(), IoReadIoPortBu�er16(), IoReadIoPortBu�er32()

These functions are declared in the coresrv/io/ports.h �le.

These functions read the sequence of one-, two-, or four-byte values, respectively, from the speci�ed port and
write the values to the dst array.

cnt is the length of sequence.

IoWriteIoPort8(), IoWriteIoPort16(), IoWriteIoPort32()

These functions are declared in the coresrv/io/ports.h �le.

The functions write a one-, two-, or four-byte data value to the speci�ed port.

IoWriteIoPortBu�er8(), IoWriteIoPortBu�er16(), IoWriteIoPortBu�er32()

These functions are declared in the coresrv/io/ports.h �le.

These functions write the sequence of one-, two-, or four-byte values, respectively, from the src array to the
speci�ed port.

cnt is the length of sequence.

KnIoPermitPort()

This function is declared in the coresrv/io/ports.h �le.

121

Retcode KnIoPermitPort(Handle rid, Handle *handle);

Example

static Retcode PortInit(IOPort *resource)
{
 Retcode rc = rcFail;
 rc = KnRegisterPorts(resource->base,
 resource->size,
 &resource->handle);
 if (rc == rcOk)
 rc = KnIoPermitPort(resource->handle, &resource->permitHandle);
 resource->addr = (void *) (rtl_uintptr_t) resource->base;

 return rc;
}

Retcode KnRegisterPort8(rtl_uint16_t port, Handle *outRid);
Retcode KnRegisterPort16(rtl_uint16_t port, Handle *outRid);
Retcode KnRegisterPort32(rtl_uint16_t port, Handle *outRid);

If a port is no longer being used, it must be freed by using the KnIoClose() function.

Retcode KnRegisterPorts(rtl_uint16_t port, rtl_size_t size, Handle *outRid);

This function allows a process to access the port (range of ports) with the handle rid.

Output parameter handle contains the handle of this permission.

Returns if successful.rcOk

KnRegisterPort8(), KnRegisterPort16(), KnRegisterPort32()

These functions are declared in the coresrv/io/ports.h �le.

These functions register an eight-, sixteen-, or thirty-two-bit port, respectively, with the port address and assign
the outRid handle to it.

Return if the port allocation is successful.rcOk

KnRegisterPorts()

This function is declared in the coresrv/io/ports.h �le.

122

If a range of ports is no longer being used, it must be freed by using the KnIoClose() function.

void IoReadMmBuffer8(volatile rtl_uint8_t *baseReg, rtl_uint8_t *dst,
 rtl_size_t cnt);
void IoReadMmBuffer16(volatile rtl_uint16_t *baseReg, rtl_uint16_t *dst,
 rtl_size_t cnt);
void IoReadMmBuffer32(volatile rtl_uint32_t *baseReg, rtl_uint32_t *dst,
 rtl_size_t cnt);

rtl_uint8_t IoReadMmReg8(volatile void *reg);
rtl_uint16_t IoReadMmReg16(volatile void *reg);
rtl_uint32_t IoReadMmReg32(volatile void *reg);

void IoWriteMmBuffer8(volatile rtl_uint8_t *baseReg, const rtl_uint8_t *src,

This function registers a range of ports (memory area) with the base address port and the speci�ed size (in
bytes) and assigns the outRid handle to it.

Returns if allocation of the port range is successful.rcOk

For a usage example, see KnIoPermitPort().

Memory-mapped I/O (MMIO)

IoReadMmBu�er8(), IoReadMmBu�er16(), IoReadMmBu�er32()

These functions are declared in the coresrv/io/mmio.h �le.

These functions read the sequence of one-, two-, or four-byte values, respectively, from the register mapped to
the baseReg address and write the values to the dst array. cnt is the length of the sequence.

IoReadMmReg8(), IoReadMmReg16(), IoReadMmReg32()

These functions are declared in the coresrv/io/mmio.h �le.

These functions read one, two, or four bytes, respectively, from the register mapped to the reg address and
return the read value.

IoWriteMmBu�er8(), IoWriteMmBu�er16(), IoWriteMmBu�er32()

These functions are declared in the coresrv/io/mmio.h �le.

123

 rtl_size_t cnt);
void IoWriteMmBuffer16(volatile rtl_uint16_t *baseReg, const rtl_uint16_t *src,
 rtl_size_t cnt);
void IoWriteMmBuffer32(volatile rtl_uint32_t *baseReg, const rtl_uint32_t *src,
 rtl_size_t cnt);

void IoWriteMmReg8(volatile void *reg, rtl_uint8_t data);
void IoWriteMmReg16(volatile void *reg, rtl_uint16_t data);
void IoWriteMmReg32(volatile void *reg, rtl_uint32_t data);

Retcode KnIoMapMem(Handle rid, rtl_uint32_t prot, rtl_uint32_t attr,
 void **addr, Handle *handle);

These functions write the sequence of one-, two-, or four-byte values, respectively, from the src array to the
register mapped to the baseReg address. cnt is the length of the sequence.

IoWriteMmReg8(), IoWriteMmReg16(), IoWriteMmReg32()

These functions are declared in the coresrv/io/mmio.h �le.

These functions write a one-, two-, or four-byte data value to the register mapped to the reg address.

KnIoMapMem()

This function is declared in the coresrv/io/mmio.h �le.

This function maps the registered memory area that was assigned the handle rid to the address space of the
process.

You can use the prot and attr input parameters to change the memory area protection attributes, or to disable
caching.

Output parameters:

addr is the pointer to the starting address of the virtual memory area.

handle refers to the handle of the virtual memory area.

Returns if successful.rcOk

prot refers to the attributes of memory area protection via MMU, with the following possible values:

 – allow read.

 – allow write.

 – allow read and write.

VMM_FLAG_READ

VMM_FLAG_WRITE

VMM_FLAG_READ | VMM_FLAG_WRITE

124

Example

static Retcode MemInit(IOMem *resource)
{
 Retcode rc = rcFail;
 rc = KnRegisterPhyMem(resource->base,
 resource->size,
 &resource->handle);

 if (rc == rcOk)
 rc = KnIoMapMem(resource->handle,
 VMM_FLAG_READ | VMM_FLAG_WRITE,
 VMM_FLAG_CACHE_DISABLE,
 (void **) &resource->addr, &resource->permitHandle);

 if (rc == rcOk)
 resource->addr = ((rtl_uint8_t *) resource->addr
 + resource->offset);

 return rc;
}

Retcode KnRegisterPhyMem(rtl_uint64_t addr, rtl_size_t size, Handle *outRid);

If a memory area is no longer being used, it must be freed by using the KnIoClose() function.

 or – full
access to the memory area (these entries are equivalent).
VMM_FLAG_RWX_MASK VMM_FLAG_READ | VMM_FLAG_WRITE | VMM_FLAG_EXECUTE

attr – memory area attributes. Possible values:

 – disable caching.

 and add a protective page before and after the
allocated memory, respectively.

 – �ag indicates that the memory area may have multiple virtual addresses.

VMM_FLAG_CACHE_DISABLE

VMM_FLAG_LOW_GUARD VMM_FLAG_HIGH_GUARD

VMM_FLAG_ALIAS

KnRegisterPhyMem()

This function is declared in the coresrv/io/mmio.h �le.

This function registers a memory area with the speci�ed size (in bytes) and beginning at the address addr.

If registration is successful, the handle assigned to the memory area will be passed to the outRid parameter, and
the function will return .rcOk

The address addr must be page-aligned, and the speci�ed size must be a multiple of the page size.

For a usage example, see KnIoMapMem().

125

The interface described here is a low-level interface. In most cases, it is recommended to use the interface
provided by the kdf library to manage interrupts.

Retcode KnIoAttachIrq(Handle rid, rtl_uint32_t flags, Handle *handle);

Interrupt �ags

Interrupts

KnIoAttachIrq()

This function is declared in the coresrv/io/irq.h �le.

This function attaches the calling thread to the interrupt.

Input parameters:

rid is the interrupt handle received by using the KnRegisterIrq() call.

flags refer to the interrupt �ags.

Output parameter handle contains the IPC handle that will be used by the calling thread to wait for the interrupt
after making the Recv() call.

If successful, the function returns , otherwise it returns an error code.rcOk

 indicates low level generation.

 indicates high level generation.

 indicates rising edge generation.

 indicates falling edge generation.

 indicates a shared interrupt.

 indicates a low-priority interrupt.

 indicates normal priority.

 indicates high priority.

 indicates real-time priority.

IRQ_LEVEL_LOW

IRQ_LEVEL_HIGH

IRQ_EDGE_RAISE

IRQ_EDGE_FALL

IRQ_SHARED

IRQ_PRIO_LOW

IRQ_PRIO_NORMAL

IRQ_PRIO_HIGH

IRQ_PRIO_RT

126

Retcode KnIoDetachIrq(Handle rid);

Retcode KnIoDisableIrq(Handle rid);

Retcode KnIoEnableIrq(Handle rid);

Retcode KnRegisterIrq(int irq, Handle *outRid);

KnIoDetachIrq()

This function is declared in the coresrv/io/irq.h �le.

This function detaches the calling thread from the interrupt.

rid is the interrupt handle received by using the KnRegisterIrq() call.

If successful, the function returns , otherwise it returns an error code.rcOk

KnIoDisableIrq()

This function is declared in the coresrv/io/irq.h �le.

Masks (prohibits) the interrupt with the handle rid.

If successful, the function returns .rcOk

KnIoEnableIrq()

This function is declared in the coresrv/io/irq.h �le.

Unmasks (allows) the interrupt with the handle rid.

If successful, the function returns .rcOk

KnRegisterIrq()

This function is declared in the coresrv/io/irq.h �le.

Registers the interrupt with the number irq.

Output parameter outRid contains the interrupt handle.

127

If an interrupt is no longer being used, it must be freed by using the KnIoClose() function.

Retcode KnIoClose(Handle rid);

rtl_size_t KnGetMSecSinceStart(void);

Retcode KnGetRtcTime(RtlRtcTime *rt);

If successful, the function returns .rcOk

Deallocating resources

KnIoClose()

This function is declared in the coresrv/io/io_api.h �le.

This function frees a registered input/output resource (I/O port(s), DMA bu�er, interrupt or memory area for
MMIO) with the rid handle.

If successfully freed, the function returns .rcOk

For a usage example, see KnIoDmaCreate().

Time

KnGetMSecSinceStart()

This function is declared in the coresrv/time/time_api.h �le.

Returns the number of milliseconds that have elapsed since the start of the system.

KnGetRtcTime()

This function is declared in the coresrv/time/time_api.h �le.

This function writes the POSIX system time (in RTC format) to the rt parameter.

If successful, returns , or returns if an error occurs.rcOk rcFail

128

typedef struct {
 rtl_uint32_t msec; /**< milliseconds */
 rtl_uint32_t sec; /**< second (0..59) */
 rtl_uint32_t min; /**< minute (0..59) */
 rtl_uint32_t hour; /**< hour (0..23) */
 rtl_uint32_t mday; /**< day (1..31) */
 rtl_uint32_t month; /**< month (0..11) */
 rtl_int32_t year; /**< year - 1900 */
 rtl_uint32_t wday; /**< week day (0..6) */
} RtlRtcTime;

Retcode KnGetSystemTime(RtlTimeSpec *time);

Retcode KnSetSystemTime(RtlTimeSpec *time);

Retcode KnGetSystemTimeRes(RtlTimeSpec *res);

The RTC time format is de�ned by the RtlRtcTime structure (declared in the rtl/rtc.h �le.):

KnGetSystemTime()

This function is declared in the coresrv/time/time_api.h �le.

This function lets you get the system time.

Output parameter time contains the POSIX system time in RtlTimeSpec format.

KnSetSystemTime()

This function is declared in the coresrv/time/time_api.h �le.

This function lets you set the system time.

The time parameter must contain the POSIX time in RtlTimeSpec format.

It is not recommended to call the KnSetSystemTime() function in the interrupt handler thread.

KnGetSystemTimeRes()

This function is declared in the coresrv/time/time_api.h �le.

This function lets you get the resolution of the system time source.

Output parameter res contains the resolution in RtlTimeSpec format.

129

Retcode KnGetUpTime(RtlTimeSpec *time);

Retcode KnGetUpTimeRes(RtlTimeSpec *res);

typedef struct {
 rtl_time_t sec; /**< integer number of seconds that have elapsed since the
start of the Unix epoch
 * or another defined point in time */
 rtl_nsecs_t nsec; /**< adjustment in nanoseconds (number of nanoseconds
 * that have elapsed since the point in time defined by the
number of seconds*/
} RtlTimeSpec;

KnGetUpTime()

This function is declared in the coresrv/time/time_api.h �le.

This function lets you get the time that has elapsed since the start of the system.

Output parameter time contains the time in RtlTimeSpec format.

KnGetUpTimeRes()

This function is declared in the coresrv/time/time_api.h �le.

This function receives the resolution of the source of time whose value can be obtained via KnGetUpTime().

Output parameter res contains the resolution in RtlTimeSpec format.

RtlTimeSpec

The timespec time format is de�ned by the RtlTimeSpec structure (declared in the rtl/rtc.h �le).

Queues

KosQueueAlloc()

This function is declared in the kos/queue.h �le.

130

void *KosQueueAlloc(KosQueueHandle queue);

KosQueueHandle KosQueueCreate(unsigned objCount,
 unsigned objSize,
 unsigned objAlign,
 void *buffer);

void KosQueueDestroy(KosQueueHandle queue);

void KosQueueFlush(KosQueueHandle queue);

Allocates memory for the new object from the queue bu�er.

If successful, the function returns the pointer to the memory for this object. If the bu�er is full, it returns
.RTL_NULL

KosQueueCreate()

This function is declared in the kos/queue.h �le.

This function creates a queue of objects (�fo) and the bu�er associated with this queue.

Parameters:

objCount is the maximum number of objects in the queue.

objSize is the object size (bytes).

objAlign is the object alignment in bytes, and must be a power of two.

buffer is the pointer to the external bu�er for objects; if it is set equal to , the bu�er will be
allocated by using the KosMemAlloc() function.

RTL_NULL

Returns the handle of the created queue and if there is an error.RTL_NULL

KosQueueDestroy()

This function is declared in the kos/queue.h �le.

This function deletes the speci�ed queue and frees its allocated bu�er.

KosQueueFlush()

This function is declared in the kos/queue.h �le.

131

void KosQueueFree(KosQueueHandle queue, void *obj);

void *KosQueuePop(KosQueueHandle queue, rtl_uint32_t timeout);

Example

int GpioEventDispatch(void *context)
{
 GpioEvent *event;
 GpioDevice *device = context;
 rtl_bool proceed = rtl_true;

 do {
 event = KosQueuePop(device->queue, INFINITE_TIMEOUT);
 if (event != RTL_NULL) {

 if (event->type == GPIO_EVENT_TYPE_THREAD_ABORT) {
 proceed = rtl_false;
 } else {
 GpioDeliverEvent(device, event);
 }
 KosQueueFree(device->queue, event);
 }

This function extracts all objects from the speci�ed queue and frees all the memory occupied by it.

KosQueueFree()

This function is declared in the kos/queue.h �le.

This function frees the memory occupied by object obj in the bu�er of the speci�ed queue.

The obj pointer can be received by calling the KosQueueAlloc() or KosQueuePop() function.

For a usage example, see KosQueuePop().

KosQueuePop()

This function is declared in the kos/queue.h �le.

This function extracts the object from the start of the speci�ed queue and returns the pointer to it.

The timeout parameter determines the behavior of the function if the queue is empty:

 – immediately return .

– lock and wait for a new object in the queue.

Any other value of timeout means that the system is waiting for a new object in the queue for the speci�ed
timeout in milliseconds; when this timeout expires, is returned.

0 RTL_NULL

INFINITE_TIMEOUT

RTL_NULL

132

 } while (proceed);

 KosPutObject(device);
 return rcOk;
}

void KosQueuePush(KosQueueHandle queue, void *obj);

void IoReadBarrier(void);

void IoReadWriteBarrier(void);

void IoWriteBarrier(void);

KosQueuePush()

This function is declared in the kos/queue.h �le.

Adds the obj object to the end of the speci�ed queue.

The obj pointer can be received by calling the KosQueueAlloc() or KosQueuePop() function.

Memory barriers

IoReadBarrier()

This function is declared in the coresrv/io/barriers.h �le.

Adds a read memory barrier. Linux equivalent: rmb().

IoReadWriteBarrier()

This function is declared in the coresrv/io/barriers.h �le.

Adds a combined barrier. Linux equivalent: mb().

IoWriteBarrier()

This function is declared in the coresrv/io/barriers.h �le.

133

To get information about CPU time and memory usage and other statistical data, you need to build a solution
with a KasperskyOS kernel version that supports performance counters. For more details, refer to "Image
library".

Receiving information about CPU time

Information about CPU time

Function Value of the param
parameter

Obtained value

Receiving information about memory usage

Information about memory usage

Function Value of the param parameter Obtained value

Adds a write memory barrier. Linux equivalent: wmb().

Receiving information about CPU time and memory usage

The libkos library provides an API that lets you receive information about CPU time and memory usage. This API
is de�ned in the header �le sysroot-*-kos/include/coresrv/stat/stat_api.h from the KasperskyOS SDK.

CPU uptime is counted from the startup of the KasperskyOS kernel.

To receive information about CPU time, you need to use the KnGroupStatGetParam() and
KnTaskStatGetParam() functions. The values provided in the table below need to be passed in the param
parameter of these functions.

KnGroupStatGetParam() GROUP_PARAM_CPU_KERNEL CPU uptime in kernel mode

KnGroupStatGetParam() GROUP_PARAM_CPU_USER CPU uptime in user mode

KnGroupStatGetParam() GROUP_PARAM_CPU_IDLE CPU uptime in idle mode

KnTaskStatGetParam() TASK_PARAM_TIME_TOTAL CPU uptime spent on process execution

KnTaskStatGetParam() TASK_PARAM_TIME_USER CPU uptime spent on process execution in
user mode

The CPU uptime obtained by calling the KnGroupStatGetParam() or KnTaskStatGetParam() function is
presented in nanoseconds.

To receive information about memory usage, you need to use the KnGroupStatGetParam() and
KnTaskStatGetParam() functions. The values provided in the table below need to be passed in the param
parameter of these functions.

KnGroupStatGetParam() GROUP_PARAM_MEM_TOTAL Total size of all installed RAM

KnGroupStatGetParam() GROUP_PARAM_MEM_FREE Size of free RAM

KnTaskStatGetParam() TASK_PARAM_MEM_PHY Size of RAM used by the process

The memory size obtained by calling the KnGroupStatGetParam() or KnTaskStatGetParam() function is
presented as the number of memory pages. The size of a memory page is 4 KB for all hardware platforms
supported by KasperskyOS.

134

Enumerating processes

1. Get the list of processes by calling the KnGroupStatGetTaskList() function.

2. Get the number of items on the list of processes by calling the KnTaskStatGetTasksCount() function.

3. Iterate through the list of processes, repeating the following steps:

a. Get an item from the list of processes by calling the KnTaskStatEnumTaskList() function.

b. Get the process name by calling the KnTaskStatGetName() function.

This is necessary to identify the process for which the information about CPU time and memory usage will
be received.

c. Get information about CPU time and memory usage by calling the KnTaskStatGetParam() function.

d. Verify that the process was not terminated. If the process was terminated, do not use the obtained
information about CPU time and memory usage by this process.

To verify that the process was not terminated, you need to call the KnTaskStatGetParam() function,
using the param parameter to pass the TASK_PARAM_STATE value. A value other than
TaskStateTerminated should be received.

e. Finish working with the item on the list of processes by calling the KnTaskStatCloseTask() function.

4. Finish working with the list of processes by calling the KnTaskStatCloseTaskList() function.

Calculating CPU load

The amount of RAM used by a process refers only to the memory allocated directly for this process. For example,
if the memory of a process is mapped to an MDL bu�er created by another process, the size of this bu�er is not
included in this value.

To get information about CPU time and memory usage by each process, do the following:

CPU load can be indicated as a percentage of total CPU load or as a percentage of CPU load by each process.
These indicators are calculated for a speci�c time interval, at the start and end of which the information about
CPU time utilization was received. (For example, CPU load can be monitored with periodic receipt of information
about CPU time utilization.) The values obtained at the start of the interval need to be subtracted from the values
obtained at the end of the interval. In other words, the following increments need to be obtained for the interval:

TK – CPU uptime in kernel mode.

TU – CPU uptime in user mode.

TIDLE – CPU uptime in idle mode.

Ti [i=1,2,...,n] – CPU time spent on execution of the ith process.

The percentage of total CPU load is calculated as follows:

(TK+TU)/(TK+TU+TIDLE).

The percentage of CPU load by the ith process is calculated as follows:

135

Receiving additional information about processes

Retcode Call(Handle handle, const SMsgHdr *msgOut, SMsgHdr *msgIn);

Ti/(TK+TU+TIDLE).

In addition to information about CPU time and memory usage, the KnGroupStatGetParam() and
KnTaskStatGetParam() functions also let you obtain the following information:

Number of processes

Number of threads

Number of threads in one process

Parent process ID (PPID)

Process priority

Number of handles owned by a process

Size of virtual memory of a process

The KnTaskStatGetId() function gets the process ID (PID).

Sending and receiving IPC messages

Call()

This function is declared in the coresrv/syscalls.h �le.

This function sends an IPC request to the server process and locks the calling thread until an IPC response or error
is received. This function is called by the client process.

Parameters:

handle is the client IPC handle of the utilized channel.

msgOut is the bu�er containing the IPC request.

msgIn is the bu�er for the IPC response.

Returned value:

 means that the exchange of IPC messages was successfully completed.

 means that the IPC request and/or IPC response has an invalid structure.

rcOk

rcInvalidArgument

136

Retcode Recv(Handle handle, SMsgHdr *msgIn);

Retcode Reply(Handle handle, const SMsgHdr *msgOut);

 means that the Kaspersky Security Module prohibits forwarding of the IPC request or IPC
response.

 means that the server IPC handle of the channel was not found.

rcSecurityDisallow

rcNotConnected

Other return codes are available.

Recv()

This function is declared in the coresrv/syscalls.h �le.

This function locks the calling thread until an IPC request is received. This function is called by the server process.

Parameters:

handle is the server IPC handle of the utilized channel.

msgIn is the bu�er for an IPC request.

Returned value:

 means that an IPC request was successfully received.

 means that the IPC request has an invalid structure.

 means that IPC request forwarding is prohibited by the Kaspersky Security Module.

rcOk

rcInvalidArgument

rcSecurityDisallow

Other return codes are available.

Reply()

This function is declared in the coresrv/syscalls.h �le.

This function sends an IPC response and locks the calling thread until the client receives a response or until an
error is received. This function is called by the server process.

Parameters:

handle is the server IPC handle of the utilized channel.

msgOut is the bu�er containing an IPC response.

Returned value:

 means that an IPC response was successfully received by the client.rcOk

137

In KasperskyOS, signals cannot interrupt the Call(), Recv(), and Reply() system calls that support the
operation of libraries that implement the POSIX interface.
The KasperskyOS kernel does not transmit signals.

Limitations on interaction between processes

Interface Purpose Implementation Header �le
based on the
POSIX.1-2008

standard

 means that the IPC response has an invalid structure.

 means that IPC response forwarding is prohibited by the Kaspersky Security Module.

rcInvalidArgument

rcSecurityDisallow

Other return codes are available.

POSIX support

POSIX support limitations

KasperskyOS uses a limited POSIX interface oriented toward the POSIX.1-2008 standard (without XSI support).
These limitations are primarily due to security precautions.

Limitations a�ect the following:

Interaction between processes

Interaction between threads via signals

Standard input/output

Asynchronous input/output

Use of robust mutexes

Terminal operations

Shell usage

Management of �le handles

Limitations include:

Unimplemented interfaces

Interfaces that are implemented with deviations from the POSIX.1-2008 standard

Stub interfaces that do not perform any operations except assign the ENOSYS value to the errno variable and
return the value -1

138

fork()
Create a new
(child)
process.

Stub unistd.h

pthread_

atfork()

Register the
handlers that
are called
before and
after the
child process
is created.

Not implemented pthread.h

wait()

Wait for the
child process
to stop or
complete.

Stub sys/wait.h

waitid()

Wait for the
state of the
child process
to change.

Not implemented sys/wait.h

waitpid()

Wait for the
child process
to stop or
complete.

Stub sys/wait.h

execl()
Run the
executable
�le.

Stub unistd.h

execle()
Run the
executable
�le.

Stub unistd.h

execlp() Stub unistd.h

execv()
Run the
executable
�le.

Stub unistd.h

execve()
Run the
executable
�le.

Stub unistd.h

execvp()
Run the
executable
�le.

Stub unistd.h

fexecve()
Run the
executable
�le.

Stub unistd.h

setpgid()

Move the
process to
another
group or
create a
group.

Stub unistd.h

setsid() Create a
session.

Not implemented unistd.h

Run the
executable
�le.

139

getpgrp() Get the
group ID for
the calling
process.

Not implemented unistd.h

getpgid() Get the
group ID.

Stub unistd.h

getppid()
Get the ID of
the parent
process.

Not implemented unistd.h

getsid() Get the
session ID.

Stub unistd.h

times()

Get the time
values for
the process
and its
descendants.

Stub sys/times.h

kill()

Send a signal
to the
process or
group of
processes.

Only the SIGTERM signal can be sent. The pid
parameter is ignored.

signal.h

pause() Wait for a
signal.

Not implemented unistd.h

sigpending()

Check for
received
blocked
signals.

Not implemented signal.h

sigprocmask()

Get and
change the
set of
blocked
signals.

Stub signal.h

sigsuspend() Wait for a
signal.

Stub signal.h

sigwait()

Wait for a
signal from
the de�ned
set of signals.

Stub signal.h

sigqueue()
Send a signal
to the
process.

Not implemented signal.h

sigtimedwait()

Wait for a
signal from
the de�ned
set of signals.

Not implemented signal.h

sigwaitinfo()

Wait for a
signal from
the de�ned
set of signals.

Not implemented signal.h

sem_init() Create an You cannot create an unnamed semaphore for semaphore.h

140

unnamed
semaphore.

synchronization between processes. If a non-zero
value is passed to the function through the pshared
parameter, it will only return the value -1 and will
assign the ENOTSUP value to the errno variable.

sem_open()
Create/open
a named
semaphore.

You cannot open a named semaphore that was
created by another process. Named semaphores (like
unnamed semaphores) are local, which means that
they are accessible only to the process that created
them.

semaphore.h

pthread_

mutexattr_

setpshared()

De�ne the
mutex
attribute
that allows
the mutex to
be used by
multiple
processes.

You cannot de�ne the mutex attribute that allows the
mutex to be used by multiple processes. If the
PTHREAD_PROCESS_SHARED value is passed to the
function through the pshared parameter, it will only
return the ENOSYS value.

pthread.h

pthread_

barrierattr_

setpshared()

De�ne the
barrier
attribute
that allows
the barrier to
be used by
multiple
processes.

You cannot de�ne the barrier attribute that allows the
barrier to be used by multiple processes. If the
PTHREAD_PROCESS_SHARED value is passed to the
function through the pshared parameter, it will only
return the ENOSYS value.

pthread.h

pthread_

condattr_

setpshared()

De�ne the
conditional
variable
attribute
that allows
the
conditional
variable to be
used by
multiple
processes.

You cannot de�ne the conditional variable attribute
that allows the conditional variable to be used by
multiple processes. If the PTHREAD_PROCESS_SHARED
value is passed to the function through the pshared
parameter, it will only return the ENOSYS value.

pthread.h

pthread_

rwlockattr_

setpshared()

De�ne the
read/write
lock object
attribute
that allows
the
read/write
lock object
attribute to
be used by
multiple
processes.

You cannot de�ne the read/write lock object attribute
that allows the read/write lock object attribute to be
used by multiple processes. If the
PTHREAD_PROCESS_SHARED value is passed to the
function through the pshared parameter, it will only
return the ENOSYS value.

pthread.h

pthread_

spin_init()
Create a spin
lock.

You cannot create a spin lock for synchronization
between processes. If
the PTHREAD_PROCESS_SHARED value is passed to
the function through the pshared parameter, this
value will be ignored.

pthread.h

shm_open() Create or
open a

Not implemented sys/mman.h

141

shared
memory
object.

mmap() Map to
memory.

You cannot perform memory mapping for interaction
between processes. If the MAP_SHARED and
PROT_WRITE values are passed to the function
through the flags and prot parameters,
respectively, the function will return the MAP_FAILED
value and will assign the EACCES value to the errno
variable. For all other possible values of the prot
parameter, the MAP_SHARED value of the flags
parameter will be ignored. In addition, you cannot pass
combinations of the PROT_WRITE|PROT_EXEC and
PROT_READ|PROT_WRITE|PROT_EXEC �ags through
the prot parameter. In this case, the function will only
return the MAP_FAILED value and will assign the
ENOMEM value to the errno variable.

sys/mman.h

mprotect()

De�ne the
memory
access
permissions.

This function works as a stub by default. To use this
function, de�ne special settings for the KasperskyOS
kernel.

sys/mman.h

pipe()
Create an
unnamed
channel.

You cannot use an unnamed channel for data transfer
between processes. Unnamed channels are local,
which means that they are accessible only to the
process that created them.

unistd.h

mkfifo()

Create a
special FIFO
�le (named
channel).

Stub sys/stat.h

mkfifoat()

Create a
special FIFO
�le (named
channel).

Not implemented sys/stat.h

Limitations on interaction between threads via signals

Interface Purpose Implementation

Header �le
based on the

POSIX.1-
2008

standard

pthread_kill() Send a signal to a
thread.

You cannot send a signal to a thread. If a signal
number is passed to the function through the
sig parameter, it only returns the ENOSYS
value.

signal.h

pthread_sigmask()
Get and change
the set of blocked
signals.

Stub signal.h

siglongjmp()
Restore the state
of the control
thread and the
signals mask.

Not implemented setjmp.h

142

sigsetjmp() Save the state of
the control thread
and the signals
mask.

Not implemented setjmp.h

Standard input/output limitations

Interface Purpose Implementation Header �le based on the
POSIX.1-2008 standard

dprintf() Formatted print to �le.
Not
implemented

stdio.h

fmemopen() Use memory as a data stream.
Not
implemented

stdio.h

open_memstream() Use dynamically allocated memory
as a data stream.

Not
implemented

stdio.h

vdprintf() Formatted print to �le.
Not
implemented

stdio.h

Asynchronous input/output limitations

Interface Purpose Implementation Header �le based on the
POSIX.1-2008 standard

aio_cancel() Cancel input/output requests that are
waiting to be handled.

Not
implemented

aio.h

aio_error() Receive an error from an asynchronous
input/output operation.

Not
implemented

aio.h

aio_fsync() Request the execution of input/output
operations.

Not
implemented

aio.h

aio_read() Request a �le read operation.
Not
implemented

aio.h

aio_return() Get the status of an asynchronous
input/output operation.

Not
implemented

aio.h

aio_suspend() Wait for the completion of asynchronous
input/output operations.

Not
implemented

aio.h

aio_write() Request a �le write operation.
Not
implemented

aio.h

lio_listio() Request execution of a set of
input/output operations.

Not
implemented

aio.h

Limitations on the use of robust mutexes

Interface Purpose Implementation
Header �le based on

the POSIX.1-2008
standard

Return a robust mutex to Not

143

pthread_mutex_consistent() a consistent state. implemented pthread.h

pthread_mutexattr_getrobust() Get a robust mutex
attribute.

Not
implemented

pthread.h

pthread_mutexattr_setrobust() De�ne a robust mutex
attribute.

Not
implemented

pthread.h

Terminal operation limitations

Interface Purpose Implementation

Header �le
based on the
POSIX.1-2008

standard

ctermid() Get the path to the �le of the
control terminal.

This function only returns or
passes an empty string through
the s parameter.

stdio.h

tcsetattr() De�ne the terminal settings.
The input speed, output speed,
and other settings speci�c to
hardware terminals are ignored.

termios.h

tcdrain() Wait for output completion.
This function only returns the
value -1 .

termios.h

tcflow() Suspend or resume receipt or
transmission of data.

Suspending output and resuming
suspended output are not
supported.

termios.h

tcflush() Clear the input queue or output
queue, or both of these queues.

This function only returns the
value -1 .

termios.h

tcsendbreak() Break the connection with the
terminal for a set time.

This function only returns the
value -1 .

termios.h

ttyname() Get the path to the terminal �le.
This function only returns a null
pointer.

unistd.h

ttyname_r() Get the path to the terminal �le.
This function only returns an error
value.

unistd.h

tcgetpgrp() Get the ID of a group of
processes using the terminal.

This function only returns the
value -1 .

unistd.h

tcsetpgrp() De�ne the ID for a group of
processes using the terminal.

This function only returns the
value -1 .

unistd.h

tcgetsid()

Get the ID of a group of
processes for the leader of the
session connected to the
terminal.

This function only returns the
value -1 .

termios.h

Shell operation limitations

Interface Purpose Implementation Header �le
based on

the
POSIX.1-

144

2008
standard

popen()
Create a child process for
command execution and a
channel for this process.

This function only assigns the ENOSYS value
to the errno variable and returns the value
NULL .

stdio.h

pclose()

Close the channel with the
child process created by the
popen() function, and wait
for this child process to
terminate.

This function cannot be used because its
input parameter is the data stream handle
returned by the popen() function, which
cannot return anything except the value
NULL .

stdio.h

system() Create a child process for
command execution.

Stub stdlib.h

wordexp() Perform a shell-like expansion
of the string.

Not implemented wordexp.h

wordfree()
Free up the memory allocated
for the results of calling the
wordexp() interface.

Not implemented wordexp.h

Limitations on management of �le handles

Interface Purpose Implementation

Header �le
based on the
POSIX.1-2008

standard

dup()

Make a copy
of the handle
of an opened
�le.

Handles of regular �les, standard I/O streams, sockets and
channels are supported. There is no guarantee that the
lowest available handle will be received.

fcntl.h

dup2()

Make a copy
of the handle
of an opened
�le.

Handles of regular �les, standard I/O streams, sockets and
channels are supported. The handle of an opened �le needs
to be passed through the fildes2 parameter.

fcntl.h

Using libkos together with Pthreads

Concurrently using POSIX and other interfaces

In a thread created using Pthreads, you cannot use the following libkos interfaces:

Synchronization primitives

Threads

DMA bu�ers

I/O ports

Memory-mapped I/O (MMIO)

145

Using POSIX together with libkos threads

Using IPC together with Pthreads/libkos threads

Messages transmitted through the MessageBus cannot contain data. These messages can be used only to
notify subscribers about events. See "Message structure" section below.

Interrupts

The following libkos interfaces can be used together with Pthreads (and other POSIX interfaces):

Handles

Noti�cations

Processes

Dynamically created channels

Queues

POSIX methods cannot be used in threads that were created using libkos threads.

Methods for IPC can be used in any threads that were created using Pthreads or libkos threads.

MessageBus component

The MessageBus component implements the message bus that ensures receipt, distribution and delivery of
messages between applications running KasperskyOS. This bus is based on the publisher-subscriber model. Use of
a message bus lets you avoid having to create a large number of IPC channels to connect each subscriber
application to each publisher application.

The MessageBus component provides an additional level of abstraction over KasperskyOS IPC that helps simplify
the development and expansion of application-layer applications. MessageBus is a separate program that is
accessed through IPC. However, developers are provided with a MessageBus access library that lets you avoid
direct use of IPC calls.

The API of the access library provides the following interfaces:

IProviderFactory provides factory methods for obtaining access to instances of all other interfaces.

IProviderControl is the interface for registering and deregistering a publisher and subscriber in the bus.

IProvider (MessageBus component) is the interface for transferring a message to the bus.

ISubscriber is the callback interface for sending a message to a subscriber.

IWaiter is the interface for waiting for a callback when the corresponding message appears.

146

Message structure

i_messagebus_control.h (fragment)

class IProviderFactory
{
...
 virtual fdn::ResultCode CreateBusControl(IProviderControlPtr& controlPtr) = 0;
 virtual fdn::ResultCode CreateBus(IProviderPtr& busPtr) = 0;
 virtual fdn::ResultCode CreateCallbackWaiter(IWaiterPtr& waiterPtr) = 0;
 virtual fdn::ResultCode CreateSubscriberRunner(ISubscriberRunnerPtr& runnerPtr) =
0;
...
};
...
fdn::ResultCode InitConnection(const std::string& connectionId, IProviderFactoryPtr&
busFactoryPtr);

Each message contains two parameters:

topic is the identi�er of the message subject.

id is an additional parameter that identi�es a particular message.

The topic and id parameters are unique for each message. The interpretation of topic+id is determined by the
contract between the publisher and subscriber. For example, if there are changes to the con�guration data used
by the publisher and subscriber, the publisher forwards a message regarding the modi�ed data and the id of the
speci�c entry containing the new data. The subscriber uses mechanisms outside of the MessageBus to receive
the new data based on the id key.

IProviderFactory interface

The IProviderFactory interface provides factory methods for receiving the interfaces necessary for working
with the MessageBus component.

A description of the IProviderFactory interface is provided in the �le named
messagebus/i_messagebus_control.h.

An instance of the IProviderFactory interface is obtained by using the free InitConnection() function,
which receives the name of the IPC connection between the application software and the MessageBus program.
The connection name is de�ned in the init.yaml.in �le when describing the solution con�guration. If the
connection is successful, the output parameter contains a pointer to the IProviderFactory interface.

The interface for registering and deregistering (see "IProviderControl interface") publishers and subscribers in
the message bus is obtained by using the IProviderFactory::CreateBusControl() method.

The interface containing the methods enabling the publisher to send messages to the bus (see "IProvider
interface (MessageBus component)") is obtained by using the IProviderFactory::CreateBus() method.

The interfaces containing the methods enabling the subscriber to receive messages from the bus (see
"ISubscriber, IWaiter and ISubscriberRunner interfaces") are obtained by using the
IProviderFactory::CreateCallbackWaiter and IProviderFactory::CreateSubscriberRunner()
methods.
It is not recommended to use the IWaiter interface, because calling a method of this interface is a locking call.

147

Registering and deregistering a publisher

i_messagebus_control.h (fragment)

class IProviderControl
{
...
 virtual fdn::ResultCode RegisterPublisher(const Topic& topic, ClientId& id) = 0;
 virtual fdn::ResultCode UnregisterPublisher(ClientId id) = 0;
...
};

Registering and deregistering a subscriber

i_messagebus_control.h (fragment)

class IProviderControl
{
...
 virtual fdn::ResultCode RegisterSubscriber(const std::string& subscriberName,
const std::set<Topic>& topics, ClientId& id) = 0;
 virtual fdn::ResultCode UnregisterSubscriber(ClientId id) = 0;
...
};

IProviderControl interface

The IProviderControl interface provides the methods for registering and deregistering publishers and
subscribers in the message bus.

A description of the IProviderControl interface is provided in the �le named
messagebus/i_messagebus_control.h.

The IProviderFactory interface is used to obtain an interface instance.

The IProviderControl::RegisterPublisher() method is used to register the publisher in the message bus.
This method receives the message subject and puts the unique ID of the bus client into the output parameter. If
the message subject is already registered in the bus, the call will be declined and the client ID will not be �lled.

The IProviderControl::UnregisterPublisher() method is used to deregister a publisher in the message
bus. This method accepts the bus client ID received during registration. If the indicated ID is not registered as a
publisher ID, the call will be declined.

The IProviderControl::RegisterSubscriber() method is used to register the subscriber in the message
bus. This method accepts the subscriber name and the list of subjects of messages for the necessary
subscription, and puts the unique ID of the bus client into the output parameter.

The IProviderControl::UnregisterSubscriber() method is used to deregister a subscriber in the message
bus. This method accepts the bus client ID received during registration. If the indicated ID is not registered as a
subscriber ID, the call will be declined.

148

Sending a message to the bus

i_messagebus.h (fragment)

class IProvider
{
public:
...
 virtual fdn::ResultCode Push(ClientId id, BundleId dataId) = 0;
...
};

Receiving a message from the bus

IProvider interface (MessageBus component)

The IProvider interface provides the methods enabling the publisher to send messages to the bus.

A description of the IProvider interface is provided in the �le named messagebus/i_messagebus.h.

The IProviderFactory interface is used to obtain an interface instance.

The IProvider::Push() method is used to send a message. This method accepts the bus client ID received
during registration and the message ID. If the message queue in the bus is full, the call will be declined.

ISubscriber, IWaiter and ISubscriberRunner interfaces

The ISubscriber, IWaiter, and ISubscriberRunner interfaces provide the methods enabling the subscriber
to receive messages from the bus and process them.

Descriptions of the ISubscriber, IWaiter and ISubscriberRunner interfaces are provided in the �le named
messagebus/i_subscriber.h.

The IProviderFactory interface is used to obtain instances of the IWaiter and ISubscriberRunner
interfaces. The implementation of the ISubscriber callback interface is provided by the subscriber application.

You can use the IWaiter::Wait() or ISubscriberRunner::Run() method to switch a subscriber to standby
mode, waiting for a message from the bus. These methods accept the bus client ID and the pointer to the
ISubscriber callback interface. If the client ID is not registered, the call will be declined.

It is not recommended to use the IWaiter interface, because calling the IWaiter::Wait() method is a locking
call.

The ISubscriber::OnMessage() method will be called when a message is received from the bus. This method
accepts the message subject and message ID.

149

i_subscriber.h (fragment)

class ISubscriber
{
...
 virtual fdn::ResultCode OnMessage(const std::string& topic, BundleId id) = 0;
};
...
class IWaiter
{
...
 [[deprecated("Use ISubscriberRunner::Run method instead.")]]
 virtual fdn::ResultCode Wait(ClientId id, const ISubscriberPtr& subscriberPtr) =
0;
};
...
class ISubscriberRunner
{
...
 virtual fdn::ResultCode Run(ClientId id, const ISubscriberPtr& subscriberPtr) = 0;
};

Overview

typedef __INT32_TYPE__ Retcode;

Return codes

In a KasperskyOS-based solution, the return codes of functions of various APIs (for example, APIs of the libkos
and kdf libraries, drivers, transport code, and application software) are 32-bit signed integers. This type is de�ned
in the sysroot-*-kos/include/rtl/retcode.h header �le from the KasperskyOS SDK as follows:

The set of return codes consists of a success code with a value of 0 and error codes. An error code is interpreted
as a data structure whose format is described in the sysroot-*-kos/include/rtl/retcode.h header �le from
the KasperskyOS SDK. This format provides for multiple �elds that contain not only information about the results
of a function call, but also the following additional information:

Flag in the Customer �eld indicating that the error code was de�ned by the developers of the KasperskyOS-
based solution and not by the developers of software from the KasperskyOS SDK.

Thanks to the �ag in the Customer �eld, developers of a KasperskyOS-based solution and developers of
software from the KasperskyOS SDK can de�ne error codes from non-overlapping sets.

Global ID of the error code in the Space �eld.

Global IDs let you de�ne non-overlapping sets of error codes. Error codes can be generic or speci�c. Generic
error codes can be used in the APIs of any solution components and in the APIs of any constituent parts of
solution components (for example, a driver or VFS may be a constituent part of a solution component).
Speci�c error codes are used in the APIs of one or more solution components or in the APIs of one or more
constituent parts of solution components.

For example, the RC_SPACE_GENERAL ID corresponds to generic errors, the RC_SPACE_KERNEL ID corresponds
to error codes of the kernel, and the RC_SPACE_DRIVERS ID corresponds to error codes of drivers.

150

The information about return codes provided here does not apply to functions of a POSIX interface or the
APIs of third-party software used in KasperskyOS-based solutions.

Generic return codes

Generic return codes

Return code Description

rcOk (corresponds to
the 0 value)

The function completed successfully.

rcInvalidArgument Invalid function argument.

rcNotConnected
No connection between the client and server sides of interaction.

For example, there is no server IPC handle.

rcOutOfMemory Insu�icient memory to perform the operation.

rcBufferTooSmall Bu�er too small.

rcInternalError
The function ended with an internal error related to incorrect logic.

Some examples of internal errors include values outside of the permissible
limits, and null indicators and values where they are not permitted.

rcTransferError Error sending an IPC message.

rcReceiveError Error receiving an IPC message.

rcSourceFault IPC message was not transmitted due to the IPC message source.

rcTargetFault IPC message was not transmitted due to the IPC message recipient.

rcIpcInterrupt IPC was interrupted by another process thread.

rcRestart Indicates that the function needs to be called again.

Local ID of the error code in the Facility �eld.

Local IDs let you de�ne non-overlapping subsets of error codes within the set of error codes corresponding to
one global ID. For example, the set of error codes with the global ID RC_SPACE_DRIVERS includes non-
overlapping subsets of error codes with the local IDs RC_FACILITY_I2C, RC_FACILITY_USB, and
RC_FACILITY_BLKDEV.

The global and local IDs of speci�c error codes are assigned by the developers of a KasperskyOS-based solution
and by the developers of software from the KasperskyOS SDK independently of each other. In other words, two
sets of global IDs are generated. Each global ID has a unique meaning within one set. Each local ID has a unique
meaning within a set of local IDs related to one global ID. Generic error codes can be used in any API.

This type of centralized approach helps avoid situations in which the same error codes have various meanings
within a KasperskyOS-based solution. This is necessary to eliminate a potential problem transmitting error codes
through di�erent APIs. For example, this problem occurs when drivers call kdf library functions, receive error
codes, and return these codes through their own APIs. If error codes are generated without a centralized
approach, the same error code can have di�erent meanings for the kdf library and for the driver. Under these
conditions, drivers return correct error codes only if the error codes of the kdf library are converted into error
codes of each driver. In other words, error codes in a KasperskyOS-based solution are assigned in such way that
does not require conversion of these codes during their transit through various APIs.

Return codes that are generic for APIs of all solution components and their constituent parts are de�ned in the
sysroot-*-kos/include/rtl/retcode.h header �le from the KasperskyOS SDK. Descriptions of generic
return codes are provided in the table below.

151

rcFail The function ended with an error.

rcNoCapability The operation cannot be performed on the resource.

rcNotReady Initialization failed.

rcUnimplemented The function was not implemented.

rcBufferTooLarge Bu�er too large.

rcBusy Resource temporarily unavailable.

rcResourceNotFound Resource not found.

rcTimeout Timed out.

rcSecurityDisallow The operation was denied by security mechanisms.

rcFutexWouldBlock The operation will result in a block.

rcAbort The operation was aborted.

rcInvalidThreadState Invalid function called in the interrupt handler.

rcAlreadyExists Set of elements already contains the element being added.

rcInvalidOperation Operation cannot be completed.

rcHandleRevoked Resource access rights were revoked.

rcQuotaExceeded Resource quota exceeded.

rcDeviceNotFound Device not found.

De�ning error codes

#define LV_EBADREQUEST MAKE_RETCODE(RC_CUSTOMER_TRUE, RC_SPACE_APPS,
RC_FACILITY_LogViewer, 5, "Bad request")

An error description that is passed via the desc parameter is not used by the MAKE_RETCODE() macro. This
description is needed to create a database of error codes when building a KasperskyOS-based solution. At
present, a mechanism for creating and using such a database has not been implemented.

Reading error code structure �elds

To de�ne an error code, the developer of a KasperskyOS-based solution needs to use the MAKE_RETCODE()
macro de�ned in the sysroot-*-kos/include/rtl/retcode.h header �le from the KasperskyOS SDK. The
developer must also use the customer parameter to pass the symbolic constant RC_CUSTOMER_TRUE.

Example:

The RC_GET_CUSTOMER(), RC_GET_SPACE(), RC_GET_FACILITY() and RC_GET_CODE() macros de�ned in the
sysroot-*-kos/include/rtl/retcode.h header �le from the KasperskyOS SDK let you read error code
structure �elds.

152

The RETCODE_HR_PARAMS() and RETCODE_HR_FMT() macros de�ned in the sysroot-*-
kos/include/rtl/retcode_hr.h header �le from the KasperskyOS SDK are used for formatted display of error
details.

153

System programs and application software

Building programs during the solution build process

Building a solution image

Building a KasperskyOS-based solution

This section contains the following information:

Description of the KasperskyOS-based solution build process.

Descriptions of the scripts, libraries and build templates provided in KasperskyOS Community Edition.

Building a solution image

A KasperskyOS-based solution consists of system software (including the KasperskyOS kernel and Kaspersky
Security Module) and application software integrated for operation within a software/hardware system.

For more details, refer to Structure and startup of the solution image.

Programs are divided into two types according to their purpose:

System programs create the infrastructure for application software. For example, they facilitate hardware
operations, support the IPC mechanism, and implement �le systems and network protocols. System programs
are included in KasperskyOS Community Edition. If necessary, you can develop your own system programs.

Application software is designed for interaction with a solution user and for performing user tasks. Application
software is not included in KasperskyOS Community Edition.

During a solution build, programs are divided into the following two types:

System programs provided as executable �les in KasperskyOS Community Edition.

System programs or application software that requires linking to an executable �le.

Programs that require linking are divided into the following types:

System programs that implement an IPC interface whose ready-to-use transport libraries are provided in
KasperskyOS Community Edition.

Application software that implements its own IPC interface. To build this software, transport methods and
types need to be generated by using the NK compiler.

Client programs that do not provide endpoints.

KasperskyOS Community Edition provides an image of the KasperskyOS kernel and the executable �les of some
system programs and driver applications that are ready to use in a solution.

154

1. Prepare EDL, CDL and IDL descriptions of applications, an init description �le (init.yaml by default), and �les
containing a description of the solution security policy (security.psl by default).

When building with CMake, an EDL description can be generated by using the generate_edl_file()
command.

2. Generate *.edl.h �les for all programs except the system programs provided in KasperskyOS Community
Edition.

3. For programs that implement their own IPC interface, generate code of the transport methods and types that
are used for generating, sending, receiving and processing IPC messages.

4. Build all programs that are part of the solution, and link them to the transport libraries of system programs or
applications if necessary. To build applications that implement their own IPC interface, you will need the code
containing transport methods and types that was generated at step 3.

5. Build the Einit initializing program.

A specialized Einit program intended for starting all other programs, and a Kaspersky Security Module are built for
each speci�c solution and are therefore not already provided in KasperskyOS Community Edition. Instead, the
toolchain provided in KasperskyOS Community Edition includes the tools for building these resources.

The general step-by-step build scenario is described in the article titled Build process overview. A solution image
can be built as follows:

 Using scripts of the CMake build system, which is provided in KasperskyOS Community
Edition.

Without CMake: using other automated build systems or manually with scripts and compilers provided in
KasperskyOS Community Edition.

[Recommended]

Build process overview

To build a solution image, the following is required:

When building with CMake, the nk_build_edl_files() command is used for this purpose.

When building without CMake, the NK compiler must be used for this.

When building with CMake, the nk_build_idl_files() and nk_build_cdl_files() commands are used
for these purposes.

When building without CMake, the NK compiler must be used for this.

When building with CMake, standard build commands are used for this purpose. The necessary cross-
compilation con�guration is done automatically.

When building without CMake, the cross compilers included in KasperskyOS Community Edition must be
manually used for this purpose.

When building with CMake, the Einit program is built during the solution image build process using the
build_kos_qemu_image() and build_kos_hw_image() commands.

155

6. Build the Kaspersky Security Module.

7. Create the solution image.

Example 1

Example 2

When building without CMake, the einit tool must be used to generate the code of the Einit program. Then
the Einit application must be built using the cross compiler that is provided in KasperskyOS Community
Edition.

When building with CMake, the security module is built during the solution image build process using the
build_kos_qemu_image() and build_kos_hw_image() commands.

When building without CMake, the makekss script must be used for this purpose.

When building with CMake, the build_kos_qemu_image() and build_kos_hw_image() commands are
used for this purpose.

When building without CMake, the makeimg script must be used for this.

For the basic hello example included in KasperskyOS Community Edition that contains one application that does
not provide any services, the build scenario looks as follows:

The echo example included in KasperskyOS Community Edition describes a basic case of interaction between two
programs via an IPC mechanism. To set up this interaction, you will need to implement an interface with the Ping
method on a server and put the Ping service into a new component (for example, Ping), and an instance of this
component needs to be put into the EDL description of the Server program.

If a solution contains programs that utilize an IPC mechanism, the build scenario looks as follows:

156

Recommended structure of project directories

Using CMake from the contents of KasperskyOS Community Edition

To automate the process of preparing the solution image, you need to con�gure the CMake build system. You can
base this system on the build system parameters used in the examples from KasperskyOS Community Edition.

CMakeLists.txt �les use the standard CMake syntax, and commands and macros from libraries provided in
KasperskyOS Community Edition.

When creating a KasperskyOS-based solution, it is recommended to use the following directory structure in a
project to simplify the use of CMake scripts:

In the project root, create a CMakeLists.txt boot �le containing the general build instructions for the entire
solution.

The source code of each program being developed should be placed into a separate directory within the src
subdirectory.

Create CMakeLists.txt �les for building each application in the corresponding directories.

To generate the source code of the Einit program, you should create a separate einit directory containing
the src subdirectory in which you should put the init.yaml.in and security.psl.in templates.

Any other �les that need to be included in the solution image can also be put into this directory.

Create a CMakeLists.txt �le for building the Einit program in the einit directory.

The �les of EDL, CDL and IDL descriptions should be put into the resources directory in the project root.

 Create a cross-build.sh build script containing the commands to start generating build �les
(cmake command), to build the solution (make command), and to start the solution.
[Optional]

157

Example structure of project directories

example$ tree
.
├── CMakeLists.txt
├── cross-build.sh
├── hello
│ ├── CMakeLists.txt
│ ├── src
│ │ ├── hello.c
├── einit
│ ├── CMakeLists.txt
│ ├── src
│ │ ├── init.yaml.in
│ │ ├── security.psl.in
│ │ ├── fstab
├── resources
│ ├── Hello.idl
│ ├── Hello.cdl
│ ├── Hello.edl

Building a project

1. Prepare a CMakeLists.txt boot �le containing the general build instructions for the entire solution.

2. Prepare CMakeLists.txt �les for each application to be built.

3. Prepare a CMakeLists.txt �le for the Einit program.

4. Prepare the init.yaml.in and security.psl.in templates.

1. Create a subdirectory for the build.

BUILD=$PWD/.build
mkdir -p $BUILD && cd $BUILD

2. Prior to starting generation of build scripts (cmake command), set the following values for environment
variables:

To prepare for a build using the CMake build system, the following is required:

To perform cross-compilation using the CMake build automation system, the following is required:

export LANG=C

export PKG_CONFIG=""

export SDK_PREFIX="/opt/KasperskyOS-Community-Edition-<version>"

export PATH="$SDK_PREFIX/toolchain/bin:$PATH"

export INSTALL_PREFIX=$BUILD/../install

158

3. When starting generation of build scripts (cmake command), specify the following:

4. When starting the build (make command), specify one of the build targets.

The target name must match the build target name passed to the solution build command in the CMakeLists.txt
�le for the Einit program.

Example cross-build.sh build script

cross-build.sh

#!/bin/bash

Create a subdirectory for the build
BUILD=$PWD/.build
mkdir -p $BUILD && cd $BUILD

Set the values of environment variables
export LANG=C
export PKG_CONFIG=""
export SDK_PREFIX="/opt/KasperskyOS-Community-Edition-<version>"
export PATH="$SDK_PREFIX/toolchain/bin:$PATH"
export INSTALL_PREFIX=$BUILD/../install
export TARGET="aarch64-kos"

Start generating files for the build. The current directory is $BUILD,
so the CMakeLists.txt boot file is in the parent directory
cmake -G "Unix Makefiles" \
 -D CMAKE_BUILD_TYPE:STRING=Debug \
 -D CMAKE_INSTALL_PREFIX:STRING=$BUILD/../.install \
 -D CMAKE_TOOLCHAIN_FILE=$SDK_PREFIX/toolchain/share/toolchain-$TARGET.cmake \
 ../

Start the build. Include the VERBOSE flag for Make and redirect the output to the
build.log file
VERBOSE=1 make kos-qemu-image 2>&1 | tee build.log

Run the built solution image in QEMU.
-kernel $BUILD/einit/kos-qemu-image path to the built kernel image
$SDK_PREFIX/toolchain/bin/qemu-system-aarch64 \
 -m 1024 \
 -cpu core2duo \

export TARGET="aarch64-kos"

-G "Unix Makefiles" parameter

Path to the �le with the build system extension (toolchain.cmake) in the CMAKE_TOOLCHAIN_FILE
variable.

The �le with the build system extension is located in the following directory: /opt/KasperskyOS-
Community-Edition-<version>/toolchain/share/toolchain-aarch64-kos.cmake

Value of the CMAKE_BUILD_TYPE:STRING=Debug variable

Value of the CMAKE_INSTALL_PREFIX:STRING=$INSTALL_PREFIX variable

Path to the CMakeLists.txt boot �le

159

 -serial stdio \
 -kernel $BUILD/einit/kos-qemu-image

Example CMakeLists.txt boot �le

CMakeLists.txt

cmake_minimum_required(VERSION 3.12)
project (example)
Initializes the CMake library for the KasperskyOS SDK.
include (platform)
initialize_platform ()
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

CMakeLists.txt boot �le

The CMakeLists.txt boot �le contains general build instructions for the entire solution.

The CMakeLists.txt boot �le must contain the following commands:

cmake_minimum_required (VERSION 3.12) indicates the minimum supported version of CMake.

For a KasperskyOS-based solution build, CMake version 3.12 or later is required.

The required version of CMake is provided in KasperskyOS Community Edition and is used by default.

include (platform) connects the platform library of CMake.

initialize_platform() initializes the platform library.

project_header_default("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO") sets the �ags of the
compiler and linker.

 Connect and con�gure packages for the provided system programs and drivers that need to be
included in the solution:

CMake descriptions of system programs and drivers provided in KasperskyOS Community Edition, and
descriptions of their exported variables and properties are located in the corresponding �les at
/opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-kos/lib/cmake/<program
name>/<program name>-config.cmake

The Einit initializing program must be built using the add_subdirectory(einit) command.

All applications to be built must be added by using the add_subdirectory(<program directory name>)
command.

[Optional]

A package is connected by using the find_package() command.

After connecting a package, you must add the package-related directories to the list of search directories
by using the include_directories() command.

For some packages, you must also set the values of properties by using the set_target_properties()
command.

160

Add package importing components for working with Virtual File System.
Components are imported from the following directory: /opt/KasperskyOS-Community-
Edition-<version>/sysroot-aarch64-kos/lib/cmake/vfs/vfs-config.cmake
find_package (vfs REQUIRED COMPONENTS ENTITY CLIENT_LIB)
include_directories (${vfs_INCLUDE})

Add a package importing components for building an audit program and
connecting to it.
find_package (klog REQUIRED)
include_directories (${klog_INCLUDE})

Build the Einit initializing program
add_subdirectory (einit)

Build the hello application
add_subdirectory (hello)

CMakeLists.txt �les for building applications

The CMakeLists.txt �le for building an application must contain the following commands:

include (platform/nk) connects the CMake library for working with the NK compiler.

project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO") sets the �ags of the
compiler and linker.

An EDL description of a process class for a program can be generated by using the generate_edl_file()
command.

If the program provides endpoints using an IPC mechanism, the following transport code must be generated:

a. idl.h �les are generated by the nk_build_idl_files() command

b. cdl.h �les are generated by the nk_build_cdl_files() command

c. edl.h �les are generated by the nk_build_edl_files() command

add_executable (<program name> "<path to the file containing the program source
code>") adds the program build target.

add_dependencies (<program name> <name of the edl.h file build target>) adds a program
build dependency on edl.h �le generation.

target_link_libraries (<program name> <list of libraries>) determines the libraries that need
to be linked with the program during the build.

For example, if the program uses �le I/O or network I/O, it must be linked with the ${vfs_CLIENT_LIB}
transport library.

CMake descriptions of system programs and drivers provided in KasperskyOS Community Edition, and
descriptions of their exported variables and properties are located in the corresponding �les at
/opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-kos/lib/cmake/<program
name>/<program name>-config.cmake

161

Example CMakeLists.txt �le for building a simple application

CMakeLists.txt

project (hello)

Tools for working with the NK compiler.
include (platform/nk)

Set compile flags.
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

Define the name of the project that includes the program.
set (LOCAL_MODULE_NAME "example")

Define the application name.
set (ENTITY_NAME "Hello")
Please note the contents of the init.yaml.in and security.psl.in templates
They define program names as ${LOCAL_MODULE_NAME}.${ENTITY_NAME}

Define the targets that will be used to create the generated files of the program.
set (ENTITY_IDL_TARGET ${ENTITY_NAME}_idl)
set (ENTITY_CDL_TARGET ${ENTITY_NAME}_cdl)
set (ENTITY_EDL_TARGET ${ENTITY_NAME}_edl)

Define the name of the target that will be used to build the program.

To automatically add descriptions of IPC channels to the init.yaml �le when building a solution, you must
de�ne the EXTRA_CONNECTIONS property and assign it a value with descriptions of the relevant IPC channels.

Example of creating an IPC channel between a Client process and a Server process:

set_target_properties (Client PROPERTIES
EXTRA_CONNECTIONS
" - target: Server
 id: server_connection")

When building this solution, the description of this IPC channel will be automatically added to the init.yaml
�le when processing macros of the init.yaml.in template.

To automatically add a list of arguments for the main() function and a dictionary of environment variables to
the init.yaml �le when building a solution, you must de�ne the EXTRA_ARGS and EXTRA_ENV properties and
assign the appropriate values to them.

Example of sending the Client program the "-v" argument of the main() function and the environment
variable VAR1 set to VALUE1:

set_target_properties (Client PROPERTIES
EXTRA_ARGS
" - \"-v\""
EXTRA_ENV
" VAR1: VALUE1")

When building this solution, the description of the main() function argument and the environment variable
value will be automatically added to the init.yaml �le when processing macros of the init.yaml.in template.

162

set (APP_TARGET ${ENTITY_NAME}_app)

Add the idl.h file build target.
nk_build_idl_files (${ENTITY_IDL_TARGET}
 NK_MODULE ${LOCAL_MODULE_NAME}
 IDL "resources/Hello.idl"
)

Add the cdl.h file build target.
nk_build_cdl_files (${ENTITY_CDL_TARGET}
 IDL_TARGET ${ENTITY_IDL_TARGET}
 NK_MODULE ${LOCAL_MODULE_NAME}
 CDL "resources/Hello.cdl")

Add the EDL file build target. The EDL_FILE variable is exported
and contains the path to the generated EDL file.
generate_edl_file (${ENTITY_NAME}
 PREFIX ${LOCAL_MODULE_NAME}
)

Add the edl.h file build target.
nk_build_edl_files (${ENTITY_EDL_TARGET}
 NK_MODULE ${LOCAL_MODULE_NAME}
 EDL ${EDL_FILE}
)

Define the target for the program build.
add_executable (${APP_TARGET} "src/hello.c")
The program name in init.yaml and security.psl must match the name of the executable
file
set_target_properties (${APP_TARGET} PROPERTIES OUTPUT_NAME ${ENTITY_NAME})
Libraries that are linked to the program during the build
target_link_libraries (${APP_TARGET}
 PUBLIC ${vfs_CLIENT_LIB} # The program uses file I/O
 # and must be connected as a
client to VFS
)

CMakeLists.txt �le for building the Einit program

The CMakeLists.txt �le for building the Einit initializing program must contain the following commands:

include (platform/image) connects the CMake library that contains the solution image build scripts.

project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO") sets the �ags of the
compiler and linker.

Con�gure the packages of system programs and drivers that need to be included in the solution.

A package is connected by using the find_package () command.

For some packages, you must also set the values of properties by using the set_target_properties ()
command.

163

set_target_properties (${vfs_ENTITY} PROPERTIES
EXTRA_ARGS
" - \"-f\"
 - \"fstab\""
EXTRA_ENV
" ROOTFS: ramdisk0,0 / ext2 0")

When building this solution, the description of the main() function argument and the environment variable value
will be automatically added to the init.yaml �le when processing macros of the init.yaml.in template.

Example CMakeLists.txt �le for building the Einit program

CMakeLists.txt

project (einit)

CMake descriptions of system programs and drivers provided in KasperskyOS Community Edition, and
descriptions of their exported variables and properties are located in the corresponding �les at
/opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-kos/lib/cmake/<program
name>/<program name>-config.cmake

To automatically add descriptions of IPC channels between processes of system programs to the init.yaml
�le when building a solution, you must add these channels to the EXTRA_CONNECTIONS property for the
corresponding programs.

For example, the VFS program does not have a channel for connecting to the Env program by default. To
automatically add a description of this channel to the init.yaml �le during a solution build, you must add the
following call to the CMakeLists.txt �le for building the Einit program:

set_target_properties (${vfs_ENTITY} PROPERTIES
EXTRA_CONNECTIONS
" - target: env.Env
 id: {var: ENV_SERVICE_NAME, include: env/env.h}"

When building this solution, the description of this IPC channel will be automatically added to the init.yaml
�le when processing macros of the init.yaml.in template.

To automatically add a list of arguments for the main() function and a dictionary of environment variables to
the init.yaml �le when building a solution, you must de�ne the EXTRA_ARGS and EXTRA_ENV properties and
assign the appropriate values to them.

Example of sending the VfsEntity program the "-f fstab" argument of the main() function and the
environment variable ROOTFS set to ramdisk0,0 / ext2 0:

set(ENTITIES <full list of programs included in the solution>) de�nes the ENTITIES variable
containing a list of executable �les of all programs included in the solution.

One or both commands for building the solution image:

build_kos_hw_image() creates the build target that can then be used to build the image for the hardware
platform using make.

build_kos_qemu_image() creates the build target that can then be used to build the image for running in
QEMU using make.

164

Connect the library containing solution image build scripts.
include (platform/image)

Set compile flags.
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

Configure the VFS program.
By default, the VFS program is not mapped to a program implementing a block device.
If you need to use a block device, such as ata from the ata component,
you must define this device in the variable ${blkdev_ENTITY}_REPLACEMENT
For more information about exported variables and properties of the VFS program,
see /opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-
kos/lib/cmake/vfs/vfs-config.cmake
find_package(ata)
set_target_properties (${vfs_ENTITY} PROPERTIES ${blkdev_ENTITY}_REPLACEMENT
${ata_ENTITY})
In the simplest case, you do not need to interact with a drive.
For this reason, we set the value of the ${blkdev_ENTITY}_REPLACEMENT variable equal
to an empty string
set_target_properties (${vfs_ENTITY} PROPERTIES ${blkdev_ENTITY}_REPLACEMENT "")

Define the ENTITIES variable with a list of executable files of programs.
It is important to include all programs that are part of the project, except the
Einit program.
Please note that the name of the executable file of a program must
match the name of the target indicated in add_executable() in the CMakeLists.txt
file for building this program.
set(ENTITIES
 ${vfs_ENTITY}
 Hello_app
)

Solution image for target hardware platform.
Create the build target named kos-image that can then be used
to build the image for the hardware platform using make kos-image.
build_kos_hw_image (kos-image
 EINIT_ENTITY EinitHw
 CONNECTIONS_CFG "src/init.yaml.in" # template of the init.yaml
file
 SECURITY_PSL "src/security.psl.in" # template of the security.psl
file
 IMAGE_FILES ${ENTITIES}
)

Solution image for the QEMU hardware platform.
Create the build target named kos-qemu-image that can then be used
to build a QEMU image using make kos-qemu-image.
build_kos_qemu_image (kos-qemu-image
 EINIT_ENTITY EinitQemu
 CONNECTIONS_CFG "src/init.yaml.in"
 SECURITY_PSL "src/security.psl.in"
 IMAGE_FILES ${ENTITIES}
)

init.yaml.in template

165

The init.yaml.in template is used to automatically generate a part of the init.yaml �le prior to building the
Einit program using CMake tools.

When using the init.yaml.in template, you do not have to manually add descriptions of system programs and
the IPC channels for connecting to them to the init.yaml �le.

The init.yaml.in template must contain the following data:

Root entities key.

List of all applications included in the solution.

For applications that use an IPC mechanism, you must specify a list of IPC channels that connect this
application to other applications.

The IPC channels that connect this application to other applications are either indicated manually or speci�ed
in the CMakeLists.txt �le for this application using the EXTRA_CONNECTIONS property.

To specify a list of IPC channels that connect this application to system programs that are included in
KasperskyOS Community Edition, the following macros are used:

The @INIT_<program name>_ENTITY_CONNECTIONS@ and @INIT_<program
name>_ENTITY_CONNECTIONS+@ macros also add the list of connections for each program de�ned in the
EXTRA_CONNECTIONS property when building this program.

If you need to pass main() function arguments de�ned in the EXTRA_ARGS property to a program when
building this program, you need to use the following macros:

If you need to pass the values of environment variables de�ned in the EXTRA_ENV property to a program when
building this program, you need to use the following macros:

@INIT_<program name>_ENTITY_CONNECTIONS@ – during the build, this is replaced with the list of IPC
channels containing all system programs that are linked to the application. The target and id �elds are
�lled according to the connect.yaml �les from KasperskyOS Community Edition located in
/opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-kos/include/<system
program name>).

This macro needs to be used if the application does not have connections to other applications but instead
connects only to system programs. This macro adds the root connections key.

@INIT_<program name>_ENTITY_CONNECTIONS+@ – during the build, the list of IPC channels containing all
system programs that are linked to the application is added to the manually de�ned list of IPC channels. This
macro does not add the root connections key.

This macro needs to be used if the application has connections to other applications that were manually
indicated in the init.yaml.in template.

@INIT_<program name>_ENTITY_ARGS@ – during the build, this is replaced with the list of arguments of
the main() function de�ned in the EXTRA_ARGS property. This macro adds the root args key.

@INIT_<program name>_ENTITY_ARGS+@ – during the build, this macro adds the list of main() function
arguments de�ned in the EXTRA_ARGS property to the list of manually de�ned arguments. This macro does
not add the root args key.

@INIT_<program name>_ENTITY_ENV@ – during the build, this is replaced with the dictionary of
environment variables and their values de�ned in the EXTRA_ENV property. This macro adds the root env
key.

166

Example init.yaml.in template

init.yaml.in

entities:

- name: ping.Client
 connections:
 # The "Client" program can query the "Server".
 - target: ping.Server
 id: server_connection
@INIT_Client_ENTITY_CONNECTIONS+@
@INIT_Client_ENTITY_ARGS@
@INIT_Client_ENTITY_ENV@

- name: ping.Server
@INIT_Server_ENTITY_CONNECTIONS@

@INIT_EXTERNAL_ENTITIES@

init.yaml

entities:

- name: ping.Client
 connections:
 # The "Client" program can query the "Server"
 - target: ping.Server
 id: server_connection
 - target: kl.VfsEntity
 id: {var: _VFS_CONNECTION_ID, include: vfs/defs.h}
 args:
 - "-v"
 env:
 VAR1: VALUE1

- name: ping.Server
 connections:
 - target: kl.VfsEntity
 id: {var: _VFS_CONNECTION_ID, include: vfs/defs.h}

- name: kl.VfsEntity
 path: VFS
 args:
 - "-f"
 - "fstab"
 env:

@INIT_EXTERNAL_ENTITIES@ – during the build, this macro is replaced with the list of system programs linked
to the application and their IPC channels, main() function arguments, and values of environment variables.

@INIT_<program name>_ENTITY_ENV+@ – during the build, this macro adds the dictionary of environment
variables and their values de�ned in the EXTRA_ENV property to the manually de�ned variables. This macro
does not add the root env key.

When building the Einit program from this template, the following init.yaml �le will be generated:

167

 ROOTFS: ramdisk0,0 / ext2

Example security.psl.in template

security.psl.in

execute: kl.core.Execute

use nk.base._

use EDL Einit
use EDL kl.core.Core
use EDL Client
use EDL Server
@INIT_EXTERNAL_ENTITIES@

/* Startup of programs is allowed */
execute {
 grant ()
}
/* Sending and receiving requests, responses and errors is allowed. */
request {
 grant ()
}
response {

security.psl.in template

The security.psl.in template is used to automatically generate a part of the security.psl �le prior to
building the Einit program using CMake tools.

The security.psl �le contains part of the solution security policy description.

When using the security.psl.in template, you do not have to manually add EDL descriptions of system
programs to the security.psl �le.

The security.psl.in template must contain a manually created solution security policy description, including
the following declarations:

Describing the global parameters of a solution security policy

Including PSL �les

Including EDL �les of application software

Creating security model objects

Binding methods of security models to security events

Describing security audit pro�les

To automatically include system programs, the @INIT_EXTERNAL_ENTITIES@ macro must be used.

168

 grant ()
}

error {
 grant ()
}
/* Queries via the security interface are ignored. */
security {
 grant ()
}

generate_edl_file(NAME ...)

CMake libraries in KasperskyOS Community Edition

This section contains a description of the libraries that are provided in KasperskyOS Community Edition for
automatically building a KasperskyOS-based solution.

platform library

The platform library contains the following commands:

initialize_platform() is the command for initializing the platform library.

project_header_default() is a command for indicating the linker and compiler �ags for the current project.

These commands are used in CMakeLists.txt �les for the Einit program and application software.

nk library

This section contains a description of the commands and macros of the CMake library for working with the NK
compiler.

generate_edl_�le()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/nk2.cmake.

This command generates an EDL �le containing a description of the process class.

Parameters:

NAME is the name of the process class. Required parameter.

PREFIX is the name of the global module associated with the EDL �le. The name of the project must be
indicated in this parameter.

169

generate_edl_file(${ENTITY_NAME} EDL_COMPONENTS "env: kl.Env")

nk_build_idl_files(NAME ...)

EDL_COMPONENTS is the name of the component and its instance that will be included in the EDL �le. For
example: EDL_COMPONENTS "env: kl.Env". To include multiple components, you need to use multiple
EDL_COMPONENTS parameters.

SECURITY is the quali�ed name of the security interface method that will be included in the EDL �le.

OUTPUT_DIR is the directory in which the EDL �le will be created. The default directory is
${CMAKE_CURRENT_BINARY_DIR}.

OUTPUT_FILE is the name of the EDL �le being created. The default name is ${OUTPUT_DIR}/${NAME}.edl.

This command exports the EDL_FILE variable and sets it equal to the path to the generated EDL �le.

Example call:

For an example of using this command, see the article titled "CMakeLists.txt �les for building application software".

nk_build_idl_�les()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/nk2.cmake.

This command creates a CMake target for generating .idl.h �les for one or more de�ned IDL �les using the NK
compiler.

Parameters:

NAME is the name of the CMake target for building .idl.h �les. If a target has not yet been created, it will be
created by using add_library() with the speci�ed name. Required parameter.

NOINSTALL – if this option is speci�ed, �les will only be generated in the working directory but will not be
installed in global directories: ${CMAKE_BINARY_DIR}/_headers_
${CMAKE_BINARY_DIR}/_headers_/${PROJECT_NAME}.

NK_MODULE is the global module associated with the interface. The name of the project must be indicated in
this parameter.

WORKING_DIRECTORY is the working directory for calling the NK compiler, which by default is the following:
${CMAKE_CURRENT_BINARY_DIR}.

DEPENDS refers to the additional build targets on which the IDL �le depends.

To add multiple targets, you need to use multiple DEPENDS parameters.

IDL is the path to the IDL �le for which the idl.h �le is being generated. Required parameter.

To add multiple IDL �les, you need to use multiple IDL parameters.

170

nk_build_idl_files (echo_idl_files NK_MODULE "echo" IDL "resources/Ping.idl")

nk_build_cdl_files(NAME ...)

If one IDL �le imports another IDL �le, idl.h �les need to be generated in the order necessary for compliance
with dependencies (with the most deeply nested �rst).

NK_FLAGS are additional �ags for the NK compiler.

Example call:

For an example of using this command, see the article titled "CMakeLists.txt �les for building application software".

nk_build_cdl_�les()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/nk2.cmake.

This command creates a CMake target for generating .cdl.h �les for one or more de�ned CDL �les using the NK
compiler.

Parameters:

NAME is the name of the CMake target for building .cdl.h �les. If a target has not yet been created, it will be
created by using add_library() with the speci�ed name. Required parameter.

NOINSTALL – if this option is speci�ed, �les will only be generated in the working directory but are not installed
in global directories: ${CMAKE_BINARY_DIR}/_headers_
${CMAKE_BINARY_DIR}/_headers_/${PROJECT_NAME}.

IDL_TARGET is the target when building .idl.h �les for IDL �les containing descriptions of endpoints provided
by components described in CDL �les.

NK_MODULE is the global module associated with the component. The name of the project must be indicated in
this parameter.

WORKING_DIRECTORY is the working directory for calling the NK compiler, which by default is the following:
${CMAKE_CURRENT_BINARY_DIR}.

DEPENDS refers to the additional build targets on which the CDL �le depends.

To add multiple targets, you need to use multiple DEPENDS parameters.

CDL is the path to the CDL �le for which the cdl.h �le is being generated. Required parameter.

To add multiple CDL �les, you need to use multiple CDL parameters.

NK_FLAGS are additional �ags for the NK compiler.

Example call:

171

nk_build_cdl_files (echo_cdl_files IDL_TARGET echo_idl_files NK_MODULE "echo" CDL
"resources/Ping.cdl")

nk_build_edl_files(NAME ...)

nk_build_edl_files (echo_server_edl_files CDL_TARGET echo_cdl_files NK_MODULE "echo"
EDL "resources/Server.edl")
nk_build_edl_files (echo_client_edl_files NK_MODULE "echo" EDL "resources/Client.edl")

For an example of using this command, see the article titled "CMakeLists.txt �les for building application software".

nk_build_edl_�les()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/nk2.cmake.

This command creates a CMake target for generating an .edl.h �le for one de�ned EDL �le using the NK
compiler.

Parameters:

NAME is the name of the CMake target for building an .edl.h �le. If a target has not yet been created, it will be
created by using add_library() with the speci�ed name. Required parameter.

NOINSTALL – if this option is speci�ed, �les will only be generated in the working directory but are not installed
in global directories: ${CMAKE_BINARY_DIR}/_headers_
${CMAKE_BINARY_DIR}/_headers_/${PROJECT_NAME}.

CDL_TARGET is the target when building .cdl.h �les for CDL �les containing descriptions of components of
the EDL �le for which the build is being performed.

IDL_TARGET is the target when building .idl.h �les for IDL �les containing descriptions of interfaces of the EDL
�le for which the build is being performed.

NK_MODULE is the global module associated with the EDL �le. The name of the project must be indicated in this
parameter.

WORKING_DIRECTORY is the working directory for calling the NK compiler, which by default is the following:
${CMAKE_CURRENT_BINARY_DIR}.

DEPENDS refers to the additional build targets on which the EDL �le depends.

To add multiple targets, you need to use multiple DEPENDS parameters.

EDL is the path to the EDL �le for which the edl.h �le is being generated. Required parameter.

NK_FLAGS are additional �ags for the NK compiler.

Example calls:

For an example of using this command, see the article titled "CMakeLists.txt �les for building application software".

172

build_kos_hw_image(NAME ...)

build_kos_hw_image (kos-image
 EINIT_ENTITY EinitHw
 CONNECTIONS_CFG "src/init.yaml.in"
 SECURITY_CFG "src/security.cfg.in"
 IMAGE_FILES ${ENTITIES})

image library

This section contains a description of the commands and macros of the CMake library named image that is
included in KasperskyOS Community Edition and contains solution image build scripts.

build_kos_hw_image()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/image.cmake.

This command creates a CMake target for building a solution image that can then be used to build the image for
the hardware platform using make.

Parameters:

NAME is the name of the CMake target for building a solution image. Required parameter.

PERFCNT_KERNEL – use the kernel with performance counters if it is available in KasperskyOS Community
Edition.

EINIT_ENTITY is the name of the executable �le that will be used to start the Einit program.

EXTRA_XDL_DIR refers to additional directories to include when building the Einit program.

CONNECTIONS_CFG is the path to the init.yaml �le or init.yaml.in template.

SECURITY_PSL is the path to the security.psl �le or security.psl.in template.

KLOG_ENTITY is the target for building the Klog system program, which is responsible for the security audit. If
the target is not speci�ed, the audit is not performed.

IMAGE_BINARY_DIR_BIN is the directory for the �nal image and other artifacts. The default directory is
CMAKE_CURRENT_BINARY_DIR.

IMAGE_FILES are the executable �les of applications and system programs (except the Einit program) and
any other �les to be added to the ROMFS image.

To add multiple applications or �les, you can use multiple IMAGE_FILES parameters.

<path to files> are free parameters like IMAGE_FILES.

Example call:

173

build_kos_qemu_image(NAME ...)

build_kos_qemu_image (kos-qemu-image
 EINIT_ENTITY EinitQemu
 CONNECTIONS_CFG "src/init.yaml.in"
 SECURITY_CFG "src/security.cfg.in"
 IMAGE_FILES ${ENTITIES})

For an example of using this command, see the article titled "CMakeLists.txt �les for building the Einit program".

build_kos_qemu_image()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/image.cmake.

This command creates a CMake target for building a solution image that can then be used to build the image for
QEMU using make.

Parameters:

NAME is the name of the CMake target for building a solution image. Required parameter.

PERFCNT_KERNEL – use the kernel with performance counters if it is available in KasperskyOS Community
Edition.

EINIT_ENTITY is the name of the executable �le that will be used to start the Einit program.

EXTRA_XDL_DIR refers to additional directories to include when building the Einit program.

CONNECTIONS_CFG is the path to the init.yaml �le or init.yaml.in template.

SECURITY_PSL is the path to the security.psl �le or security.psl.in template.

KLOG_ENTITY is the target for building the Klog system program, which is responsible for the security audit. If
the target is not speci�ed, the audit is not performed.

QEMU_FLAGS are additional �ags for running QEMU.

IMAGE_BINARY_DIR_BIN is the directory for the �nal image and other artifacts. It matches
CMAKE_CURRENT_BINARY_DIR by default.

IMAGE_FILES are the executable �les of applications and system programs (except the Einit program) and
any other �les to be added to the ROMFS image.

To add multiple applications or �les, you can use multiple IMAGE_FILES parameters.

<path to files> are free parameters like IMAGE_FILES.

Example call:

For an example of using this command, see the article titled "CMakeLists.txt �les for building the Einit program".

174

Building without CMake

This section contains a description of the scripts, tools, compilers and build templates provided in KasperskyOS
Community Edition.

These tools can be used:

In other build systems.

To perform individual steps of the build.

To analyze the build speci�cations and write a custom build system.

The general scenario for building a solution image is described in the article titled Build process overview.

Tools for building a solution

This section contains a description of the scripts, tools, compilers and build templates provided in KasperskyOS
Community Edition.

Build scripts and tools

KasperskyOS Community Edition includes the following build scripts and tools:

nk-gen-c

The NK compiler (nk-gen-c) generates the set of transport methods and types based on the EDL, CDL and
IDL descriptions of applications, components and interfaces. The transport methods and types are needed for
generating, sending, receiving and processing IPC messages.

nk-psl-gen-c

The nk-psl-gen-c compiler generates the source code of the Kaspersky Security Module based on the
solution security policy description (security.psl) and the EDL, CDL and IDL descriptions included in the
solution.

einit

The einit tool lets you automate the creation of code for the Einit initializing program. This program is the
�rst to start when KasperskyOS is loaded. Then it starts all other programs and creates IPC channels between
them.

makekss

The makekss script creates the Kaspersky Security Module.

makeimg

The makeimg script creates the �nal boot image of the KasperskyOS-based solution with all programs to be
started and the Kaspersky Security Module.

175

nk-gen-c

nk-gen-c [-I PATH][-o PATH][--types][--interface][--client][--server][--extended-
errors][--enforce-alignment-check][--help][--version] FILE

The NK compiler (nk-gen-c) generates the set of transport methods and types based on the EDL, CDL and IDL
descriptions. The transport methods and types are needed for generating, sending, receiving and processing IPC
messages.

The NK compiler receives the EDL, CDL or IDL �le and creates the following �les:

H �le containing a declaration and implementation of transport methods and types.

D �le that lists the dependencies of the created C �le. This �le can be used for building automation using the
make tool.

Syntax for using the NK compiler:

Parameters:

FILE

Path to the EDL, CDL or IDL description for which you need to generate transport methods and types.

-I PATH

Path to the folder containing auxiliary �les required for generating transport methods and types. By default,
these �les are located in the directory /opt/KasperskyOS-Community-Edition-<version>/sysroot-
aarch64-kos/include.

It may also be used for adding other folders to search for the �les required for generating the methods and
types.

To indicate more than one folder. you can use several -I switches.

-o PATH

Path to an existing folder where �les containing transport methods and types will be created.

-h, --help

Displays the Help text.

--version

Displays the nk-gen-c version.

--enforce-alignment-check

Enables mandatory alignment checks for queries to memory, even if this check is disabled for the target
platform. If these checks are enabled, the NK compiler adds additional alignment checks to the code of the IPC
message validators.

By default, memory query alignment check settings are de�ned for each platform in the �le named
system.platform.

--extended-errors

Enables extended error handling in the code of transport methods.

176

Selective generation

If no selective generation �ag is speci�ed, the NK compiler will create all transport types and methods that
are possible for the speci�ed �le.

To reduce the amount of code generated by the NK compiler, you can use selective generation �ags. For example,
it is convenient to use the --server �ag for programs that implement endpoints, and to use the --client �ag
for programs that are clients of the endpoints.

Selective generation �ags for IDL �les:

--types

The compiler will create only the constants and types, including the rede�ned ones (typedef), from the input
IDL �le, and the types from imported IDL �les that are used in the types of the input �le.

However, constants and rede�ned types from imported IDL �les will not be explicitly included in the generated
�les. If you need to use types from imported �les in code, you need to separately generate H �les for each such
IDL �le.

--interface

The compiler will generate �les created with the --types �ag, and the structures of request and response
messages for all methods of this endpoint.

--client

The compiler will generate �les created with the --interface �ag, and the client proxy objects and functions
of their initialization for all methods of this endpoint.

--server

The compiler will generate �les created with the --interface �ag, and the types and methods of the
dispatcher of this endpoint.

Selective generation �ags for CDL �les and EDL �les:

--types

The compiler will generate �les created with the --types �ag for all endpoints provided by this component.

However, only the types that are used in parameters of interface methods will be explicitly included in the
generated �les.

--interface

The compiler will generate �les created with the --types �ag for this component/process class, and �les
generated with the --interface �ag for all services provided by this component.

--client

The compiler will generate �les created with the --interface �ag, and the client proxy objects and functions
of their initialization for all endpoints provided by this component.

--server

The compiler will generate �les created with the --interface �ag, and the types and methods of the
dispatcher of this component/process class and the types and methods of dispatchers for all endpoints
provided by this component.

177

nk-psl-gen-c

nk-psl-gen-c [-I PATH][-o PATH][--audit PATH][--tests ARG][--help][--version] FILE

The nk-psl-gen-c compiler generates the source code of the Kaspersky Security Module based on the solution
security policy description and the EDL, CDL and IDL descriptions included in the solution. This code is used by the
makekss script.

The nk-psl-gen-c compiler also lets you generate and run code of tests written in the PAL language for the
solution security policy.

Syntax for using the nk-psl-gen-c compiler:

Parameters:

FILE

Path to the PSL description of the solution security policy (security.psl)

-I,--include-dir PATH

Path to the folder containing auxiliary �les required for generating transport methods and types. By default,
these �les are located in the directory /opt/KasperskyOS-Community-Edition-<version>/sysroot-
aarch64-kos/include.

The nk-psl-gen-c compiler will require access to all EDL, CDL and IDL descriptions. To enable the nk-psl-
gen-c compiler to �nd these descriptions, you need to pass the paths to these descriptions using the -I
switch.

To indicate more than one folder. you can use several -I switches.

-o,--output PATH

Path to the created �le containing the security module code.

-t, --tests ARG

Flag for controlling code generation and starting tests for the solution security policy. Possible values:

-a, --audit PATH

Path to the created �le containing the code of the audit decoder.

-h, --help

Displays the Help text.

--version

Displays the nk-psl-gen-c version.

skip means that the code of tests is not generated. This value is used by default if the --tests �ag is not
indicated.

generate means that the code of tests is generated but it is not compiled and is not executed.

run means that the code of tests is generated, compiled using the gcc compiler, and executed.

178

einit

einit -I PATH -o PATH [--help] FILE

makekss

makekss --target=ARCH --module=PATH --with-nk="PATH" --with-nktype="TYPE" --with-
nkflags="FLAGS" [--output="PATH"][--help][--with-cc="PATH"][--with-cflags="FLAGS"]
FILE

The einit tool lets you automate the creation of code for the Einit initializing program.

The einit tool receives the solution initialization description (the init.yaml �le by default) and EDL, CDL and
IDL descriptions, and creates a �le containing the source code of the Einit initializing program. Then the Einit
program must be built using the C-language cross compiler that is provided in KasperskyOS Community Edition.

Syntax for using the einit tool:

Parameters:

FILE

Path to the init.yaml �le.

-I PATH

Path to the directory containing the auxiliary �les (including EDL, CDL and IDL descriptions) required for
generating the initializing program. By default, these �les are located in the directory /opt/KasperskyOS-
Community-Edition-<version>/sysroot-aarch64-kos/include.

-o, --out-file PATH

Path to the created .c �le containing the code of the initializing program.

-h, --help

Displays the Help text.

The makekss script creates the Kaspersky Security Module.

The script calls the nk-psl-gen-c compiler to generate the source code of the security module, then compiles the
resulting code by calling the C compiler that is provided in KasperskyOS Community Edition.

The script creates the security module from the solution security policy description.

Syntax for using the makekss script:

Parameters:

FILE

Path to the top-level �le of the solution security policy description.

179

makeimg

--target=ARCH

Processor architecture for which the build is intended.

--module=-lPATH

Path to the ksm_kss library. This key is passed to the C compiler for linking to this library.

--with-nk=PATH

Path to the nk-psl-gen-c compiler that will be used to generate the source code of the security module. By
default, the compiler is located in /opt/KasperskyOS-Community-Edition-
<version>/toolchain/bin/nk-psl-gen-c.

--with-nktype="TYPE"

Indicates the type of NK compiler that will be used. To use the nk-psl-gen-c compiler, indicate the psl type.

--with-nkflags="FLAGS"

Parameters used when calling the nk-psl-gen-c compiler.

The nk-psl-gen-c compiler will require access to all EDL, CDL and IDL descriptions. To enable the nk-psl-
gen-c compiler to �nd these descriptions, you need to pass the paths to these descriptions in the --with-
nkflags parameter by using the -I switch of the nk-psl-gen-c compiler.

--output=PATH

Path to the created security module �le.

--with-cc=PATH

Path to the C compiler that will be used to build the security module. The compiler provided in KasperskyOS
Community Edition is used by default.

--with-cflags=FLAGS

Parameters used when calling the C compiler.

-h, --help

Displays the Help text.

The makeimg script creates the �nal boot image of the KasperskyOS-based solution with all executable �les of
programs and the Kaspersky Security Module.

The script receives a list of �les, including the executable �les of all applications that need to be added to ROMFS
of the loaded image, and creates the following �les:

Solution image

Solution image without character tables (.stripped)

Solution image with debug character tables (.dbg.syms)

Syntax for using the makeimg script:

180

makeimg --target=ARCH --sys-root=PATH --with-toolchain=PATH --ldscript=PATH --img-
src=PATH --img-dst=PATH --with-init=PATH [--with-extra-asflags=FLAGS][--with-extra-
ldflags=FLAGS][--help] FILES

Parameters:

FILES

List of paths to �les, including the executable �les of all applications that need to be added to ROMFS.

The security module (ksm.module) must be explicitly speci�ed, or else it will not be included in the solution
image. The Einit application does not need to be indicated because it will be automatically included in the
solution image.

--target=ARCH

Architecture for which the build is intended.

--sys-root=PATH

Path to the root directory sysroot. By default, this directory is located in /opt/KasperskyOS-Community-
Edition-version/sysroot-aarch64-kos/.

--with-toolchain=PATH

Path to the set of auxiliary tools required for the solution build. By default, these tools are located in
/opt/KasperskyOS-Community-Edition-<version>/toolchain/.

--ldscript=PATH

Path to the linker script required for the solution build. By default, this script is located in /opt/KasperskyOS-
Community-Edition-<version>/libexec/aarch64-kos/.

--img-src=PATH

Path to the precompiled KasperskyOS kernel. By default, the kernel is located in /opt/KasperskyOS-
Community-Edition-<version>/libexec/aarch64-kos/.

--img-dst=PATH

Path to the created image �le.

--with-init=PATH

Path to the executable �le of the Einit initializing program.

--with-extra-asflags=FLAGS

Additional �ags for the AS Assembler.

--with-extra-ldflags=FLAGS

Additional �ags for the LD Linker.

-h, --help

Displays the Help text.

Cross compilers

181

Properties of KasperskyOS cross compilers

echo '' | aarch64-kos-gcc -dM -E -

Linker operation speci�cs

1. libc – standard C library.

2. libm – library that implements the mathematical functions of the standard C language library.

3. libvfs_stubs – library that contains stubs of I/O functions (for example, open , socket , read , write).

4. libkos is the library for accessing the KasperskyOS core endpoints.

5. libenv is the library of the subsystem for con�guring the environment of applications (environmental variables,
arguments of the main function, and custom con�gurations).

6. libsrvtransport-u is the library that supports IPC between processes and the kernel.

The cross compilers included in KasperskyOS Community Edition support processors that have the aarch64
architecture.

The KasperskyOS Community Edition toolchain includes the following tools for cross compilation:

GCC:

Binutils:

aarch64-kos-gcc

aarch64-kos-g++

AS Assembler: aarch64-kos-as

LD Linker: aarch64-kos-ld

In addition to standard macros, an additional macro __KOS__=1 is de�ned in GCC. Using this macro lets you
simplify porting of the software code to KasperskyOS, and also simpli�es development of platform-independent
applications.

To view the list of standard macros of GCC, run the following command:

When building the executable �le of an application, by default the linker links the following libraries in the speci�ed
order:

Example build without using CMake

Below is an example of a script for building a basic example. This example contains a single application called Hello,
which does not provide any endpoints.

182

The provided script is intended only for demonstrating the build commands being used.

build.sh

#!/bin/sh

The SDK variable should specify the path to the KasperskyOS Community Edition
installation directory.
SDK=/opt/KasperskyOS-Community-Edition-<version>
TOOLCHAIN=$SDK/toolchain
SYSROOT=$SDK/sysroot-aarch64-kos

PATH=$TOOLCHAIN/bin:$PATH

Create the Hello.edl.h file from Hello.edl
(The Hello program does not implement any endpoints, so there are no CDL or IDL
files.)
nk-gen-c -I $SYSROOT/include Hello.edl

Compile and build the Hello program
aarch64-kos-gcc -o hello hello.c

Create the Kaspersky Security Module (ksm.module)
makekss --target=aarch64-kos \
 --module=-lksm_kss \
 --with-nkflags="-I $SDK/examples/common -I $SYSROOT/include" \
 security.psl

Create code of the Einit initializing program
einit -I $SYSROOT/include -I . init.yaml -o einit.c

Compile and build the Einit program
aarch64-kos-gcc -I . -o einit einit.c

Create loadable solution image (kos-qemu-image)
makeimg --target=aarch64-kos \
 --sys-root=$SYSROOT \
 --with-toolchain=$TOOLCHAIN \
 --ldscript=$SDK/libexec/aarch64-kos/kos-qemu.ld \
 --img-src=$SDK/libexec/aarch64-kos/kos-qemu \
 --img-dst=kos-qemu-image \
 Hello ksm.module

Run solution under QEMU
qemu-system-aarch64 -m 1024 -serial stdio -kernel kos-qemu-image

1. Connect the drive from which you plan to run the solution image on target devices.

2. Find the block device corresponding to the connected drive, for example, by using the following command:

fdisk -l

Creating a bootable drive containing the solution image

To create a bootable drive containing the solution image:

183

3. If required, create a new drive partition on which the solution image will be deployed by using the fdisk tool, for
example.

4. If there is no �le system on the partition, create one by using the mkfs tool, for example.

You can use any �le system that is supported by the GRUB 2 bootloader.

5. Mount the drive.

mkdir /mnt/kos_device && mount /dev/sdXY /mnt/kos_device

Here, /mnt/kos_device is the mount point, /dev/sdXY is the block device name, X is the letter corresponding
to the connected drive, and Y is the partition number.

6. Install the GRUB 2 operating system bootloader on the drive.

To install GRUB 2, run the following command:

grub-install --force --removable \
--boot-directory=/mnt/kos_device/boot /dev/sdX

Here, /mnt/kos_device is the mount point, /dev/sdX is the block device name, and X is the letter
corresponding to the connected drive.

7. Copy the solution image to the root directory of the mounted drive.

8. In the /mnt/kos_device/boot/grub/grub.cfg �le, add the menuentry section that points to the solution
image.

menuentry "KasperskyOS" {

multiboot /my_kasperskyos.img

boot

}

9. Unmount the drive.

umount /mnt/kos_device

Here, /mnt/kos_device is the mount point.

After performing these actions, you can start KasperskyOS from this drive.

http://www.gnu.org/software/grub/

184

Just like solution components, the KasperskyOS kernel also has a formal speci�cation (for details, see
"Methods of KasperskyOS core endpoints").

The formal speci�cation of a solution component does not de�ne how this component will be implemented.
In other words, the presence of components in a formal speci�cation of a solution component does not
mean that these components will be present in the architecture of this solution component.

Developing security policies

Formal speci�cations of KasperskyOS-based solution components

Solution development includes the creation of formal speci�cations for its components that form a global picture
for the Kaspersky Security Module. A formal speci�cation of a KasperskyOS-based solution component
(hereinafter referred to as the formal speci�cation of the solution component) is comprised of a system of
IDL, CDL and EDL descriptions (IDL and CDL descriptions are optional) for this component. These descriptions are
used to automatically generate transport code of solution components, and source code of the security module
and the initializing program. The formal speci�cations of solution components are also used as source data for the
solution security policy description.

Each solution component corresponds to an EDL description. In terms of a formal speci�cation, a solution
component is a container for components that provide endpoints. Multiple instances of one solution component
may be used at the same time, which means that multiple processes can be started from the same executable �le.
Processes that correspond to the same EDL description are processes of the same class. An EDL description
de�nes the name of a process class and the components for which a process of the de�ned class serves as a
container.

Each component that is part of a solution component corresponds to a CDL description. This description de�nes
the component name, provided endpoints, security interface, and embedded components. Components can
simultaneously provide endpoints, support a security interface, and serve as containers for other components.
Each component can provide multiple endpoints with one or more interfaces.

Each interface is de�ned in an IDL description. This description de�nes the interface name, signatures of interface
methods, and data types for the parameters of interface methods. The data comprising signatures of interface
methods and de�nitions of data types for parameters of interface methods is referred to as a package.

Processes that do not contain components may only act as clients. Processes that contain components can act
as servers and/or clients. If components from a process provide endpoints, the process can act as a server and a
client at the same time. If components from a process do not provide endpoints (and only support a security
interface), the process can act only as a client.

Names of process classes, components, packages and interfaces

Process classes, components, packages and interfaces are identi�ed by their names in IDL, CDL and EDL
descriptions. The names of process classes, components and packages form three sets of names within a
KasperskyOS-based solution, in which any name is unique within its own set. A set of package names includes a set
of interface names.

185

The name of an IDL, CDL or EDL �le begins with an uppercase letter and must not contain any underscores
_.

1. The following declaration is used:

entity process class name

2. [Optional] The following declaration is used:

components {
 component instance name : component name
...
}

Each component instance is indicated in a separate line. The component instance name must not contain any
underscores _. The list can contain multiple instances of one component. Each component instance in the list
has a unique name.

Supported endpoints and the security interface can be de�ned in an EDL description the same way they are
de�ned in a CDL description. However, this practice is not recommended because EDL descriptions and
CDL descriptions are usually created by di�erent participants of the development process for
KasperskyOS-based solutions. CDL descriptions are created by developers of system programs and
application software. EDL descriptions are created by developers that integrate system programs and
application software into a uni�ed solution.

The name of a process class, component, package or interface is a link to the IDL, CDL or EDL �le in which this
name is de�ned. This link is a path to the IDL, CDL or EDL �le (without the extension and dot before it) relative to
the directory that is included in the set of directories where the source code generators search for IDL, CDL and
EDL �les. (This set of directories is de�ned by parameters -I path to files .) A dot is used as a separator in a
path description.

< >

For example, the kl.core.NameServer process class name is a link to the EDL �le named NameServer.edl,
which is located in the KasperskyOS SDK at the following path:

sysroot-*-kos/include/kl/core

However, source code generators must be con�gured to search for IDL, CDL and EDL �les in the following
directory:

sysroot-*-kos/include

EDL description

EDL descriptions are put into separate *.edl �les, which contain the following data:

Process class name.

< >

List of instances of components.

< >

The EDL language is case sensitive.

Single-line comments and multi-line comments can be used in an EDL description.

186

Examples of EDL �les

Hello.edl

// Class of processes that do not contain components.
entity Hello

Signald.edl

/* Class of processes that contain
 * one instance of one component. */
entity kl.Signald
components {
 signals : kl.Signals
}

LIGHTCRAFT.edl

/* Class of processes that contain
 * two instances of different components. */
entity kl.drivers.LIGHTCRAFT
components {
 KUSB : kl.drivers.KUSB
 KIDF : kl.drivers.KIDF
}

1. The following declaration is used:

component component name

2. [Optional] The following declaration is used:

security interface name

3. [Optional] The following declaration is used:

endpoints {
 endpoint name : interface name
...
}

Each endpoint is indicated in a separate line. The endpoint name must not contain any underscores _. The list
can contain multiple endpoints with the same interface. Each endpoint in the list has a unique name.

CDL description

CDL descriptions are put into separate *.cdl �les, which contain the following data:

The name of the component.

< >

Security interface.

< >

List of endpoints.

< >

187

4. [Optional] The following declaration is used:

components {
 component instance name : component name
...
}

Each component instance is indicated in a separate line. The component instance name must not contain any
underscores _. The list can contain multiple instances of one component. Each component instance in the list
has a unique name.

At least one optional declaration is used in a CDL description. If a CDL description does not use at least one
optional declaration, this description will correspond to an "empty" component that does not provide
endpoints, does not contain embedded components, and does not support a security interface.

Examples of CDL �les

KscProductEventsProvider.cdl

// Component provides one endpoint.
component kl.KscProductEventsProvider
endpoints {
 eventProvider : kl.IKscProductEventsProvider
}

KscConnectorComponent.cdl

// Component provides multiple endpoints.
component kl.KscConnectorComponent
endpoints {
 KscConnCommandSender : kl.IKscConnCommandSender
 KscConnController : kl.IKscConnController
 KscConnSettingsHolder : kl.IKscConnSettingsHolder
 KscDataProvider : kl.IKscDataProvider
 ProductDataHolder : kl.IProductDataHolder
 KscDataNotifier : kl.IKscDataNotifier
 KscConnectorStateNotifier : kl.IKscConnectorStateNotifier
}

FsVerifier.cdl

/* Component does not provide endpoints, supports
 * a security interface, and contains one instance
 * of another component. */
component FsVerifier
security Approve
components {
 verifyComp : Verify
}

List of instances of embedded components.

< >

The CDL language is case sensitive.

Single-line comments and multi-line comments can be used in a CDL description.

188

1. The following declaration is used:

package package name

2. [Optional] The
following declaration is used:

import package name

3. [Optional]

4. [Optional] The following declaration is used:

interface {
 interface method name(parameters) ;
...
}

Each method signature is indicated in a separate line. The method name must not contain any underscores _.
Each method in the list has a unique name. The parameters of methods are divided into input parameters (in),
output parameters (out), and parameters for transmitting error information (error).

Input parameters and output parameters are transmitted in IPC requests and IPC responses, respectively. Error
parameters are transmitted in IPC responses if the server cannot correctly handle the corresponding IPC
requests.

The server can inform a client about IPC request processing errors via error parameters as well as through
output parameters of interface methods. If the server sets the error �ag in an IPC response when an error
occurs, this IPC response will contain the error parameters without any output parameters. Otherwise this IPC
response will contain output parameters just like when requests are correctly processed. (The error �ag is set in
IPC responses by using the nk_err_reset() macro de�ned in the nk/types.h header �le from the
KasperskyOS SDK.)

An IPC response sent with the error �ag set and an IPC response with the error �ag not set are considered to
be di�erent types of events for the Kaspersky Security Module. When describing a solution security policy, this
di�erence lets you conveniently distinguish between the processing of events associated with the correct
execution of IPC requests and the processing of events associated with incorrect execution of IPC requests. If
the server does not set the error �ag in IPC responses, the security module must check the values of output
parameters indicating errors to properly process events related to the incorrect execution of IPC requests. (A
client can check the state of the error �ag in an IPC response even if the corresponding interface method does
not contain error parameters. To do so, the client uses the nk_msg_check_err() macro de�ned in the
nk/types.h header �le from the KasperskyOS SDK.)

Signatures of interface methods cannot be imported from other IDL �les.

IDL description

IDL descriptions are put into separate *.idl �les, which contain the following data:

Package name.

< >

Packages from which the data types for interface method parameters are imported.

< >

De�nitions of data types for parameters of interface methods.

Signatures of interface methods.

< [] >

The IDL language is case sensitive.

189

At least one optional declaration is used in a IDL description. If an IDL description does not use at least one
optional declaration, this description will correspond to an "empty" package that does not assign any
interface methods or data types (including from other IDL descriptions).
Some IDL �les from the KasperskyOS SDK do not describe interface methods, but instead only contain
de�nitions of data types. These IDL �les are used only as exporters of data types.
If a package contains a description of interface methods, the interface name matches the package name.

Examples of IDL �les

Env.idl

package kl.Env
// Definitions of data types for interface method parameters
typedef string<128> Name;
typedef string<256> Arg;
typedef sequence<Arg,256> Args;
// Interface includes one method.
interface {
 Read(in Name name, out Args args, out Args envs);
}

Kpm.idl

package kl.Kpm
// Import data types for parameters of interface methods
import kl.core.Types
// Definition of data type for parameters of interface methods
typedef string<64> String;
/* Interface includes multiple methods.
 * Some methods do not have any parameters. */
interface {
 Shutdown();
 Reboot();
 PowerButtonPressedWait();
 TerminationSignalWait(in UInt32 entityId, in String entityName);
 EntityTerminated(in UInt32 entityId);
 Terminate(in UInt32 callingEntityId);
}

MessageBusSubs.idl

package kl.MessageBusSubs
// Import data types for interface method parameters
import kl.MessageBusTypes
/* Interface includes a method that has
 * input and output parameters, and
* an error parameter.*/
interface {
 Wait(in ClientId id,
 out Message topic,
 out BundleId dataId,
 error ResultCode result);
}

Single-line comments and multi-line comments can be used in an IDL description.

190

WaylandTypes.idl

// Package contains only definitions of data types.
package kl.WaylandTypes
typedef UInt32 ClientId;
typedef bytes<8192> Buffer;
typedef string<4096> ConnectionId;
typedef SInt32 SsizeT;
typedef UInt32 SizeT;
typedef SInt32 ShmFd;
typedef SInt32 ShmId;
typedef bytes<16384000> ShmBuffer;

Primitive types

const UInt32 DeviceNameMax = 64;
const UInt32 HandleTypeUserLast = 0x0001FFFF;

IDL data types

IDL supports the following primitive types:

SInt8, SInt16, SInt32, SInt64 (signed integer)

UInt8, UInt16, UInt32, UInt64 (unsigned integer)

Handle (value whose binary representation consists of multiple �elds, including a handle �eld and a handle
permissions mask �eld)

bytes< size in bytes > (byte bu�er)

string< size in bytes > (string bu�er)

< >

< >

A byte bu�er is a memory area with a size that does not exceed the de�ned number of bytes. A string bu�er is a
byte bu�er whose last byte is a terminating zero. The maximum size of a string bu�er is a unit larger than the
de�ned size due to the additional byte with the terminating zero. To transfer a byte bu�er or string bu�er via IPC,
the amount of memory that is actually occupied by this bu�er will be used.

For numeric types, you can declare named constants by using the reserved word const:

Constants are used to avoid problems associated with "magic numbers". For example, if an IDL description de�nes
constants for return codes of an interface method, you can interpret these codes without additional information
when describing a policy.

In addition to primitive types, the IDL language supports composite types, such as unions, structures, arrays and
sequences. In a de�nition of composite types, constants of primitive types may be applied as parameters (for
example, to assign an array size).

191

Unions

union type name {
 member type member name ;
...
}

union ExitInfo {
 UInt32 code;
 ExceptionInfo exc;
}

Structures

struct type name {
 field type field name ;
...
}

struct SessionEvqParams {
 UInt32 count;
 UInt32 align;
 UInt32 size;
}

Arrays

array< type of elements, number of elements >

The bytes< size in bytes > and string< size in bytes > constructs are used in de�nitions of
composite types, signatures of interface methods, and when creating type aliases because they de�ne
anonymous types (types without a name).

< > < >

A union lets you store di�erent types of data in one memory area. In an IPC message, a union is provided with an
additional tag �eld that lets you de�ne which speci�c member of the union is used.

The following construct is used to de�ne a union:

< >
< > < >

Example of a union de�nition:

The following construct is used to de�ne a structure:

< >
< > < >

Example of a structure de�nition:

The following construct is used to de�ne an array:

< >

192

Sequences

sequence< type of elements, number of elements >

Types based on composite types

struct BazInfo {
 array<UInt8, 100> a;
 sequence<sequence<UInt32, 100>, 200> b;
 string<100> c;
 bytes<4096> d;
 UInt64 e;
}

union foo {
 UInt32 value1;
 UInt8 value2;
}

struct bar {
 UInt32 a;
 UInt8 b;
}

struct BazInfo {
 foo x;
 bar y;
}

Creating aliases of types

This construct is used in de�nitions of other composite types, signatures of interface methods, and when creating
type aliases because it de�nes an anonymous type.

A sequence is a variable-sized array. When de�ning a sequence, its maximum number of elements is speci�ed.
However, you can actually transmit less than this number (via IPC). In this case, only an amount of memory
necessary for the transmitted elements will be used.

The following construct is used to de�ne a sequence:

< >

This construct is used in de�nitions of other composite types, signatures of interface methods, and when creating
type aliases because it de�nes an anonymous type.

Composite types can be used to de�ne other composite types. The de�nition of an array or sequence can also be
included in the de�nition of another type:

The de�nition of a union or structure cannot be included in the de�nition of another type. However, a previously
described de�nition of a union or structure can be included in a type de�nition. This is done by indicating the
names of the included types in the type de�nition:

193

typedef type name/anonymous type definition type alias

typedef UInt64 ApplicationId;
typedef Handle PortHandle;

typedef array<UInt8, 4> IP4;

const UInt32 MaxDevices = 8;
struct Device {
 string<32> DeviceName;
 UInt8 DeviceID;
}
typedef sequence<Device, MaxDevices> Devices;

union foo {
 UInt32 value1;
 UInt8 value2;
}

typedef foo bar;

De�ning anonymous types in signatures of interface methods

 Poll(in Generation generation,
 in UInt32 timeout,
 out Generation currentGeneration,
 out sequence<Report, DeviceMax> report,
 out UInt32 count,
 out UInt32 rc);

Type aliases make it more convenient to work with types. For example, type aliases can be used to assign
mnemonic names to types that have abstract names. Assigned aliases for anonymous types also let you receive
named types.

The following construct is used to create a type alias:

< > < >

Example of creating mnemonic aliases:

Example of creating an alias for an array de�nition:

Example of creating an alias for a sequence de�nition:

Example of creating an alias for a union de�nition:

Anonymous types can be de�ned in signatures of interface methods.

Example of de�ning a sequence in an interface method signature:

194

The top-level �le is normally named security.psl, but it can have any other name in the *.psl format.

Describing a security policy for a KasperskyOS-based solution

A KasperskyOS-based solution security policy description (hereinafter also referred to as a solution security policy
description or policy description) provides a set of interrelated text �les with the psl extension that contain
declarations in the PSL language. Some �les reference other �les through an inclusion declaration, which results in
a hierarchy of �les with one top-level �le. The top-level �le is speci�c to the solution. Files of lower and
intermediate levels contain parts of the solution security policy description that may be speci�c to the solution or
may be re-used in other solutions.

Some of the �les of the lower and intermediate levels are provided in the KasperskyOS SDK. These �les contain
de�nitions of the basic data types and formal descriptions of KasperskyOS security models. KasperskyOS
security models (hereinafter referred to as security models) serve as the framework for implementing security
policies for KasperskyOS-based solutions. Files containing formal descriptions of security models reference a �le
containing de�nitions of the basic data types that are used in the descriptions of models.

The other �les of lower and intermediate levels are created by the policy description developer if any parts of the
policy description need to be re-used in other solutions. A policy description developer can also put parts of the
policy description into separate �les for convenient editing.

The top-level �le references �les containing de�nitions of basic data types and descriptions of security models
that are applied in the part of the solution security policy that is described in this �le. The top-level �le also
references all �les of the lower and intermediate levels that were created by the policy description developer.

General information about a KasperskyOS-based solution security policy
description

In simpli�ed terms, a KasperskyOS-based solution security policy description consists of bindings that associate
descriptions of security events with calls of methods provided by security model objects. A security model object
is an instance of a class whose de�nition is a formal description of a security model (in a PSL �le). Formal
descriptions of security models contain signatures of methods of security models that determine the
permissibility of interactions between di�erent processes and between processes and the KasperskyOS kernel.
These methods are divided into two types:

Security model rules are methods of security models that return a "granted" or "denied" result. Security model
rules can change security contexts (for information about a security context, see "Resource Access Control").

Security model expressions are methods of security models that return values that can be used as input data
for other methods of security models.

A security model object provides methods that are speci�c to one security model and stores the parameters used
by these methods (for example, the initial state of a �nite-state machine or the size of a container for speci�c
data). The same object can be used to work with multiple resources. (In other words, you do not need to create a
separate object for each resource.) However, this object will independently use the security contexts of these
resources. Likewise, multiple objects of one or more di�erent security models can be used to work with the same
resource. In this case, di�erent objects will use the security context of the same resource without any reciprocal
in�uence.

195

Security models

Security event handling by the Kaspersky Security Module

Security events serve as signals indicating the initiation of interaction between di�erent processes and between
processes and the KasperskyOS kernel. Security events include the following events:

Clients send IPC requests.

Servers or the kernel send IPC responses.

The kernel or processes initialize the startup of processes.

The kernel starts.

Processes query the Kaspersky Security Module via the security interface.

Security events are processed by the security module.

The KasperskyOS SDK provides PSL �les that describe the following security models:

Base – methods that implement basic logic.

Pred – methods that implement comparison operations.

Bool – methods that implement logical operations.

Math – methods that implement integer arithmetic operations.

Struct – methods that provide access to structural data elements (for example, access to parameters of
interface methods transmitted in IPC messages).

Regex – methods for text data validation based on regular expressions.

HashSet – methods for working with one-dimensional tables associated with resources.

StaticMap – methods for working with two-dimensional "key–value" tables associated with resources.

Flow – methods for working with �nite-state machines associated with resources.

Mic – methods for implementing Mandatory Integrity Control (MIC).

The Kaspersky Security Module calls all methods (rules and expressions) of security models related to an occurring
security event. If all rules returned the "granted" result, the security module returns the "granted" decision. If even
one rule returned the "denied" result, the security module returns the "denied" decision.

If even one method related to an occurring security event cannot be correctly performed, the security module
returns the "denied" decision.

If no rule is related to an occurring security event, the security module returns the "denied" decision. In other words,
all interactions between solution components and between those components and the KasperskyOS kernel are
denied by default (Default Deny principle) unless those interactions are explicitly allowed by the solution security
policy.

196

Security audit

Basic rules

1. Declarations can be listed in any sequence in a �le.

2. One declaration can be written to one or multiple lines. The second and subsequent lines of the declaration
must be written with indentations relative to the �rst line. The closing brace that completes the declaration can
be written on the �rst line.

3. A multi-line declaration utilizes di�erent-sized indentations to re�ect the nesting of constructs comprising this
declaration. The second and subsequent lines of a multi-line construct enclosed in braces must be written with
an indentation relative to the �rst line of this construct. The closing brace of a multi-line construct can be
written with an indentation or on the �rst line of the construct.

4. The PSL language is case sensitive.

5. Single-line comments and multi-line comments are supported:

/* This is a comment
 * And this, too */
// Another comment

Types of declarations

A security audit (hereinafter also referred to as an audit) is the following sequence of actions. The Kaspersky
Security Module noti�es the KasperskyOS kernel about decisions made by this module. Then the kernel forwards
this data to the system program Klog, which decodes this data and forwards it to the system program
KlogStorage (data is transmitted via IPC). The latter prints the received data via standard output or saves it to a
�le.

Security audit data (hereinafter referred to as audit data) refers to information about decisions made by the
Kaspersky Security Module, which includes the actual decisions ("granted" or "denied"), descriptions of security
events, results from calling methods of security models, and data on incorrect IPC messages. Data on calls of
security model expressions is included in the audit data just like data on calls of security model rules.

PSL language syntax

The PSL language has declarations for the following purposes:

Describing the global parameters of a solution security policy

Including PSL �les

Including EDL �les

Creating security model objects

Binding methods of security models to security events

Describing security audit pro�les

197

use link to PSL file._

Describing solution security policy tests

Describing the global parameters of a KasperskyOS-based solution security
policy

Global parameters include the following parameters of a solution security policy:

Execute interface used by the KasperskyOS kernel when querying the Kaspersky Security Module to notify it
about kernel startup or about initiating the startup of a process by the kernel or by other processes. To assign
this interface, use the following declaration:

execute: kl.core.Execute

KasperskyOS currently supports only one execute interface (Execute) de�ned in the �le named
kl/core/Execute.idl. (This interface consists of one main method, which has no parameters and does not
perform any actions. The main method is reserved for potential future use.)

[Optional] Global security audit pro�le and initial security audit runtime-level. To de�ne these parameters, use
the following declaration:

audit default = security audit profile name security audit runtime-level

Example:

audit default = global 0

The default global pro�le is the empty security audit pro�le described in the �le named
toolchain/include/nk/base.psl from the KasperskyOS SDK, and the default security audit runtime-level
is 0.

< > < >

Including PSL �les

To include a PSL �le, use the following declaration:

< >

The link to the PSL �le is the �le path (without the extension and dot before it) relative to the directory that is
included in the set of directories where the nk-psl-gen-c compiler searches for PSL, IDL, CDL, and EDL �les.
(This set of directories is de�ned by the parameters -I path to files when starting the makekss script or
the nk-psl-gen-c compiler.) A dot is used as a separator in a path description. A declaration is ended by the ._
character sequence.

< >

Example:

198

use policy_parts.flow_part._

Including a PSL �le containing a formal description of a security model

/* Include the base.psl file containing a formal description of the
 * Base security model */
use nk.base._

/* Include the flow.psl file containing a formal description of the
 * Flow security model */
use nk.flow._
/* The nk-psl-gen-c compiler must be configured to search for
 * PSL, IDL, CDL, and EDL files in the toolchain/include directory. */

use EDL kl.core.Core

use EDL link to EDL file

/* Include the UART.edl file, which is located
 * in the KasperskyOS SDK at the path sysroot-*-kos/include/kl/drivers. */

This declaration includes the flow_part.psl �le, which is located in the policy_parts directory. The
policy_parts directory must reside in one of the directories where the nk-psl-gen-c compiler searches for
PSL, IDL, CDL, and EDL �les. For example, the policy_parts directory may reside in the same directory as the
PSL �le containing this declaration.

To use the methods of a required security model, you need to include a PSL �le containing a formal description of
this model. PSL �les containing formal descriptions of security models are located in the KasperskyOS SDK at the
following path:

toolchain/include/nk

Example:

Including EDL �les

To include an EDL �le for the KasperskyOS kernel, use the following declaration:

To include an EDL �le for a program (such as a driver or application), use the following declaration:

< >

The link to the EDL �le is the EDL �le path (without the extension and dot before it) relative to the directory that is
included in the set of directories where the nk-psl-gen-c compiler searches for PSL, IDL, CDL, and EDL �les.
(This set of directories is de�ned by the parameters -I path to files when starting the makekss script or
the nk-psl-gen-c compiler.) A dot is used as a separator in a path description.

< >

Example:

199

use EDL kl.drivers.UART
/* The nk-psl-gen-c compiler must be configured to search for
 * PSL, IDL, CDL, and EDL files in the sysroot-*-kos/include directory. */

policy object security model object name : security model name {
 security model object parameters
}

security event type security event selectors {
 security audit profile
 called security model rules
}

The nk-psl-gen-c compiler �nds IDL and CDL �les via EDL �les because EDL �les contain links to the
corresponding CDL �les, and the CDL �les contain links to the corresponding CDL and IDL �les.

Creating security model objects

To call the methods of a required security model, create an object for this security model.

To create a security model object, use the following declaration:

< >
[]

The parameters of a security model object are speci�c to the security model. A description of parameters and
examples of creating objects of various security models are provided in the "KasperskyOS security models"
section.

Binding methods of security models to security events

To create an attachment between methods of security models and a security event, use the following declaration:

< > []
[]
< >

Security event type

The following speci�ers are used to de�ne the security event type:

request – sending IPC requests.

response – sending IPC responses.

error – sending IPC responses containing information about errors.

security – processes querying the Kaspersky Security Module via the security interface.

execute – initializing the startups of processes or the startup of the KasperskyOS kernel.

200

When processes interact with the security module, they use a mechanism that is di�erent from IPC.
However, when describing a policy, queries sent by processes to the security module can be viewed as the
transfer of IPC messages because processes actually transmit messages to the security module (the
recipient is not indicated in these messages).
The IPC mechanism is not used to start processes. However, when the startup of a process is initiated, the
kernel queries the security module and provides information about the initiator of the startup and the
started process. For this reason, the policy description developer can consider the startup of a process to
be analogous to sending an IPC message from the startup initiator to the started process. When the kernel
is started, this is analogous to the kernel sending an IPC message to itself.

Security event selectors

Security event selectors let you clarify the description of the de�ned type of security event. The following
selectors are used:

src= kernel/process class name – processes of the de�ned class or the KasperskyOS kernel are the
sources of IPC messages.

dst= kernel/process class name – processes of the de�ned class or the kernel are the recipients of IPC
messages.

interface= interface name – describes the following security events:

component= component name – describes the following security events:

endpoint= qualified endpoint name – describes the following security events:

method= method name – describes the following security events:

< >

< >

< >

Clients attempt to use the endpoints of servers or the kernel with the de�ned interface.

Processes query the Kaspersky Security Module via the de�ned security interface.

The kernel or servers send clients the results from using the endpoints with the de�ned interface.

< >

Clients attempt to use the core or server endpoints provided by the de�ned component.

The kernel or servers send clients the results from using the endpoints provided by the de�ned component.

< >

Clients attempt to use the de�ned core or server endpoints.

The kernel or servers send clients the results from using the de�ned endpoint.

< >

Clients attempt to query servers or the kernel by calling the de�ned method of the endpoint.

Processes query the security module by calling the de�ned method of the security interface.

The kernel or servers send clients the results from calling the de�ned method of the endpoint.

The kernel noti�es the security module about its startup by calling the de�ned method of the execute
interface.

The kernel initiates the startup of processes by calling the de�ned method of the execute interface.

201

The type and selectors of a security event make up the security event description. It is recommended to
describe security events with maximum precision to allow only the required interactions between di�erent
processes and between processes and the kernel. If IPC messages of the same type are always veri�ed
when processing the de�ned event, the description of this event is maximally precise.

Processes initiate the startup of other processes, which results in the kernel calling the de�ned method of
the execute interface.

Process classes, components, instances of components, interfaces, endpoints, and methods must be named the
same as they are in the IDL, CDL, and EDL descriptions. The kernel must be named kl.core.Core.

The quali�ed name of the endpoint has the format path to endpoint.endpoint name . The path to the
endpoint is a sequence of component instance names separated by dots. Among these component instances,
each subsequent component instance is embedded into the previous one, and the last one provides the endpoint
with the de�ned name.

< >

For security events, specify the quali�ed name of the security interface method if you need to use the security
interface de�ned in a CDL description. (If you need to use a security interface de�ned in an EDL description, it is
not necessary to specify the quali�ed name of the method.) The quali�ed name of a security interface method is a
construct in the format path to security interface.method name . The path to the security interface is a
sequence of component instance names separated by dots. Among these component instances, each
subsequent component instance is embedded into the previous one, and the last one supports the security
interface that includes the method with the de�ned name.

< >

If selectors are not speci�ed, the participants of a security event may be any process and the kernel (except
security events in which the kernel cannot participate).

You can use combinations of selectors. Selectors can be separated by commas.

There are restrictions on the use of selectors. The interface, component, and endpoint selectors cannot be
used for security events of the execute type. The dst, component, and endpoint selectors cannot be used for
security events of the security type.

There are also restrictions on combinations of selectors. For security events of the request, response and
error types, the method selector can only be used together with one of the endpoint, interface, or
component selectors or a combination of them. (The method, endpoint, interface and component selectors
must be coordinated. In other words, the method, endpoint, interface, and component must be interconnected.)
For security events of the request type, the endpoint selector can be used only together with the dst selector.
For security events of the response and error types, the endpoint selector can be used only together with the
src selector.

To ensure that IPC messages of the same type correspond to a security event description, one of the following
conditions must be ful�lled for this description:

For events of the request, response and error type, the "interface method-endpoint-server class or kernel"
chain is unequivocally de�ned. For example, the security event description request dst=Server
endpoint=net.Net method=Send corresponds to IPC messages of the same type, and the security event
description request dst=Server corresponds to any IPC message sent to the Server.

For security events, the security interface method is speci�ed.

The execute-interface method is indicated for execute events.

There is currently support for only one �ctitious method of the main execute-interface. This method is used by
default, so it does not have to be de�ned through the method selector. This way, any description of an
execute security event corresponds to IPC messages of the same type.

202

security model object name. security model rule name parameter

security model object name. security model expression name parameter

For calls of some rules and expressions of security models, you can choose not to indicate the security
model object name, and you can use operators. For details about the methods of security models, see
KasperskyOS Security models.

Embedded constructs for binding methods of security models to security events

 match security event selectors {
 security audit profile
 called security model rules
 }

Security audit pro�le

A security audit pro�le is de�ned by the construct audit security audit profile name . If a security audit
pro�le is not de�ned, the global security audit pro�le is used.

< >

Called security model rules

Called security model rules are de�ned by a list from the following type of constructs:

[]< > < >

Input data for security model rules may be values returned by security model expressions. The following construct
is used to call a security model expression:

[]< > < >

Parameters of interface methods can also be used as input data for methods of security models (rules and
expressions). (For details about obtaining access to parameters of interface methods, see "Struct security
model"). In addition, input data for methods of security models can also be the SID values of processes and the
KasperskyOS kernel that are de�ned by the src_sid and dst_sid reserved words. The �rst reserved word refers
to the SID of the process (or kernel) that is the source of the IPC message. The second reserved word refers to
the SID of the process (or kernel) that is the recipient of the IPC message (dst_sid cannot be used for queries to
the Kaspersky Security Module).

In one declaration, you can bind methods of security models to di�erent security events of the same type. To do
so, use the match sections that consist of the following types of constructs:

< >
[]
< >

Match sections can be embedded into another match section. A match section simultaneously uses its own
security event selectors and the security event selectors at the level of the declaration and all match sections in
which this match section is "wrapped". By default, a match section applies the security audit pro�le of its own
container (match section of the preceding level or the declaration level), but you can de�ne a separate security
audit pro�le for the match section.

In one declaration, you can de�ne di�erent variants for processing a security event depending on the conditions in
which this event occurred (for example, depending on the state of the �nite-state machine associated with the
resource). To do so, use the conditional sections that are elements of the following construct:

203

 choice call of the security model expression that verifies fulfillment of
conditions {
 " condition 1 " : { // Conditional section 1
 security audit profile
 called security model rules
 }
 " condition 2 " : ... // Conditional section 2
 ...
 _ : ... // Conditional section, if no condition is fulfilled.
 }

You can verify the ful�llment of conditions in the choice construct only by using the expressions that are
specially intended for this purpose. Some security models contain these expressions (for more details, see
KasperskyOS Security models).

Examples of binding security model methods to security events

Regardless of whether or not audit pro�les are being used, audit data contains information about "denied"
decisions that were made by the Kaspersky Security Module when IPC messages were invalid and when
handling security events that are not associated with any security model rule.

audit profile security audit profile name =
 { security audit runtime-level :
 // Description of the security audit configuration
 { security model object name :
 { kss: security audit conditions linked to the results
 from calls of security model rules
 , security audit conditions specific to the security model

<
>

< > []
[]
< >

[]
< >

The choice construct can be used within a match section. A conditional section uses the security event selectors
and security audit pro�le of its own container, but you can de�ne a separate security audit pro�le for a conditional
section.

If multiple conditions described in the choice construct are simultaneously ful�lled when a security event is
processed, only the one conditional section corresponding to the �rst matching condition on the list is triggered.

See "Examples of binding security model methods to security events", "Example descriptions of basic security
policies for KasperskyOS-based solutions", and "KasperskyOS security models".

Describing security audit pro�les

To perform a security audit, you need to associate security model objects with security audit pro�le(s). A security
audit pro�le (hereinafter also referred to as an audit pro�le) combines security audit con�gurations (hereinafter
also referred to as audit con�gurations), each of which de�nes the security model objects covered by the audit,
and speci�es the conditions for conducting the audit. You can de�ne a global audit pro�le (for more details, see
"Describing the global parameters of a KasperskyOS-based solution security policy") and/or assign audit pro�le(s)
at the level of binding security model methods to security events, and/or assign audit pro�le(s) at the level of
match sections or choice sections (for more details, see "Binding methods of security models to security events").

To describe a security audit pro�le, use the following declaration:

< >
< >

< >
<

>
[]

204

 }
 , ...
 ...
 }
 , ...
 ...
 }

Security audit runtime-level

Name of the security model object

Information about the decisions of the Kaspersky Security Module contained in audit data includes the
overall decision of the security module as well as the results from calling individual methods of security
modules covered by the audit. To ensure that information about a security module decision is included in
audit data, at least one method called during security event handling must be covered by the audit.
The names of security model objects and the names of methods provided by these objects are included in
the audit data.

Security audit conditions

[]

[]

The security audit runtime-level (hereinafter referred to as the audit runtime-level) is a global parameter of a
solution security policy and consists of an unsigned integer that de�nes the active security audit con�guration.
(The word "runtime-level" here refers to the con�guration variant and does not necessarily involve a hierarchy.) The
audit runtime-level can be changed during operation of the Kaspersky Security Module. This is done by using a
specialized method of the Base security model that is called when processes query the security module via the
security interface (for more details, see "Base security model"). The initial audit runtime-level is assigned together
with the global audit pro�le (for more details, see "Describing the global parameters of a KasperskyOS-based
solution security policy"). An empty audit pro�le can be explicitly assigned as the global audit pro�le.

You can de�ne multiple audit con�gurations in an audit pro�le. In di�erent con�gurations, di�erent security model
objects can be covered by the audit and di�erent conditions for conducting the audit can be applied. Audit
con�gurations in a pro�le correspond to di�erent audit runtime-levels. If a pro�le does not have an audit
con�guration corresponding to the current audit runtime-level, the security module will activate the con�guration
that corresponds to the next-lowest audit runtime-level. If a pro�le does not have an audit con�guration for an
audit runtime-level equal to or less than the current level, the security module will not use this pro�le (in other
words, an audit will not be performed for this pro�le).

Audit runtime-levels can be used to regulate the level of detail of an audit, for example. The higher the audit
runtime-level, the higher the level of detail. The higher the level of detail, the more security model objects are
covered by the audit and/or the less restrictions are applied in the audit conditions.

Another example of applying audit runtime-levels is the capability to shift the audit from one subsystem to another
subsystem (for example, shift an audit related to drivers to an audit related to applications, or shift an audit related
to the network subsystem to an audit related to the graphic subsystem).

The security model object name is indicated so that the methods provided by this object can be covered by the
audit. These methods will be covered by the audit whenever they are called, provided that the conditions for
conducting the audit are observed.

Security audit conditions are de�ned separately for each object of a security model.

205

Security audit pro�le for a security audit route

Example descriptions of audit pro�les

assert " name of test set " {
// Constructs in PAL (Policy Assertion Language)
 setup { initial part of tests }
 sequence " test name " { main part of test }
 ...
 finally { final part of tests }
}

To de�ne the audit conditions related to the results from calling security model rules, use the following constructs:

["granted"] – the audit is performed if the rules return the "granted" result.

["denied"] – the audit is performed if the rules return the "denied" result.

["granted", "denied"] – the audit is performed if the rules return the "granted" or "denied" result.

[] – the audit is not performed, regardless of the result returned by the rules.

Audit conditions related to results from calling rules are not applied to expressions. These conditions must be
de�ned (by any allowed construct) even if the security model contains only expressions because PSL language
syntax requires it.

Audit conditions speci�c to security models are de�ned by constructs speci�c to these models (for more details,
see KasperskyOS Security models). These conditions apply to rules and expressions. For example, one of these
conditions can be the state of a �nite-state machine.

A security audit route includes the kernel and the Klog and KlogStorage processes, which are connected by IPC
channels based on the "kernel – Klog – KlogStorage" scheme. Security model methods that are associated with
transmission of audit data via this route must not be covered by the audit. Otherwise, this will lead to an avalanche
of audit data because any data transmission will give rise to new data.

To "suppress" an audit that was de�ned by a pro�le with a wider scope (for example, by a global pro�le or a pro�le
at the level of binding security model methods to a security event), you need to assign an empty audit pro�le at
the level of binding security model methods to security events or at the level of the match section or choice
section.

See Example descriptions of security audit pro�les.

Describing and performing tests for a KasperskyOS-based solution security
policy

A solution security policy is tested to verify whether or not the policy actually allows what should be allowed and
denies what should be denied.

To describe a set of tests for a solution security policy, you need to use the following declaration:

< >

[< >]
< > < >

[< >]

You can describe multiple sets of tests by using several of these declarations.

206

After completing each test, all modi�cations in the Kaspersky Security Module related to the execution of
this test are rolled back.

Test cases

expected decision of security module "test example name" security event type
security event selectors {interface method parameter values}

variable name <- execute dst= kernel/process class name ...

The test set description can optionally include the initial part of the tests and/or the �nal part of the tests. The
execution of each test from the set begins with whatever is described in the initial part of the test and ends with
whatever is described in the �nal part of the test. This lets you describe the repeated initial and/or �nal parts of
tests in each test.

Each test includes one or more test cases.

A test case associates a security event description and values of interface method parameters with an expected
decision of the Kaspersky Security Module. If the actual security module decision matches the expected decision,
the test case passes. Otherwise it fails.

When a test is run, the test cases are executed in the same sequence in which they are described. In other words,
you can test how the security module handles a sequence of security events.

If all test cases within a test pass, the test passes. If even one test case fails to pass, the test fails. A test is
terminated on the �rst failing test case.

A test case description is created in the PAL language and is comprised of a sequence of values:

[] [] < >
< > []

The expected decision of the security module can be indicated as grant ("granted"), deny ("denied") or any ("any
decision"). If the expected security module decision is not speci�ed, the "granted" decision is expected. If the any
value is speci�ed, the security module decision does not have any in�uence on whether or not the test case
passes. In this case, the test case may fail due to errors that occur when the security module processes an IPC
message (for example, when the IPC message has an invalid structure).

For information about the types and selectors of security events, and about the limitations when using selectors,
see Binding methods of security models to security events. Selectors must ensure that the security event
description corresponds to IPC messages of the same type. (When security model methods are bound to security
events, selectors may fail to ensure this.)

In security event descriptions, you need to specify the SID instead of the process class name (and the
KasperskyOS kernel). However, this requirement does not apply to execute events for which the SID of the
started process (or kernel) is unknown. To save the SID of the process or kernel to a variable, you need to use the
<- operator in the test case description in the following format:

< > < >

The SID value will be assigned to the variable even if startup of the process of the de�ned class (or kernel) is
denied by the tested policy but the "denied" decision is expected.

The PAL language supports abbreviated forms of security event descriptions:

207

parameter name : value

{ param1 : 23, param2 : "bar", param3: { collection : [5,7,12], filehandle : 15 },
param4 : { name : ["foo", "baz" } }

Currently, only an SID can be indicated as the value of a Handle parameter, and there is no capability to
indicate the SID together with a handle permissions mask. For this reason, it is not possible to properly test a
solution security policy when the permissions masks of handles in�uence the security module decisions.

Example descriptions of policy tests

Test procedure

$ nk-psl-gen-c --tests run other parameters security.psl

security: Process SID ! qualified name of security interface method corresponds to
security src= process SID method= qualified name of security interface method .

request: client SID ~> kernel/server SID : qualified name of endpoint.method name
corresponds to request src= client SID dst= kernel/server SID endpoint=
qualified name of endpoint method= method name .

response: client SID <~ kernel/server SID : qualified name of endpoint.method name
corresponds to response src= kernel/server SID dst= client SID endpoint=
qualified name of endpoint method= method name .

< > < >
< > < >

< > < > < >
< > < >

< > < >

< > < > < >
< > < >

< > < >

If an interface method has parameters, their values are de�ned by comma-separated constructs:

< > < >

The names and types of parameters must comply with the IDL description. The sequence order of parameters is
not important.

Example de�nition of parameter values

In this example, the number is passed through the param1 parameter. The string bu�er is passed through the
param2 parameter. A structure consisting of two �elds is passed through the param3 parameter. The
collection �eld contains an array or sequence of three numeric elements. The filehandle �eld contains the
SID. A union or structure containing one �eld is passed through the param4 parameter. The name �eld contains an
array or sequence of two string bu�ers.

See "Example descriptions of tests for KasperskyOS-based solution security policies".

Descriptions of tests are placed into PSL �les, including those that contain a solution security policy description
(for example, into the security.psl �le).

To run tests, you need to use the --tests run parameter when starting the nk-psl-gen-c compiler:

< >

You also need to indicate the following data for the nk-psl-gen-c compiler:

208

PAL test run

Execute (1/2)

* Happy path: FAIL
 Step 2/2: ExpectGrant Execute "This should not fail"
 component/secure_platform/kss/nk/psl/nk-psl-gen-
c/tests/examples/include/router.psl:38:5-40:3
* No rule: PASS

IPC (2/2)

* Happy path: PASS
* No rule: PASS

Security (2/2)

* Happy path: PASS
* No rule: PASS

PSL data types

Designations of
types

Description of types

Directories that contain auxiliary �les from the KasperskyOS SDK (common, sysroot-*-kos/include,
toolchain/include). This set of directories is de�ned by the parameters -I, -include-
dir path to files .

Directories that contain PSL, IDL, CDL, and EDL �les related to the solution. This set of directories is de�ned by
the parameters -I, --include-dir path to files .

Path to the �le that will save the source code of the Kaspersky Security Module and tests. This path is de�ned
by the parameter -o, --output path to file .

< >

< >

< >

The nk-psl-gen-c compiler generates the source code of the security module and tests in the C language, saves
this code to a �le, and then runs the compilation of this code using gcc and executes the obtained test program.
The test program is run in an environment where the KasperskyOS SDK is installed (on a computer running a Linux
operating system). It does not utilize the KasperskyOS kernel, system software or applications of the solution.

To generate the source code of the security module and tests without compiling it, you need to use the --tests
generate parameter when starting the nk-psl-gen-c compiler.

Test results are printed to the console. To print the test results to a �le, you need to use the --test-output
path to file parameter when starting the nk-psl-gen-c compiler.< >

Example test results:

The test results contain information about whether or not each test passed or failed. If a test failed, the results
indicate which test case from the speci�c test did not pass, and provide the location of the description of the
failed test case in the PSL �le.

PSL data types

The data types supported in the PSL language are presented in the table below.

209

UInt8 , UInt16 ,
UInt32 , UInt64

Unsigned integer

SInt8 , SInt16 ,
SInt32 , SInt64

Signed integer

Boolean
Boolean type

The Boolean type includes two values: true and false .

Text Text type

()

Unit type

The Unit type includes one immutable value. It is used as a stub value in cases when
PSL language syntax requires certain data formulation but this data is not actually
required. For example, the Unit type can be used to declare a method that does not
have any parameters (similar to how the void type is used in C/C++).

Text literal

A text literal includes one immutable text value.

Example de�nitions of text literals:

""

"granted"

Integer literal

An integer literal includes one immutable integer value.

Example de�nitions of integer literals:

12

-5

0xFFFF

Variant type

A variant type combines two or more types and may perform the role of either of them.

Examples of de�nitions of variant types:

Boolean | ()

UInt8 | UInt16 | UInt32 | UInt64

"granted" | "denied"

{ field name
: field type

, ...

...

}

Dictionary

A dictionary consists of one or more types of �elds. A dictionary can be empty.

Examples of dictionary de�nitions:

{}

{ handle : Handle

, rights : UInt32

}

[type ,
...]

Tuple

A tuple consists of �elds of one or more types in the order in which the types are listed.
A tuple can be empty.

Examples of tuple de�nitions:

[]

["granted"]

" type "[]

type< >

type 1 | type
2 | ...
<

> []

[
]

[]

[] []

210

[Boolean, Boolean]

Set< type of
elements >

Set

A set includes zero or more unique elements of the same type.

Examples of set de�nitions:

Set<"granted" | "denied">

Set<Text>

List< type of
elements >

List

A list includes zero or more elements of the same type.

Examples of list de�nitions:

List<Boolean>

List<Text | ()>

Map< key type,
value type >

Associative array

An associative array includes zero or more entries of the "key-value" type with unique
keys.

Example of de�ning an associative array:

Map<UInt32, UInt32>

Array< type of
elements,
number of
elements >

Array

An array includes a de�ned number of elements of the same type.

Example of de�ning an array:

Array<UInt8, 42>

Sequence< type
of elements,
number of
elements >

Sequence

A sequence includes from zero to the de�ned number of elements of the same type.

Example of de�ning a sequence:

Sequence<SInt64, 58>

Aliases of certain PSL types

Aliases and de�nitions of certain data types in PSL

Type alias Type de�nition

Unsigned
Unsigned integer

UInt8 | UInt16 | UInt32 | UInt64

Signed
Signed integer

SInt8 | SInt16 | SInt32 | SInt64

Number
Integer

Unsigned | Signed

ScalarLiteral
Scalar literal

() | Boolean | Number

Literal Literal

<
>

<
>

<
>

<

>

<

>

The nk/base.psl �le from the KasperskyOS SDK de�nes the data types that are used as the types of
parameters (or structural elements of parameters) and returned values for methods of various security models.
Aliases and de�nitions of these types are presented in the table below.

211

ScalarLiteral | Text

Sid
Type of security ID (SID)

UInt32

Handle
Type of security ID (SID)

Sid

HandleDesc

Dictionary containing �elds for the SID and handle permissions mask

{ handle : Handle

, rights : UInt32

}

Cases
Type of data received by expressions of security models called in the choice construct
for verifying ful�llment of conditions

List<Text | ()>

KSSAudit
Type of data de�ning the conditions for conducting the security audit

Set<"granted" | "denied">

Mapping IDL types to PSL types

Before analyzing examples, you need to become familiar with the Base security model.

Processing the initiation of process startups

/* The KasperskyOS kernel and any process

Data types of the IDL language are used to describe the parameters of interface methods. The input data for
security model methods have types from the PSL language. The set of data types in the IDL language di�ers from
the set of data types in the PSL language. Parameters of interface methods transmitted in IPC messages can be
used as input data for methods of security models, so the policy description developer needs to understand how
IDL types are mapped to PSL types.

Integer types of IDL are mapped to integer types of PSL and to variant types of PSL that combine these integer
types (including with other types). For example, signed integer types of IDL are mapped to the Signed type in PSL,
and integer types of IDL are mapped to the ScalarLiteral type in PSL.

The Handle type in IDL is mapped to the HandleDesc type in PSL.

Unions and structures of IDL are mapped to PSL dictionaries.

Arrays and sequences of IDL are mapped to arrays and sequences of PSL, respectively.

String bu�ers in IDL are mapped to the text type in PSL.

Byte bu�ers in IDL are not currently mapped to PSL types, so the data contained in byte bu�ers cannot be used
as inputs for security model methods.

Examples of binding security model methods to security events

212

 * in the solution is allowed to start any
 * process. */
execute { grant () }

/* The kernel is allowed to start a process
 * of the Einit class. */
execute src=kl.core.Core, dst=Einit { grant () }

/* An Einit-class process is allowed
 * to start any process in the solution. */
execute src=Einit { grant () }

Handling the startup of the KasperskyOS kernel

/* The KasperskyOS kernel is allowed to start.
 * (This binding is necessary so that the security
 * module can be notified of the kernel SID. The kernel starts irrespective
 * of whether this is allowed by the solution security policy
 * or denied. If the solution security policy denies the
 * startup of the kernel, after startup the kernel will terminate its
 * execution.) */
execute src=kl.core.Core, dst=kl.core.Core { grant () }

Handling IPC request forwarding

/* Any client in the solution is allowed to query
 * any server and the KasperskyOS kernel. */
request { grant () }

/* A client of the Client class is allowed to query
 * any server in the solution and the kernel. */
request src=Client { grant () }

/* Any client in the solution is allowed to query
 * a server of the Server class. */
request dst=Server { grant () }

/* A client of the Client class is not allowed to
 * query a server of the Server class. */
request src=Client dst=Server { deny () }

/* A client of the Client class is allowed to
 * query a server of the Server class
 * by calling the Ping method of the net.Net endpoint. */
request src=Client dst=Server endpoint=net.Net method=Ping {
 grant ()
}

/* Any client in the solution is allowed to query
 * a server of the Server class by calling the Send method
 * of the endpoint with the MessExch interface. */
request dst=Server interface=MessExch method=Send {
 grant ()

213

}

Handling IPC response forwarding

/* A server of the Server class is allowed to respond to
 * queries of a Client-class client that
 * calls the Ping method of the net.Net endpoint. */
response src=Server, dst=Client, endpoint=net.Net, method=Ping {
 grant ()
}

/* The server containing the kl.drivers.KIDF component
 * that provide endpoints with the monitor interface is allowed to
 * respond to queries of a DriverManager-class client
 * that uses these endpoints. */
response dst=DriverManager component=kl.drivers.KIDF interface=monitor {
 grant ()
}

Handling the transmission of IPC responses containing error information

/* A server of the Server class is not allowed to notify a client
 * of the Client class regarding errors that occur
 * when the client queries the server by calling the
 * Ping method of the net.Net endpoint. */
error src=Server, dst=Client, endpoint=net.Net, method=Ping {
 deny ()
}

Handling queries sent by processes to the Kaspersky Security Module

/* A process of the Sdcard class will receive the
 * "granted" decision from the Kaspersky Security Module
 /* by calling the Register method of the security interface.
 * (Using the security interface defined
 * in the EDL description.) */
security src=Sdcard, method=Register {
 grant ()
}

/* A process of the Sdcard class will receive the "denied" decision
 * from the security module when calling the Comp.Register method
 * of the security interface. (Using the security interface
 * defined in the CDL description.) */
security src=Sdcard, method=Comp.Register {
 deny ()
}

214

Using match sections

/* A client of the Client class is allowed to query
 * a server of the Server class by calling the Send
 * and Receive methods of the net endpoint. */
request src=Client, dst=Server, endpoint=net {
 match method=Send { grant () }
 match method=Receive { grant () }
}

/* A client of the Client class is allowed to query
 * a server of the Server class by calling the Send
 * and Receive methods of the sn.Net endpoint and the Write and
 * Read methods of the sn.Storage endpoint. */
request src=Client, dst=Server {
 match endpoint=sn.Net {
 match method=Send { grant () }
 match method=Receive { grant () }
 }
 match endpoint=sn.Storage {
 match method=Write { grant () }
 match method=Read { grant () }
 }
}

Assigning audit pro�les

/* Assigning the default global audit profile
 * and initial audit runtime-level of 0 */
audit default = global 0
request src=Client, dst=Server {
 /* Assigning a parent audit profile at the level of
 * binding methods of security models to
 * security events */
 audit parent
 match endpoint=net.Net, method=Send {
 /* Assigning a child audit profile at the
 * match section level */
 audit child
 grant ()
 }
 /* This match section applies a
 * parent audit profile. */
 match endpoint=net.Net, method=Receive {
 grant ()
 }
}
/* This binding of the security model method
 * to the security event utilizes the
 * global audit profile. */
response src=Client, dst=Server {
 grant ()
}

215

Before analyzing examples, you need to become familiar with the Struct, Base and Flow security models.

Example 1

security.psl

execute: kl.core.Execute

use nk.base._
use EDL Einit
use EDL Client
use EDL Server
use EDL kl.core.Core

execute { grant () }

request { grant () }

response { grant () }

error { grant () }

security { grant () }

Example 2

security.psl

execute: kl.core.Execute

Example descriptions of basic security policies for KasperskyOS-based
solutions

The solution security policy in this example allows any interaction between di�erent processes of the Client,
Server and Einit classes, and between these processes and the KasperskyOS kernel. The "granted" decision will
always be received when these processes query the Kaspersky Security Module. This policy can be used only as a
stub during the early stages of development of a KasperskyOS-based solution so that the Kaspersky Security
Module does not interfere with interactions. It would be unacceptable to apply such a policy in a real-world
KasperskyOS-based solution.

The solution security policy in this example imposes limitations on queries sent from clients of the FsClient class
to servers of the FsDriver class. When a client opens a resource controlled by a server of the FsDriver class, a
�nite-state machine in the unverified state is associated with this resource. A client of the FsClient class is
allowed to read data from a resource controlled by a server of the FsDriver class only if the �nite-state machine
associated with this resource is in the verified state. To switch a resource-associated �nite-state machine from
the unverified state to the verified state, a process of the FsVerifier class needs to query the Kaspersky
Security Module.

In a real-world KasperskyOS-based solution, this policy cannot be applied because it allows an excessive variety of
interactions between di�erent processes and between processes and the KasperskyOS kernel.

216

use nk.base._
use nk.flow._
use nk.basic._

policy object file_state : Flow {
 type States = "unverified" | "verified"
 config = {
 states : ["unverified" , "verified"],
 initial : "unverified",
 transitions : {
 "unverified" : ["verified"],
 "verified" : []
 }
 }
}

execute { grant () }

request { grant () }

response { grant () }

use EDL kl.core.Core
use EDL Einit
use EDL FsClient
use EDL FsDriver
use EDL FsVerifier

response src=FsDriver, endpoint=operationsComp.operationsImpl, method=Open {
 file_state.init {sid: message.handle.handle}
}

request src=FsClient, dst=FsDriver, endpoint=operationsComp.operationsImpl,
method=Read {
 file_state.allow {sid: message.handle.handle, states: ["verified"]}
}

security src=FsVerifier, method=Approve {
 file_state.enter {sid: message.handle.handle, state: "verified"}
}

Before analyzing examples, you need to become familiar with the Base, Regex and Flow security models.

Example 1

// Describing a trace security audit profile
// base – Base security model object
// session – Flow security model object
audit profile trace =
/* If the audit runtime-level is equal to 0, the audit covers

Example descriptions of security audit pro�les

217

 * base object rules when these rules return
 * the "denied" result. */
 { 0 :
 { base :
 { kss : ["denied"]
 }
 }
/* If the audit runtime-level is equal to 1, the audit covers methods
 * of the session object in the following cases:
 * 1. Rules of the session object return a "granted"
 * or "denied" result, and the finite-state machine is in a state
 * other than closed.
 * 2. A query expression of the session object is called, and the
 * finite-state machine is in a state other than closed. */
 , 1 :
 { session :
 { kss : ["granted", "denied"]
 , omit : ["closed"]
 }
 }
/* If the audit runtime-level is equal to 2, the audit covers methods
 * of the session object in the following cases:
 * 1. Rules of the session object return a "granted"
 * or "denied" result.
 * 2. A query expression of the session object is called. */
 , 2 :
 { session :
 { kss : ["granted", "denied"]
 }
 }
 }

Example 2

// Describing a test security audit profile
// base – Base security model object
// re – Regex security model object
audit profile test =
/* If the audit runtime-level is equal to 0, rules of the base object
 * and expressions of the re object are not covered by the audit. */
 { 0 :
 { base :
 { kss : []
 }
 , re :
 { kss : []
 , emit : []
 }
 }
/* If the audit runtime-level is equal to 1, rules of the
 * base object are not covered by the audit, and expressions of the
 * re object are covered by the audit.*/
 , 1 :
 { base :
 { kss : []
 }

218

 , re :
 { kss : []
 , emit : ["match", "select"]
 }
 }
/* If the audit runtime-level is equal to 2, rules of the base object
 * and expressions of the re object are covered by the audit. Rules
 * of the base object are covered by the audit irrespective of the
 * result that they return.*/
 , 2 :
 { base :
 { kss : ["granted", "denied"]
 }
 , re :
 { kss : []
 , emit : ["match", "select"]
 }
 }
 }

Example 1

/* Description of a test set that includes only one test. */
assert "some tests" {
 /* Description of a test that includes four test cases. */
 sequence "first sequence" {
 /* It is expected that startup of a Server-class process is allowed.
 * If this is true, the s variable will be assigned the SID value
 * of the started Server-class process. */
 s <- execute dst=Server
 /* It is expected that startup of a Client-class process is allowed.
 * If this is true, the c variable will be assigned the SID value
 * of the started Client-class process. */
 c <- execute dst=Client
 /* It is expected that a client of the Client class is allowed to query
 * a server of the Server class by calling the Ping method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 grant "Client calls Ping" request src=c dst=s endpoint=pingComp.pingImpl
 method=Ping { value : 100 }
 /* It is expected that a server of the Server class is not allowed to respond
to a client
 * of the Client class if the client calls the Ping method of the
pingComp.pingImpl endpoint.
 * (The IPC response does not contain any parameters because the Ping
interface method
 * has no output parameters.) */
 deny "Server cannot respond" response src=s dst=c endpoint=pingComp.pingImpl
 method=Ping {}
 }

Example descriptions of tests for KasperskyOS-based solution security
policies

219

}

Example 2

/* Description of a test set that includes two tests. */
assert "ping tests"{
 /* Initial part of each of the two tests */
 setup {
 s <- execute dst=Server
 c <- execute dst=Client
 }
/* Description of a test that includes two test cases. */
 sequence "ping-ping is denied" {
 /* It is expected that a client of the Client class is allowed to query
 * a server of the Server class by calling the Ping method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 c ~> s : pingComp.pingImpl.Ping { value : 100 }
 /* It is expected that a client of the Client class is not allowed to query
 * a server of the Server class by once again calling the Ping method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 deny c ~> s : pingComp.pingImpl.Ping { value : 100 }
 }
/* Description of a test that includes two test cases. */
 sequence "ping-pong is granted" {
 /* It is expected that a client of the Client class is allowed to query
 * a server of the Server class by calling the Ping method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 c ~> s : pingComp.pingImpl.Ping { value: 100 }
 /* It is expected that a client of the Client class is allowed to query
 * a server of the Server class by calling the Pong method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 c ~> s : pingComp.pingImpl.Pong { value: 100 }
 }
}

Example 3

/* Description of a test set that includes only one test. */
assert {
 /* Description of a test that includes eight test cases. */
 sequence {
 storage <− execute dst=test.kl.UpdateStorage
 manager <− execute dst=test.kl.UpdateManager
 deployer <− execute dst=test.kl.UpdateDeployer
 downloader <− execute dst=test.kl.UpdateDownloader
 grant manager ~>
 downloader:UpdateDownloader.Downloader.LoadPackage { url :
”url012345678” }
 grant response src=downloader dst=manager endpoint=UpdateDownloader.Downloader

220

 method=LoadPackage { handle : 29, result : 1 }
 deny manager ~> deployer:UpdateDeployer.Deployer.Start { handle : 29 }
 deny request src=manager dst=deployer endpoint=UpdateDeployer.Deployer
 method=Start { handle : 29 }
 }
}

Pred security model object

Pred security model methods

KasperskyOS Security models

Pred security model

The Pred security model lets you perform comparison operations.

A PSL �le containing a description of the Pred security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/basic.psl

The basic.psl �le contains a declaration that creates a Pred security model object named pred. Consequently,
inclusion of the basic.psl �le into the solution security policy description will create a Pred security model object
by default.

A Pred security model object does not have any parameters and cannot be covered by a security audit.

It is not necessary to create additional Pred security model objects.

A Pred security model contains expressions that perform comparison operations and return values of the
Boolean type. To call these expressions, use the following comparison operators:

ScalarLiteral == ScalarLiteral – "equals".

ScalarLiteral != ScalarLiteral – "does not equal".

Number < Number – "is less than".

Number <= Number – "is less than or equal to".

Number > Number – "is greater than".

Number >= Number – "is greater than or equal to".

< > < >

< > < >

< > < >

< > < >

< > < >

< > < >

221

pred.empty Text | Set | List | Map | ()

Bool security model object

Bool security model methods

bool.all List<Boolean>

The Pred security model also contains the empty expression that lets you determine whether data contains its
own structural elements. This expression returns values of the Boolean type. If data does not contain its own
structural elements (for example, a set is empty), the expression returns true, otherwise it returns false. To call
the expression, use the following construct:

< >

Bool security model

The Bool security model lets you perform logical operations.

A PSL �le containing a description of the Bool security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/basic.psl

The basic.psl �le contains a declaration that creates a Bool security model object named bool. Consequently,
inclusion of the basic.psl �le into the solution security policy description will create a Bool security model object
by default.

A Bool security model object does not have any parameters and cannot be covered by a security audit.

It is not necessary to create additional Bool security model objects.

The Bool security model contains expressions that perform logical operations and return values of the Boolean
type. To call these expressions, use the following logical operators:

! Boolean – "logical NOT".

Boolean && Boolean – "logical AND".

Boolean || Boolean – "logical OR".

Boolean ==> Boolean – "implication" (! Boolean || Boolean).

< >

< > < >

< > < >

< > < > < > < >

The Bool security model also contains the all, any and cond expressions.

The expression all performs a "logical AND" for an arbitrary number of values of Boolean type. It returns values
of the Boolean type. It returns true if an empty list of values ([]) is passed via the parameter. To call the
expression, use the following construct:

< >

222

bool.any List<Boolean>

bool.cond
 { if : Boolean // Condition
 , then : ScalarLiteral // Value returned when the condition is true
 , else : ScalarLiteral // Value returned when the condition is false
 }

Math security model object

Math security model methods

The expression any performs a "logical OR" for an arbitrary number of values of Boolean type. It returns values of
the Boolean type. It returns false if an empty list of values ([]) is passed via the parameter. To call the
expression, use the following construct:

< >

cond expression performs a ternary conditional operation. Returns values of the ScalarLiteral type. To call the
expression, use the following construct:

< >
< >
< >

In addition to expressions, the Bool security model includes the assert rule that works the same as the rule of the
same name included in the Base security model.

Math security model

The Math security model lets you perform integer arithmetic operations.

A PSL �le containing a description of the Math security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/basic.psl

The basic.psl �le contains a declaration that creates a Math security model object named math. Consequently,
inclusion of the basic.psl �le into the solution security policy description will create a Math security model
object by default.

A Math security model object does not have any parameters and cannot be covered by a security audit.

It is not necessary to create additional Math security model objects.

The Math security model contains expressions that perform integer arithmetic operations. To call a part of these
expressions, use the following arithmetic operators:

Number + Number – "addition". Returns values of the Number type.

Number - Number – "subtraction". Returns values of the Number type.

Number * Number – "multiplication". Returns values of the Number type.

< > < >

< > < >

< > < >

The other expressions are as follows:

223

math. expression name parameter

Struct security model object

Struct security model methods

neg Signed – "change number sign". Returns values of the Signed type.

abs Signed – "get module of number". Returns values of the Signed type.

sum List<Number> – "add numbers from list". Returns values of the Number type. It returns 0 if an empty
list of values ([]) is passed via the parameter.

product List<Number> – "multiply numbers from list". Returns values of the Number type. It returns 1 if an
empty list of values ([]) is passed via the parameter.

< >

< >

< >

< >

To call these expressions, use the following construct:

< > < >

Struct security model

The Struct security model lets you obtain access to structural data elements.

A PSL �le containing a description of the Struct security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/basic.psl

The basic.psl �le contains a declaration that creates a Struct security model object named struct.
Consequently, inclusion of the basic.psl �le into the solution security policy description will create a Struct
security model object by default.

A Struct security model object does not have any parameters and cannot be covered by a security audit.

It is not necessary to create additional Struct security model objects.

The Struct security model contains expressions that provide access to structural data elements. To call these
expressions, use the following constructs:

{...} . field name – "get access to dictionary �eld". the type of returned data corresponds to the type
of dictionary �eld.

List | Set | Sequence | Array .[element number] – "get access to data element". The type of
returned data corresponds to the type of elements. The numbering of elements starts with zero. When out of
bounds of dataset, the expression terminates with an error and the Kaspersky Security Module returns the
"denied" decision.

HandleDesc .handle – "get SID". Returns values of the Handle type. (For details on the correlation between
handles and SID values, see "Resource Access Control").

< > < >

< > < >

< >

224

message. interface method parameter name

To use expressions of the Struct security model, the security event description must be su�iciently precise
so that it corresponds to IPC messages of the same type (for more details, see "Binding methods of security
models to security events"). IPC messages of this type must contain the de�ned parameters of the interface
method, and the interface method parameters must contain the de�ned structural elements.

Base security model object

Base security model methods

HandleDesc .rights – "get handle permissions mask". Returns values of the UInt32 type.< >

Parameters of interface methods are saved in a special dictionary named message. To obtain access to an
interface method parameter, use the following construct:

< >

The parameter name is speci�ed in accordance with the IDL description.

To obtain access to structural elements of parameters, use the constructs corresponding to expressions of the
Struct security model.

Base security model

The Base security model lets you implement basic logic.

A PSL �le containing a description of the Base security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/base.psl

The base.psl �le contains a declaration that creates a Base security model object named base. Consequently,
inclusion of the base.psl �le into the solution security policy description will create a Base security model object
by default. Methods of this object can be called without indicating the object name.

A Base security model object does not have any parameters.

A Base security model object can be covered by a security audit. There are no audit conditions speci�c to the
Base security model.

It is necessary to create additional objects of the Base security model in the following cases:

You need to con�gure a security audit di�erently for di�erent objects of the Base security model (for example,
you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent objects).

You need to distinguish between calls of methods provided by di�erent objects of the Base security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

225

The Base security model contains the following rules:

grant ()

It has a parameter of the () type. It returns the "granted" result.

Example:

/* A client of the foo class is allowed
 * to query a server of the bar class. */
request src=foo dst=bar { grant () }

assert Boolean

It returns the "granted" result if the true value is passed via the parameter. Otherwise it returns the "denied"
result.

Example:

/* Any client in the solution will be allowed to query a server of the foo class
 * by calling the Send method of the net.Net endpoint if the port parameter
 * of the Send method will be used to pass a value greater than 80. Otherwise any
 * client in the solution will be prohibited from querying a server of the
 * foo class by calling the Send method of the net.Net endpoint. */
request dst=foo endpoint=net.Net method=Send { assert (message.port > 80) }

deny Boolean | ()

It returns the "denied" result if the true or () value is passed via the parameter. Otherwise it returns the
"granted" result.

Example:

/* A server of the foo class is not allowed to
 * respond to a client of the bar class. */
response src=foo dst=bar { deny () }

set_level UInt8

It sets the security audit runtime-level equal to the value passed via this parameter. It returns the "granted"
result. (For more details about the security audit runtime-level, see "Describing security audit pro�les".)

Example:

/* A process of the foo class will receive the "allowed" decision from the
 * Kaspersky Security Module if it calls the
 * SetAuditLevel security interface method to change the security audit runtime-
level. */
security src=foo method=SetAuditLevel { set_level (message.audit_level) }

< >

< >

< >

Regex security model

The Regex security model lets you implement text data validation based on statically de�ned regular expressions.

226

Regex security model object

Regex security model methods

A PSL �le containing a description of the Regex security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/regex.psl

The regex.psl �le contains a declaration that creates a Regex security model object named re. Consequently,
inclusion of the regex.psl �le into the solution security policy description will create a Regex security model
object by default.

A Regex security model object does not have any parameters.

A Regex security model object can be covered by a security audit. In this case, you also need to de�ne the audit
conditions speci�c to the Regex security model. To do so, use the following constructs in the audit con�guration
description:

emit : ["match"] – the audit is performed if the match method is called.

emit : ["select"] – the audit is performed if the select method is called.

emit : ["match", "select"] – the audit is performed if the match or select method is called.

emit : [] – the audit is not performed.

It is necessary to create additional objects of the Regex security model in the following cases:

You need to con�gure a security audit di�erently for di�erent objects of the Regex security model (for
example, you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent
objects).

You need to distinguish between calls of methods provided by di�erent objects of the Regex security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

The Regex security model contains the following expressions:

match {text : Text , pattern : Text }

Returns a value of the Boolean type. If the speci�ed text matches the pattern regular expression, it returns
true. Otherwise it returns false.

Example:

assert (re.match {text : message.text, pattern : "[0-9]*"})

select {text : Text }

It is intended to be used as an expression that veri�es ful�llment of the conditions in the choice construct (for
details on the choice construct, see "Binding methods of security models to security events"). It checks
whether the speci�ed text matches regular expressions. Depending on the results of this check, various
options for security event handling can be performed.

< > < >

< >

227

Syntax of regular expressions of the Regex security model

When writing a regular expression as a text literal, all backslash instances must be doubled.

// Regular expression within the multi-line regex block
{ pattern:
    ```regex
    Hello\ world\!
    ```
, text: "Hello world!"
}
// Regular expression as a text literal (doubled backslash)
{ pattern: "Hello\\ world\\!"
, text: "Hello world!"
}

Literals and metacharacters in regular expressions

Example:

choice (re.select {text : "hello world"}) {
 "hello\ .*": grant ()
 ".*world" : grant ()
 _ : deny ()
 }

A regular expression for the match method of the Regex security model can be written in two ways: within the
multi-line regex block or as a text literal.

For example, the following two regular expressions are identical:

Regular expressions for the select method of the Regex security model are written as text literals with a double
backslash.

A regular expression is de�ned as a template string and may contain the following:

Literals (ordinary characters)

Metacharacters (characters with special meanings)

White-space characters

Character sets

Character groups

Operators for working with characters

Regular expressions are case sensitive.

228

White-space characters in regular expressions

A literal can be any ASCII character except the metacharacters .()*&|!?+[]\ and a white-space character.
(Unicode characters are not supported.)

For example, the regular expression KasperskyOS corresponds to the text KasperskyOS.

Metacharacters have special meanings that are presented in the table below.

Special meanings of metacharacters

Metacharacter Special meaning

[] Square brackets (braces) denote the beginning and end of a set of characters.

() Round brackets (parentheses) denote the beginning and end of a group of characters.

* An asterisk denotes an operator indicating that the character preceding it can repeat
zero or more times.

+ A plus sign denotes an operator indicating that the character preceding it can repeat
one or more times.

? A question mark denotes an operator indicating that the character preceding it can
repeat zero or one time.

! An exclamation mark denotes an operator excluding the subsequent character from
the list of valid characters.

| A vertical line denotes an operator for selection between characters (logically close to
the "OR" conjunction).

& An ampersand denotes an operator for overlapping of multiple conditions (logically
close to the "AND" conjunction).

. A dot denotes any character.

For example, the regular expression K.S corresponds to the sequences of characters
KOS, KoS, KES and a multitude of other sequences consisting of three characters that
begin with K and end with S, and in which the second character can be any character:
literal, metacharacter, or dot.

\ \ metaSymbol

A backslash indicates that the metacharacter that follows it will lose its special
meaning and instead be interpreted as a literal. A backslash placed before a
metacharacter is known as an escape character.

For example, a regular expression that consists of a dot metacharacter (.)
corresponds to any character. However, a regular expression that consists of a
backslash with a dot (\.) corresponds to only a dot character.

Accordingly, a backslash also escapes another subsequent backslash. For example, the
regular expression C:\\Users corresponds to the sequence of characters C:\Users.

The ^ and $ characters are not used to designate the start and end of a line.

< >

A space character has an ASCII code of 20 in a hexadecimal number system and has an ASCII code of 40 in an
octal number system. Although a space character does not infer any special meaning, it must be escaped to
avoid any ambiguous interpretation by the regular expression interpreter.

For example, the regular expression Hello\ world corresponds to the sequence of characters Hello world.

\r

229

De�nition of a character based on its octal or hexadecimal code in regular expressions

Sets of characters in regular expressions

Carriage return character.

\n

Line break character.

\t

Horizontal tab character.

\x{ hex }

De�nition of a character using its hex code from the ASCII character table. The character code must be less
than 0x100.

For example, the regular expression Hello\x{20}world corresponds to the sequence of characters Hello
world.

\o{ octal }

De�nition of a character using its octal code from the ASCII character table. The character code must be less
than 0o400.

For example, the regular expression \o{75} corresponds to the = character.

< >

< >

A character set is de�ned within square brackets [] as a list or range of characters. A character set tells the
regular expression interpreter that only one of the characters listed in the set or range of characters can be at this
speci�c location in a sequence of characters. A character set cannot be left blank.

[BracketSpec] – character set.

One character corresponds to any character from the BracketSpec character set.

For example, the regular expression K[OE]S corresponds to the sequences of characters KOS and KES.

[^ BracketSpec] – inverted character set.

One character corresponds to any character that is not in the BracketSpec character set.

For example, the regular expression K[^OE]S corresponds to the sequences of characters KAS, K8S and any
other sequences consisting of three characters that begin with K and end with S, excluding KOS and KES.

< >

< >

The BracketSpec character set can be listed explicitly or can be de�ned as a range of characters. When de�ning
a range of characters, the �rst and last character in the set must be separated with a hyphen.

[Digit1 - DigitN]

Any number from the range Digit1, Digit2, ... ,DigitN.

For example, the regular expression [0-9] corresponds to any numerical digit. The regular expressions [0-9]
and [0123456789] are identical.

Please note that a range is de�ned by one character before a hyphen and one character after the hyphen. The
regular expression [1-35] corresponds only to the characters 1, 2, 3 and 5, and does not represent the range
of numbers from 1 to 35.

[Letter1 - LetterN]

Any English letter from the range Letter1, Letter2, ... , LetterN (these letters must be in the same case).

< > < >

< > < >

230

Groups of characters and operators in regular expressions

Operators are applied to more than one character in a regular expression only if they are immediately before
or after the de�nition of a set or group of characters. If this is the case, the operator is applied to the entire
group or set of characters.

For example, the regular expression [a-zA-Z] corresponds to all letters in uppercase and lowercase from the
ASCII character table.

The ASCII code for the upper boundary character of a range must be higher than the ASCII code for the lower
boundary character of the range.

For example, the regular expressions [5-2] or [z-a] are invalid.

The hyphen (minus) - character is interpreted as a special character only within a set of characters. Outside of a
character set, a hyphen is a literal. For this reason, the \ metacharacter does not have to precede a hyphen. To use
a hyphen as a literal within a character set, it must be indicated �rst or last in the set.

Examples:

The regular expressions [-az] and [az-] correspond to the characters a, z and -.

The regular expression [a-z] corresponds to any of the 26 English letters from a to z in lowercase.

The regular expression [-a-z] corresponds to any of the 26 English letters from a to z in lowercase and -.

The circum�ex (caret character) ^ is interpreted as a special character only within a character set when it is
located directly after an opening square bracket. Outside of a character set, a circum�ex is a literal. For this reason,
the \ metacharacter does not have to precede a circum�ex. To use a circum�ex as a literal within a character set, it
must be indicated in a location other than �rst in the set.

Examples:

The regular expression [0^9] correspond to the characters 0, 9 and ^.

The regular expression [^09] corresponds to any character except 0 and 9.

Within a character set, the metacharacters *.&|!?+ lose their special meaning and are instead interpreted as
literals. Therefore, they do not have to be preceded by the \ metacharacter. The backslash \ retains its special
meaning within a character set.

For example, the regular expressions [a.] and [a\.] are identical and correspond to the character a and a dot
interpreted as a literal.

A character group uses parentheses () to distinguish its portion (subexpression) within a regular expression.
Groups are normally used to allocate subexpressions as operands. Groups can be embedded into each other.

The syntax contains de�nitions of the following operators (listed in descending order of their priority):

! Expression , where Expression can be a character, set or group of characters.

This operator excludes the Expression from the list of valid expressions.

Examples:

< >

231

The regular expression K!OS corresponds to the sequences of characters KoS, KES, and a multitude of other
sequences that consist of three characters and begin with K and end with S, excluding KOS.

The regular expression K!(OS) corresponds to the sequences of characters Kos, KES, KOT, and a multitude of
other sequences that consist of three characters and begin with K, excluding KOS.

The regular expression K![OE]S corresponds to the sequences of characters KoS, KeS, K;S, and a multitude of
other sequences that consist of three characters and begin with K and end with S, excluding KOS and KES.

Expression *, where Expression can be a character, set or group of characters.

This operator means that the Expression may occur in the speci�c position zero or more times.

Examples:

The regular expression 0-9* corresponds to the sequences of characters 0-, 0-9, 0-99,

The regular expression (0-9)* corresponds to the empty sequence "" and the sequences of characters 0-9,
0-90-9,

The regular expression [0-9]* corresponds to the empty sequence "" and any non-empty sequence of
numbers.

Expression +, where Expression can be a character, set or group of characters.

This operator means that the Expression may occur in the speci�c position one or more times.

Examples:

The regular expression 0-9+ corresponds to the sequences of characters 0-9, 0-99, 0-999,

The regular expression (0-9)+ corresponds to the sequences of characters 0-9, 0-90-9,

The regular expression [0-9]+ corresponds to any non-empty sequence of numbers.

Expression ?, where Expression can be a character, set or group of characters.

This operator means that the Expression may occur in the speci�c position zero or one time.

Examples:

The regular expression https?:// corresponds to the sequences of characters http:// and https://.

The regular expression K(aspersky)?OS corresponds to the sequences of characters KOS and KasperskyOS.

Expression1 Expression2 – concatenation. Expression1 and Expression2 can be characters, sets or
groups of characters.

This operator does not have a speci�c designation. In the resulting expression, Expression2 follows
Expression1.

For example, concatenation of the sequences of characters micro and kernel will result in the sequence of
characters microkernel.

Expression1 | Expression2 – disjunction. Expression1 and Expression2 can be characters, sets or
groups of characters.

This operator selects either Expression1 or Expression2.

Examples:

The regular expression KO|ES corresponds to the sequences of characters KO and ES, but not KOS or KES
because the concatenation operator has a higher priority than the disjunction operator.

The regular expression Press (OK|Cancel) corresponds to the sequences of characters Press OK or Press
Cancel.

The regular expression [0-9]|() corresponds to numbers from 0 to 9 or an empty string.

Expression1 & Expression2 – conjunction. Expression1 and Expression2 can be characters, sets or
groups of characters.

< >

< >

< >

< >< >

< > < >

< > < >

232

HashSet security model object

policy object S : HashSet {
 type Entry = UInt32

 config =
 { set_size : 5
 , pool_size : 2
 }
}

This operator intersects the result of Expression1 with the result of Expression2.

Examples:

The regular expression [0-9]&[^3] corresponds to numbers from 0 to 9, excluding 3.

The regular expression [a-zA-Z]&() corresponds to all English letters and an empty string.

HashSet security model

The HashSet security model lets you associate resources with one-dimensional tables of unique values of the
same type, add or delete these values, and check whether a de�ned value is in the table. For example, a process of
the network server can be associated with the set of ports that this server is allowed to open. This association can
be used to check whether the server is allowed to initiate the opening of a port.

A PSL �le containing a description of the HashSet security model is located in the KasperskyOS SDK at the
following path:

toolchain/include/nk/hashmap.psl

To use the HashSet security model, you need to create an object or objects of this model.

A HashSet security model object contains a pool of one-dimensional tables of the same size intended for storing
the values of one type. A resource can be associated with only one table from the tables pool of each HashSet
security model object.

A HashSet security model object has the following parameters:

type Entry – type of values in tables (these can be integer types, Boolean type, and dictionaries and tuples
based on integer types and the Boolean type).

config – con�guration of the pool of tables:

set_size – size of the table.

pool_size – number of tables in the pool.

All parameters of a HashSet security model object are required.

Example:

233

HashSet security model init rule

init {sid : Sid }

/* A process of the Server class will be allowed to start if,
 * at startup initiation, an association will be created
 * between this process and the table. Otherwise the startup of a process of the
 * Server class will be denied. */
execute dst=Server {
 S.init {sid : dst_sid}
}

HashSet security model �ni rule

fini {sid : Sid }

A HashSet security model object can be covered by a security audit. There are no audit conditions speci�c to the
HashSet security model.

It is necessary to create multiple objects of the HashSet security model in the following cases:

You need to con�gure a security audit di�erently for di�erent objects of the HashSet security model (for
example, you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent
objects).

You need to distinguish between calls of methods provided by di�erent objects of the HashSet security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

You need to use tables of di�erent sizes and/or with di�erent types of values.

< >

It associates a free table from the tables pool with the sid resource. If the free table contains values after its
previous use, these values are deleted.

It returns the "allowed" result if an association was created between the table and the sid resource.

It returns the "denied" result in the following cases:

There are no free tables in the pool.

The sid resource is already associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

Example:

< >

234

HashSet security model add rule

add {sid : Sid , entry : Entry }

/* A process of the Server class will receive the "allowed" decision from
 * the Kaspersky Security Module by calling the
 * Add security interface method if, when this method is called, the value
 * 5 will be added to the table associated with this
 * process, or is already in the table. Otherwise
 * a process of the Server class will receive the "denied" decision from the
 * security module by calling the
 * Add security interface method. */
security src=Server, method=Add {
 S.add {sid : src_sid, entry : 5}
}

HashSet security model remove rule

It deletes the association between the table and the sid resource (the table becomes free).

It returns the "allowed" result if the association between the table and the sid resource was deleted.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

< > < >

It adds the entry value to the table associated with the sid resource.

It returns the "allowed" result in the following cases:

The rule added the entry value to the table associated with the sid resource.

The table associated with the sid resource already contains the entry value.

It returns the "denied" result in the following cases:

The table associated with the sid resource is completely full.

The sid resource is not associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

Example:

235

remove {sid : Sid , entry : Entry }

HashSet security model contains expression

contains {sid : Sid , entry : Entry }

/* A process of the Server class will receive the "allowed" decision from
 * the Kaspersky Security Module by calling the
 * Check security interface method if the value 42 is in the table
 * associated with this process. Otherwise a process of the
 * Server class will receive the "denied" decision from the security module
 /* by calling the Check security interface method. */
security src=Server, method=Check {
 assert(S.contains {sid : src_sid, entry : 42})
}

< > < >

It deletes the entry value from the table associated with the sid resource.

It returns the "allowed" result in the following cases:

The rule deleted the entry value from the table associated with the sid resource.

The table associated with the sid resource does not contain the entry value.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

< > < >

It checks whether the entry value is in the table associated with the sid resource.

It returns a value of the Boolean type. If the entry value is in the table associated with the sid resource, it
returns true. Otherwise it returns false.

It runs incorrectly in the following cases:

The sid resource is not associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Example:

236

StaticMap security model object

policy object M : StaticMap {
 type Value = UInt16

 config =
 { keys:
 { "k1" : 0
 , "k2" : 1
 }
 , pool_size : 2

StaticMap security model

The StaticMap security model lets you associate resources with two-dimensional "key–value" tables, read and
modify the values of keys. For example, a process of the driver can be associated with the MMIO memory region
that this driver is allowed to use. This will require two keys whose values de�ne the starting address and the size of
the MMIO memory region. This association can be used to check whether the driver can query the MMIO memory
region that it is attempting to access.

Keys in the table have the same type but are unique and immutable. The values of keys in the table have the same
type.

There are two simultaneous instances of the table: base instance and working instance. Both instances are
initialized by the same data. Changes are made �rst to the working instance and then can be added to the base
instance, or vice versa: the working instance can be changed by using previous values from the base instance. The
values of keys can be read from the base instance or working instance of the table.

A PSL �le containing a description of the StaticMap security model is located in the KasperskyOS SDK at the
following path:

toolchain/include/nk/staticmap.psl

To use the StaticMap security model, you need to create an object or objects of this model.

A StaticMap security model object contains a pool of two-dimensional "key–value" tables that have the same size.
A resource can be associated with only one table from the tables pool of each StaticMap security model object.

A StaticMap security model object has the following parameters:

type Value – type of values of keys in tables (integer types are supported).

config – con�guration of the pool of tables:

keys – table containing keys and their default values (keys have the Key = Text | List<UInt8> type).

pool_size – number of tables in the pool.

All parameters of a StaticMap security model object are required.

Example:

237

 }
}

StaticMap security model init rule

init {sid : Sid }

/* A process of the Server class will be allowed to start if,
 * at startup initiation, an association will be created
 * between this process and the table. Otherwise the startup of a process of the
 * Server class will be denied. */
execute dst=Server {
 M.init {sid : dst_sid}
}

StaticMap security model �ni rule

A StaticMap security model object can be covered by a security audit. There are no audit conditions speci�c to
the StaticMap security model.

It is necessary to create multiple objects of the StaticMap security model in the following cases:

You need to con�gure a security audit di�erently for di�erent objects of the StaticMap security model (for
example, you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent
objects).

You need to distinguish between calls of methods provided by di�erent objects of the StaticMap security
model (audit data includes the name of the security model method and the name of the object that provides
this method, so you can verify that the method of a speci�c object was called).

You need to use tables with di�erent sets of keys and/or di�erent types of key values.

< >

It associates a free table from the tables pool with the sid resource. Keys are initialized by the default values.

It returns the "allowed" result if an association was created between the table and the sid resource.

It returns the "denied" result in the following cases:

There are no free tables in the pool.

The sid resource is already associated with a table from the tables pool of the StaticMap security model
object being used.

The sid value is outside of the permissible range.

Example:

238

fini {sid : Sid }

StaticMap security model set rule

set {sid : Sid , key : Key , value : Value }

/* A process of the Server class will receive the "allowed" decision from
 * the Kaspersky Security Module by calling the
 * Set security interface method if, when this method is called, the value 2
 * will be assigned to key k1 in the working instance of the table
 * associated with this process. Otherwise a process of the
 * Server class will receive the "denied" decision from the security module
 /* by calling the Set security interface method. */
security src=Server, method=Set {
 M.set {sid : src_sid, key : "k1", value : 2}
}

StaticMap security model commit rule

< >

It deletes the association between the table and the sid resource (the table becomes free).

It returns the "allowed" result if the association between the table and the sid resource was deleted.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

< > < > < >

It assigns the speci�ed value to the speci�ed key in the working instance of the table associated with the sid
resource.

It returns the "allowed" result if the speci�ed value was assigned to the speci�ed key in the working instance of
the table associated with the sid resource. (The current value of the key will be overwritten even if it is equal to
the new value.)

It returns the "denied" result in the following cases:

The speci�ed key is not in the table associated with the sid resource.

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

Example:

239

commit {sid : Sid }

StaticMap security model rollback rule

rollback {sid : Sid }

StaticMap security model get expression

get {sid : Sid , key : Key }

< >

It copies the values of keys from the working instance to the base instance of the table associated with the sid
resource.

It returns the "allowed" result if the values of keys were copied from the working instance to the base instance of
the table associated with the sid resource.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

< >

It copies the values of keys from the base instance to the working instance of the table associated with the sid
resource.

It returns the "allowed" result if the values of keys were copied from the base instance to the working instance of
the table associated with the sid resource.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

< > < >

It returns the value of the speci�ed key from the base instance of the table associated with the sid resource.

It returns a value of the Value type.

It runs incorrectly in the following cases:

The speci�ed key is not in the table associated with the sid resource.

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

240

/* A process of the Server class will receive the "allowed" decision from
 * the Kaspersky Security Module by calling the
 * Get security interface method if the value of key k1 in the base
 * instance of the table associated with this process
 * is not zero. Otherwise a process of the Server class will receive
 * the "denied" decision from the security module
 * by calling the Get security interface method. */
security src=Server, method=Get {
 assert(M.get {sid : src_sid, key : "k1"} != 0)
}

StaticMap security model get_uncommited expression

get_uncommited {sid: Sid , key: Key }

The sid value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Example:

< > < >

It returns the value of the speci�ed key from the working instance of the table associated with the sid resource.

It returns a value of the Value type.

It runs incorrectly in the following cases:

The speci�ed key is not in the table associated with the sid resource.

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Flow security model

The Flow security model lets you associate resources with �nite-state machines, receive and modify the states of
�nite-state machines, and check whether the state of the �nite-state machine is within the de�ned set of states.
For example, a process can be associated with a �nite-state machine to allow or prohibit this process from using
storage and/or the network depending on the state of the �nite-state machine.

A PSL �le containing a description of the Flow security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/flow.psl

241

Flow security model object

policy object service_flow : Flow {
 type State = "sleep" | "started" | "stopped" | "finished"

 config = { states : ["sleep", "started", "stopped", "finished"]
 , initial : "sleep"
 , transitions : { "sleep" : ["started"]
 , "started" : ["stopped", "finished"]
 , "stopped" : ["started", "finished"]
 }
 }
}

Diagram of �nite-state machine states in the example

To use the Flow security model, you need to create an object or objects of this model.

One Flow security model object lets you associate a set of resources with a set of �nite-state machines that have
the same con�guration. A resource can be associated with only one �nite-state machine of each Flow security
model object.

A Flow security model object has the following parameters:

type State – type that determines the set of states of the �nite-state machine (variant type that combines
text literals).

config – con�guration of the �nite-state machine:

states – set of states of the �nite-state machine (must match the set of states de�ned by the State
type).

initial – initial state of the �nite-state machine.

transitions – description of the permissible transitions between states of the �nite-state machine.

All parameters of a Flow security model object are required.

Example:

A Flow security model object can be covered by a security audit. You can also de�ne the audit conditions speci�c
to the Flow security model. To do so, use the following construct in the audit con�guration description:

omit : ["state 1" , ...] – the audit is not performed if the �nite-state machine is in one of the listed
states.

< >[]

It is necessary to create multiple objects of the Flow security model in the following cases:

242

Flow security model init rule

init {sid : Sid }

/* A process of the Server class will be allowed to start
 * if, at startup initiation, an association will be created
 * between this process and the finite-state machine.
 * Otherwise the startup of the Server-class process will be denied. */
execute dst=Server {
 service_flow.init {sid : dst_sid}
}

Flow security model �ni rule

fini {sid : Sid }

You need to con�gure a security audit di�erently for di�erent objects of the Flow security model (for example,
you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent objects).

You need to distinguish between calls of methods provided by di�erent objects of the Flow security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

You need to use �nite-state machines with di�erent con�gurations.

< >

It creates a �nite-state machine and associates it with the sid resource. The created �nite-state machine has the
con�guration de�ned in the settings of the Flow security model object being used.

It returns the "granted" result if an association was created between the �nite-state machine and the sid
resource.

It returns the "denied" result in the following cases:

The sid resource is already associated with a �nite-state machine of the Flow security model object being
used.

The sid value is outside of the permissible range.

Example:

< >

It deletes the association between the �nite-state machine and the sid resource. The �nite-state machine that is
no longer associated with the resource is destroyed.

It returns the "granted" result if the association between the �nite-state machine and the sid resource was
deleted.

It returns the "denied" result in the following cases:

243

Flow security model enter rule

enter {sid : Sid , state : State }

/* Any client in the solution will be allowed to query
 * a server of the Server class if the finite-state machine
 * associated with this server will be switched to
 * the "started" state when initiating the query. Otherwise
 * any client in the solution will be denied to query
 * a server of the Server class. */
request dst=Server {
 service_flow.enter {sid : dst_sid, state : "started"}
}

Flow security model allow rule

allow {sid : Sid , states : Set<State> }

The sid resource is not associated with a �nite-state machine of the Flow security model object being used.

The sid value is outside of the permissible range.

< > < >

It switches the �nite-state machine associated with the sid resource to the speci�ed state.

It returns the "granted" result if the �nite-state machine associated with the sid resource was switched to the
speci�ed state.

It returns the "denied" result in the following cases:

The transition to the speci�ed state from the current state is not permitted by the con�guration of the �nite-
state machine associated with the sid resource.

The sid resource is not associated with a �nite-state machine of the Flow security model object being used.

The sid value is outside of the permissible range.

Example:

< > < >

It veri�es that the state of the �nite-state machine associated with the sid is in the set of de�ned states.

It returns the "granted" result if the state of the �nite-state machine associated with the sid resource is in the set
of de�ned states.

It returns the "denied" result in the following cases:

The state of the �nite-state machine associated with the sid resource is not in the set of de�ned states.

244

/* Any client in the solution is allowed to query a server
 * of the Server class if the finite-state machine associated with this server
 * is in the started or stopped state. Otherwise any client
 * in the solution will be prohibited from querying a server of the Server class. */
request dst=Server {
 service_flow.allow {sid : dst_sid, states : ["started", "stopped"]}
}

Flow security model query expression

query {sid : Sid }

/* Any client in the solution is allowed to query
 * a server of the ResourceDriver class if the finite-state machine
 * associated with this server is in the
 * "started" or "stopped" state. Otherwise any client in the solution
 * is prohibited from querying a server of the ResourceDriver class. */
request dst=ResourceDriver {
 choice (service_flow.query {sid : dst_sid}) {
 "started" : grant ()
 "stopped" : grant ()
 _ : deny ()
 }
}

The sid resource is not associated with a �nite-state machine of the Flow security model object being used.

The sid value is outside of the permissible range.

Example:

< >

It is intended to be used as an expression that veri�es ful�llment of the conditions in the choice construct (for
details on the choice construct, see "Binding methods of security models to security events"). It checks the state
of the �nite-state machine associated with the sid resource. Depending on the results of this check, various
options for security event handling can be performed.

It runs incorrectly in the following cases:

The sid resource is not associated with a �nite-state machine of the Flow security model object being used.

The sid value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Example:

Mic security model

245

In Mic security model terminology, processes and the kernel are called subjects while resources are called
objects. However, the information provided in this section slightly deviates from the terminology of the Mic
security model. In this section, the term "object" is not used to refer to a "resource".

The Mic security model lets you implement mandatory integrity control. In other words, this security model
provides the capability to manage data streams between di�erent processes and between processes and the
KasperskyOS kernel by controlling the integrity levels of processes, the kernel, and resources that are used via IPC.

Data streams are generated between subjects when the subjects interact via IPC.

The integrity level of a subject/resource is the level of trust a�orded to the subject/resource. The degree of trust
in a subject depends on whether the subject interacts with untrusted external software/hardware systems or
whether the subject has a proven quality level, for example. (The kernel has a high level of integrity.) The degree of
trust in a resource depends on whether this resource was created by a trusted subject within a software/hardware
system running KasperskyOS or if it was received from an untrusted external software/hardware system, for
example.

The Mic security model is characterized by the following provisions:

By default, data streams from subjects with less integrity to subjects with higher integrity are prohibited. You
have the option of permitting such data streams if you can guarantee that the subjects with higher integrity will
not be compromised.

A resource consumer is prohibited from writing data to a resource if the integrity level of the resource is higher
than the integrity level of the resource consumer.

By default, a resource consumer is prohibited from reading data from a resource if the integrity level of the
resource is lower than the integrity level of the resource consumer. You have the option to allow the resource
consumer to perform such an operation if you can guarantee that the resource consumer will not be
compromised.

Methods of the Mic security model let you assign integrity levels to subjects and resources, check the
permissibility of data streams based on a comparison of integrity levels, and elevate the integrity levels of
resources.

A PSL �le containing a description of the Mic security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/mic.psl

For an example of using the Mic security model, we can examine a secure software update for a software/hardware
system running KasperskyOS. Four processes are involved in the update:

Downloader is a low-integrity process that downloads a low-integrity update image from a remote server on
the Internet.

Verifier is a high-integrity process that veri�es the digital signature of the low-integrity update image (high-
integrity process that can read data from a low-integrity resource).

FileSystem is a high-integrity process that manages the �le system.

Updater is a high-integrity process that applies an update.

A software update is performed according to the following scenario:

246

1. The Downloader downloads an update image and saves it to a �le by transferring the contents of the image to
the FileSystem. A low integrity level is assigned to this �le.

2. The Verifier receives the update image from the FileSystem by reading the high-integrity �le, and veri�es
its digital signature. If the signature is correct, the Verifier queries the FileSystem so that the FileSystem
creates a copy of the �le containing the update image. A high integrity level is assigned to the new �le.

3. The Updater receives the update image from the FileSystem by reading the high-integrity �le, and applies
the update.

Mic security model object

policy object mic : Mic {
 config = ["LOW", "MEDIUM", "HIGH"]
}

policy object mic_po : Mic {
 config =
 { degrees : ["low", "high"]
 , categories : ["net", "log"]
 }
}

In this example, the Mic security model ensures that the high-integrity Updater process can read data only from a
high-integrity update image. As a result, the update can be applied only after the digital signature of the update
image is veri�ed.

To use the Mic security model, you need to create an object or objects of this model. You also need to assign a set
of integrity levels for subjects and resources.

A Mic security model object has the following parameters:

config refers to a set of integrity levels or con�guration of a set of integrity levels:

degrees refers to a set of gradations for generating a set of integrity levels.

categories refers to a set of categories for generating a set of integrity levels.

Examples:

A set of integrity levels is a partially ordered set that is linearly ordered or contains incomparable elements. The set
{LOW, MEDIUM, HIGH} is linearly ordered because all of its elements are comparable to each other. Incomparable
elements arise when a set of integrity levels is de�ned through a set of gradations and a set of categories. In this
case, the set of integrity levels L is a Cartesian product of the Boolean set of categories C multiplied by the set of
gradations D:

The degrees and categories parameters in this example de�ne the following set:

{

{}/low, {}/high,

247

For subjects and resources that have incomparable integrity levels, the Mic security model provides
conditions that are analogous to the conditions that the security model provides for subjects and resources
that have comparable integrity levels.
By default, data streams between subjects that have incomparable integrity levels are prohibited. However,
you have the option to allow such data streams if you can guarantee that the subjects receiving data will not
be compromised. A resource consumer is prohibited from writing data to a resource and read data from a
resource if the integrity level of the resource is incomparable to the integrity level of the resource consumer.
You have the option to allow the resource consumer to read data from a resource if you can guarantee that
the resource consumer will not be compromised.

{net}/low, {net}/high,

{log}/low, {log}/high,

{net,log}/low, {net,log}/high

}

In this set, {} means an empty set.

The order relation between elements of the set of integrity levels L is de�ned as follows:

According to this order relation, the jth element exceeds the ith element if the subset of categories E includes the
subset of categories A, and gradation F is greater than or equal to gradation A. Examples of comparing elements
of the set of integrity levels L:

The {net,log}/high element exceeds the {log}/low element because the "high" gradation is greater than the
"low" gradation, and the subset of categories {net,log} includes the subset of categories {log}.

The {net,log}/low element exceeds the {log}/low element because the levels of gradations for these elements
are equal, and the subset of categories {net,log} includes the subset of categories {log}.

The {net,log}/high element is the highest because it exceeds all other elements.

The {}/low element is the lowest because all other elements exceed this element.

The {net}/low and {log}/high elements are incomparable because the "high" gradation is greater than the "low"
gradation but the subset of categories {log} does not include the subset of categories {net}.

The {net,log}/low and {log}/high elements are incomparable because the "high" gradation is greater than the
"low" gradation but the subset of categories {log} does not include the subset of categories {net,log}.

A Mic security model object can be covered by a security audit. There are no audit conditions speci�c to the Mic
security model.

It is necessary to create multiple objects of the Mic security model in the following cases:

You need to con�gure a security audit di�erently for di�erent objects of the Mic security model (for example,
you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent objects).

248

Mic security model create rule

create { source : Sid
 , target : Sid
 , container : Sid | ()
 , driver : Sid
 , level : Level | ... | ()
 }

type Level = LevelFull | LevelNoCategory

type LevelFull =
 { degree : Text | ()
 , categories : List<Text> | ()
 }

type LevelNoCategory = Text

You need to distinguish between calls of methods provided by di�erent objects of the Mic security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

You need to use multiple variants of mandatory integrity control that may have di�erent sets of integrity levels
for subjects and resources, for example.

< >
< >
< >
< >
< >

Assign the speci�ed integrity level to the target resource in the following situation:

The source process initiates creation of the target resource.

The target resource is managed by the driver subject, which is the resource provider or the KasperskyOS
kernel.

The container resource is a container for the target resource (for example, a directory is a container for �les
and/or other directories).

If the container value is not de�ned (container : ()), the target resource is considered to be the root
resource, which means that it has no container.

To de�ne the integrity level, values of the Level type are used:

The rule returns the "granted" result if a speci�c integrity level was assigned to the target resource.

The rule returns the "denied" result in the following cases:

The level value exceeds the integrity level of the source process, driver subject or container resource.

The level value is incomparable to the integrity level of the source process, driver subject or container
resource.

An integrity level was not assigned to the source process, driver subject, or container resource.

249

/* A server of the updater.Realmserv class will be allowed to respond to
 * queries of any client in the solution calling the resolve method
 * of the realm.Reader endpoint if the resource whose creation is requested
 * by the client will be assigned the LOW integrity level during response initiation.
 * Otherwise a server of the updater.Realmserv class will be prohibited from
responding to
 * queries of any client calling the resolve method of the realm.Reader endpoint. */
response src=updater.Realmserv,
 endpoint=realm.Reader {
 match method=resolve {
 mic.create { source : dst_sid
 , target : message.handle.handle
 , container : ()
 , driver : src_sid
 , level : "LOW"
 }
 }
}

Mic security model execute rule

execute ExecuteImage | ExecuteLevel

type ExecuteImage =
 { image : Sid
 , target : Sid
 , level : Level | ... | ()
 , levelR : Level | ... | ()
 }

type ExecuteLevel =
 { image : Sid | ()
 , target : Sid
 , level : Level | ...
 , levelR : Level | ... | ()
 }

The value of source, target, container or driver is outside of the permissible range.

Example:

< >

This assigns the speci�ed integrity level to the target subject and de�nes the minimum integrity level of
subjects and resources from which this subject can receive data (levelR). The code of the target subject is in
the image executable �le.

If the level value is not de�ned (level : ()), the integrity level of the image executable �le is assigned to the
target subject. If the image value is not de�ned (image : ()), the level value must be de�ned.

If the levelR value is not de�ned (levelR : ()), the value of levelR is equal to level.

To de�ne the integrity level and levelR, values of the Level type are used. For the de�nition of the Level type,
see "Mic security model create rule".

250

/* A process of the updater.Manager class will be allowed to start
 * if, at startup initiation, this process will be assigned
 * the integrity level LOW, and the minimum
 * integrity level will be defined for the processes and resources from which this
 * process can received data (LOW). Otherwise the startup of a process
 * of the updater.Manager class will be denied. */
execute src=Einit, dst=updater.Manager, method=main {
 mic.execute { target : dst_sid
 , image : ()
 , level : "LOW"
 , levelR : "LOW"
 }
}

Mic security model upgrade rule

upgrade { source : Sid
 , target : Sid
 , container : Sid | ()
 , driver : Sid
 , level : Level | ...
 }

The rule returns the "granted" result if it assigned the speci�ed integrity level to the target subject and de�ned
the minimum integrity level of subjects and resources from which this subject can receive data (levelR).

The rule returns the "denied" result in the following cases:

The level value exceeds the integrity level of the image executable �le.

The level value is incomparable to the integrity level of the image executable �le.

The value of levelR exceeds the value of level.

The level and levelR values are incomparable.

An integrity level was not assigned to the image executable �le.

The image or target value is outside of the permissible range.

Example:

< >
< >
< >
< >
< >

This elevates the previously assigned integrity level of the target resource to the speci�ed level in the following
situation:

The source process initiates elevation of the integrity level of the target resource.

The target resource is managed by the driver subject, which is the resource provider or the KasperskyOS
kernel.

251

Mic security model call rule

call {source : Sid , target : Sid }

The container resource is a container for the target resource (for example, a directory is a container for �les
and/or other directories).

If the container value is not de�ned (container : ()), the target resource is considered to be the root
resource, which means that it has no container.

To de�ne the integrity level, values of the Level type are used. For the de�nition of the Level type, see "Mic
security model create rule".

The rule returns the "granted" result if it elevated the previously assigned integrity level of the target resource to
the level value.

The rule returns the "denied" result in the following cases:

The level value does not exceed the integrity level of the target resource.

The level value exceeds the integrity level of the source process, driver subject or container resource.

The integrity level of the target resource exceeds the integrity level of the source process.

An integrity level was not assigned to the source process, driver subject, or container resource.

The value of source, target, container or driver is outside of the permissible range.

< > < >

This veri�es the permissibility of data streams from the target subject to the source subject.

It returns the "allowed" result in the following cases:

The integrity level of the source subject does not exceed the integrity level of the target subject.

The integrity level of the source subject exceeds the integrity level of the target subject, but the minimum
integrity level of subjects and resources from which the source subject can receive data does not exceed the
integrity level of the target subject.

The integrity level of the source subject is incomparable to the integrity level of the target subject, but the
minimum integrity level of subjects and resources from which the source subject can receive data does not
exceed the integrity level of the target subject.

It returns the "denied" result in the following cases:

The integrity level of the source subject exceeds the integrity level of the target subject, and the minimum
integrity level of subjects and resources from which the source subject can receive data exceeds the integrity
level of the target subject.

The integrity level of the source subject exceeds the integrity level of the target subject, and the minimum
integrity level of subjects and resources from which the source subject can read data is incomparable to the
integrity level of the target subject.

252

/* Any client in the solution is allowed to query
 * any server (kernel) if data streams from
 * the server (kernel) to the client are permitted by the
 * Mic security model. Otherwise any client in the solution
 * is prohibited from querying any server (kernel). */
request {
 mic.call { source : src_sid
 , target : dst_sid
 }
}

Mic security model invoke rule

invoke {source : Sid , target : Sid }

Mic security model read rule

read {source : Sid , target : Sid }

The integrity level of the source subject is incomparable to the integrity level of the target subject, and the
minimum integrity level of subjects and resources from which the source subject can receive data exceeds the
integrity level of the target subject.

The integrity level of the source subject is incomparable to the integrity level of the target subject, and the
minimum integrity level of subjects and resources from which the source subject can receive data is
incomparable to the integrity level of the target subject.

An integrity level was not assigned to the source subject or to the target subject.

The source or target value is outside of the permissible range.

Example:

< > < >

This veri�es the permissibility of data streams from the source subject to the target subject.

It returns the "granted" result if the integrity level of the target subject does not exceed the integrity level of the
source subject.

It returns the "denied" result in the following cases:

The integrity level of the target subject exceeds the integrity level of the source subject.

The integrity level of the target subject is incomparable to the integrity level of the source subject.

An integrity level was not assigned to the source subject or to the target subject.

The source or target value is outside of the permissible range.

< > < >

253

/* Any client in the solution is allowed to query a server of
 * the updater.Realmserv class by calling the read method of the
 * realm.Reader service if the Mic security model permits
 * this client to read data from the resource needed by
 * this client. Otherwise any client in the solution is prohibited from
 * querying a server of the updater.Realmserv class by calling
 * the read method of the realm.Reader endpoint. */
request dst=updater.Realmserv,
 endpoint=realm.Reader {
 match method=read {
 mic.read { source : src_sid,
 , target : message.handle.handle
 }
 }
}

This veri�es that the source resource consumer is allowed to read data from the target resource.

It returns the "allowed" result in the following cases:

The integrity level of the source resource consumer does not exceed the integrity level of the target
resource.

The integrity level of the source resource consumer exceeds the integrity level of the target resource, but
the minimum integrity level of subjects and resources from which the source resource consumer can receive
data does not exceed the integrity level of the target resource.

The integrity level of the source resource consumer is incomparable to the integrity level of the target
resource, but the minimum integrity level of subjects and resources from which the source resource consumer
can receive data does not exceed the integrity level of the target resource.

It returns the "denied" result in the following cases:

The integrity level of the source resource consumer exceeds the integrity level of the target resource, and
the minimum integrity level of subjects and resources from which the source resource consumer can receive
data exceeds the integrity level of the target resource.

The integrity level of the source resource consumer exceeds the integrity level of the target resource, and
the minimum integrity level of subjects and resources from which the source resource consumer can receive
data is incomparable to the integrity level of the target resource.

The integrity level of the source resource consumer is incomparable to the integrity level of the target
resource, and the minimum integrity level of subjects and resources from which the source resource consumer
can receive data exceeds the integrity level of the target resource.

The integrity level of the source resource consumer is incomparable to the integrity level of the target
resource, and the minimum integrity level of subjects and resources from which the source resource consumer
can receive data is incomparable to the integrity level of the target resource.

An integrity level was not assigned to the source resource consumer or to the target resource.

The source or target value is outside of the permissible range.

Example:

254

Mic security model write rule

write {source : Sid , target : Sid }

Mic security model query_level expression

query_level {source : Sid }

< > < >

This veri�es that the source resource consumer is allowed to write data to the target resource.

It returns the "granted" result if the integrity level of the target resource does not exceed the integrity level of the
source resource consumer.

It returns the "denied" result in the following cases:

The integrity level of the target resource exceeds the integrity level of the source resource consumer.

The integrity level of the target resource is incomparable to the integrity level of the source resource
consumer.

An integrity level was not assigned to the source resource consumer or to the target resource.

The source or target value is outside of the permissible range.

< >

It is intended to be used as an expression that veri�es ful�llment of the conditions in the choice construct (for
details on the choice construct, see "Binding methods of security models to security events"). It checks the
integrity level of the source resource or subject. Depending on the results of this check, various options for
security event handling can be performed.

It runs incorrectly in the following cases:

An integrity level was not assigned to the subject or source resource.

The source value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Methods of KasperskyOS core endpoints

From the perspective of the Kaspersky Security Module, the KasperskyOS kernel is a container of components
that provide endpoints. The list of kernel components is provided in the Core.edl �le located in the sysroot-*-
kos/include/kl/core directory of the KasperskyOS SDK. This directory also contains the CDL and IDL �les for
the formal speci�cation of the kernel.

Methods of core endpoints can be divided into secure methods and potentially dangerous methods. Potentially
dangerous methods could be used by a cybercriminal in a compromised solution component to cause a denial of
service, set up covert data transfer, or hijack an I/O device. Secure methods cannot be used for these purposes.

255

1. Access to a secure method must be granted only to the solution components that require this method.

2. Access to a potentially dangerous method must be granted only to the trusted solution components that
require this method.

3. Access to a potentially dangerous method must be granted to untrusted solution components that require this
method only if the veri�able access conditions limit the possibilities of malicious use of this method, or if the
impact from malicious use of this method is acceptable from a security perspective.

For example, an untrusted component may be allowed to use a limited set of I/O ports that do not allow this
component to take control of I/O devices. In another example, covert data transfer between untrusted
components may be acceptable from a security perspective.

Methods of the vmm.VMM endpoint (kl.core.VMM interface)

Method Method purpose and parameters Potential danger of the method

Allocate

Commit Lets you exhaust RAM.

Access to methods of core endpoints must be restricted as much as possible by the solution security policy
(according to the least privilege principle). For that, the following requirements must be ful�lled:

Virtual memory endpoint

This endpoint is intended for managing virtual memory.

Information about methods of the endpoint is provided in the table below.

Purpose

Allocates a virtual memory region
(reserves and optionally maps it to
physical memory).

Parameters

[in] addr – preferred base address
of the virtual memory region, or 0
for the base address to be selected
automatically.

[in] size – size of the virtual
memory region in bytes.

[in] flags – �ags de�ning the
parameters of the virtual memory
region and its allocation.

[out] va – base address of the
allocated virtual memory region.

[out] rc – return code.

Allows the following:

Exhaust the kernel memory by creating a
multitude of objects within it.

Exhaust the RAM.

Purpose

256

Decommit N/A

Protect N/A

Free N/A

Maps the virtual memory region (or
part of it) reserved by the Allocate
method to physical memory.

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[in] flags – �ags de�ning the
parameters of the virtual memory
region.

[out] rc – return code.

Purpose

Cancels mapping of the virtual
memory region to physical memory.

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[out] rc – return code.

Purpose

Modi�es the access rights to the
virtual memory region.

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[in] flags – �ags de�ning the
access rights to the virtual memory
region.

[out] rc – return code.

Purpose

257

Query N/A

MdlCreate

Allows the following:

MdlCreateFromVm Allows the following:

Frees up the virtual memory region.

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[out] rc – return code.

Purpose

Lets you get information about a
virtual memory page.

Parameters

[in] va – address included in the
virtual memory page.

[out] info – sequence containing
information about a virtual memory
page.

[out] rc – return code.

Purpose

Creates an MDL bu�er.

Parameters

[in] size – size of the MDL bu�er
in bytes.

[in] prot – �ags de�ning the
access rights to the MDL bu�er.

[out] handle – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er.

[out] rc – return code.

Exhaust the kernel memory by creating a
multitude of objects within it.

Exhaust the RAM.

Purpose

Creates an MDL bu�er from physical
memory that is mapped to the de�ned
virtual memory region and maps the
created MDL bu�er to this region.

Exhaust the kernel memory by creating a
multitude of objects within it.

Exhaust the RAM.

258

MdlGetSize N/A

MdlMap Allows the following:

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the MDL bu�er
in bytes.

[in] flags – �ags de�ning the
access rights to the MDL bu�er.

[out] handle – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er.

[out] rc – return code.

Purpose

Gets the size of the MDL bu�er.

Parameters

[in] handle – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er.

[out] size – size of the MDL
bu�er in bytes.

[out] rc – return code.

Purpose

Maps an MDL bu�er to a virtual
memory region.

Parameters

[in] handle – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er.

[in] offset – o�set (in bytes) in
the MDL bu�er where mapping
should start.

[in] length – size (in bytes) of the
part of the MDL bu�er that needs
to be mapped.

Create shared memory for interprocess
communication concealed from the
security module if multiple processes
own the handles of one MDL bu�er (the
handle permissions masks must allow
mapping of the MDL bu�er).

Exhaust the kernel memory by creating a
multitude of objects within it.

259

MdlClone Allows the kernel memory to be used up by
creating a multitude of objects within it.

[in] hint – preferred base address
of the virtual memory region, or 0
for the base address to be selected
automatically.

[in] prot – �ags de�ning the
access rights to the virtual memory
region.

[out] address – base address of
the virtual memory region.

[out] rc – return code.

Purpose

Creates an MDL bu�er based on an
existing one.

The MDL bu�er is created from the
same regions of physical memory as
the original bu�er.

Parameters

[in] originHandle – value whose
binary representation consists of
multiple �elds, including a handle
�eld and a handle permissions mask
�eld. The handle identi�es the
original MDL bu�er.

[in] offset – o�set (in bytes) in
the original MDL bu�er where
duplication should start.

[in] length – size of the part of
the original MDL bu�er that needs
to be duplicated.

[out] cloneHandle – value whose
binary representation consists of
multiple �elds, including a handle
�eld and a handle permissions mask
�eld. The handle identi�es the
created MDL bu�er.

[out] rc – return code.

I/O endpoint

This endpoint is intended for working with I/O ports, MMIO, DMA, and interrupts.

260

Methods of the io.IO endpoint (kl.core.IO interface)

Method Method purpose and parameters Potential danger of the method

RegisterPort

Allows the following:

RegisterMmio
Allows the kernel memory to be used
up by creating a multitude of objects
within it.

RegisterDma Allows the following:

Information about methods of the endpoint is provided in the table below.

Purpose

Registers I/O ports.

Parameters

[in] base – base address of the I/O ports.

[in] size – width of the address range
for I/O ports.

[out] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the I/O ports.

[out] rc – return code.

Hijack I/O ports (it is recommended
to monitor the base address and
width of the address range for I/O
ports).

Exhaust the kernel memory by
creating a multitude of objects
within it.

Purpose

Registers an MMIO memory region.

Parameters

[in] base – base address of the MMIO
memory region.

[in] size – size of the MMIO memory
region in bytes.

[out] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the MMIO memory region.

[out] rc – return code.

Purpose

Creates an DMA bu�er.

Parameters

[in] size – size of the DMA bu�er in
bytes.

[in] flags – �ags de�ning the DMA
parameters.

Exhaust the kernel memory by
creating a multitude of objects
within it.

Exhaust the RAM.

261

RegisterIrq
Allows the kernel memory to be used
up by creating a multitude of objects
within it.

MapMem Allows the following:

[in] order – parameter de�ning the
minimum number of memory pages
(2^order) in a block.

[out] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the DMA bu�er.

[out] rc – return code.

Purpose

Registers an interrupt.

Parameters

[in] irq – interrupt number.

[out] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the interrupt.

[out] rc – return code.

Purpose

Maps an MMIO memory region to a virtual
memory region.

Parameters

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the MMIO memory region.

[in] prot – �ags de�ning the access
rights to the virtual memory region.

[in] attr – �ags de�ning the parameters
of the virtual memory region (for example,
use of caching).

[out] address – base address of the
virtual memory region.

[out] mapping – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the virtual memory region.

Take control of a device when
mapping an MMIO memory region
to a virtual memory region (it is
recommended to monitor the base
address and size of the MMIO
memory region when the
RegisterMmio method is called).

Create shared memory for
interprocess communication
concealed from the security
module if multiple processes own
the handles of one MMIO memory
region (the handle permissions
masks must allow mapping of the
MMIO memory region).

Exhaust the kernel memory by
creating a multitude of objects
within it.

262

PermitPort

Allows the following:

AttachIrq Allows the following:

[out] rc – return code.

Purpose

Opens access to I/O ports.

Parameters

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the I/O ports.

[out] access – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle is used
to access I/O ports.

[out] rc – return code.

Take control of a device (it is
recommended to monitor the base
address and width of the address
range for I/O ports when the
RegisterPort method is called).

Exhaust the kernel memory by
creating a multitude of objects
within it.

Purpose

Attaches an interrupt to the handle used by
the interrupt handler.

Parameters

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the interrupt.

[in] flags – �ags indicating
characteristics of the interrupt.

[out] delivery – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle is used
by the interrupt handler.

[out] rc – return code.

Take CPU time from all other
threads, including from other
processes (the thread that
attached to the interrupt will
become a real-time thread).

Make it impossible to terminate a
process from another process (the
process whose thread was
attached to the interrupt cannot be
terminated from another process).

Stop the operating system (if an
unhandled exception occurs in the
thread handling an interrupt, the
operating system stops).

Create malicious interrupt handling,
such as incorrect handling or
delayed handling (it is
recommended to monitor the
interrupt number when the
RegisterIrq method is called).

Attach to an interrupt that is
already attached to the interrupt
handler in another process for the
purpose of blocking handling of this
interrupt.

Exhaust the kernel memory by
creating a multitude of objects
within it.

263

AttachIrqEx

Allows the following:

DetachIrq

EnableIrq Purpose

Resumes interrupt handling.

Parameters

Purpose

Attaches an interrupt to the handle used by
the interrupt handler.

Parameters

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the interrupt.

[in] flags – �ags indicating
characteristics of the interrupt.

[in] futexPtr – pointer to futex.

[out] delivery – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle is used
by the interrupt handler.

[out] rc – return code.

Take CPU time from all other
threads, including from other
processes (the thread that
attached to the interrupt will
become a real-time thread).

Make it impossible to terminate a
process from another process (the
process whose thread was
attached to the interrupt cannot be
terminated from another process).

Stop the operating system (if an
unhandled exception occurs in the
thread handling an interrupt, the
operating system stops).

Create malicious interrupt handling,
such as incorrect handling or
delayed handling (it is
recommended to monitor the
interrupt number when the
RegisterIrq method is called).

Attach to an interrupt that is
already attached to the interrupt
handler in another process for the
purpose of blocking handling of this
interrupt.

Exhaust the kernel memory by
creating a multitude of objects
within it.

Purpose

Detaches an interrupt from the handle used
by the interrupt handler.

Parameters

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the interrupt.

[out] rc – return code.

N/A

N/A

264

DisableIrq

Purpose

Blocks interrupt handling.

Parameters

ModifyDma

MapDma Allows the following:

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the interrupt.

[out] rc – return code.

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the interrupt.

[out] rc – return code.

Lets you block interrupt handling in
another process.

Purpose

Modi�es DMA parameters.

Parameters

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the DMA bu�er.

[in] flags – �ags de�ning the DMA
parameters.

[out] rc – return code.

N/A

Purpose

Maps an DMA bu�er to a virtual memory
region.

Parameters

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the DMA bu�er.

[in] offset – o�set (in bytes) in the DMA
bu�er where mapping should start.

[in] length – size (in bytes) of the part of
the DMA bu�er that needs to be mapped.

Create shared memory for
interprocess communication
concealed from the security
module if multiple processes own
the handles of one DMA bu�er (the
handle permissions masks must
allow mapping of the DMA bu�er).

Exhaust the kernel memory by
creating a multitude of objects
within it.

265

DmaGetInfo N/A

DmaGetPhysInfo N/A

[in] hint – preferred base address of the
virtual memory region, or 0 for the base
address to be selected automatically.

[in] prot – �ags de�ning the access
rights to the virtual memory region.

[out] address – base address of the
virtual memory region.

[out] mapping – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the virtual memory region.

[out] rc – return code.

Purpose

Lets you get information about a DMA
bu�er.

Parameters

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the DMA bu�er.

[out] flags – �ags indicating the DMA
parameters.

[out] order – parameter indicating the
minimum number of memory pages
(2^order) in a block.

[out] size – size of the DMA bu�er in
bytes.

[out] count – number of blocks.

[out] frames – sequence containing
information about blocks.

[out] rc – return code.

Purpose

Lets you get information about the physical
memory that was used to create a DMA
bu�er.

Parameters

266

BeginDma
Allows the kernel memory to be used
up by creating a multitude of objects
within it.

Methods of the thread.Thread endpoint (kl.core.Thread interface)

Method Method purpose and
parameters

Potential danger of the method

Create Allows the following:

[in] handle – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the DMA bu�er.

[out] count – number of continuous
regions of physical memory.

[out] frames – sequence containing
information about continuous regions of
physical memory.

[out] rc – return code.

Purpose

Opens access to a DMA bu�er for a device.

Parameters

[in] resource – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the DMA bu�er.

[out] iomapping – value whose binary
representation consists of multiple �elds,
including a handle �eld and a handle
permissions mask �eld. The handle
identi�es the kernel object that is used to
map a DMA bu�er to the range of IOMMU
addresses used by a device.

[out] rc – return code.

Threads endpoint

This endpoint is intended for managing threads.

Information about methods of the endpoint is provided in the table below.

Purpose

Creates a thread.

Parameters

Create a real-time thread that takes up all the CPU
time from other threads, including from other
processes (it is recommended to monitor thread
creation parameters).

267

Suspend

Resume

Terminate

[out] tid – thread ID
(TID).

[in] priority – value
de�ning the thread
priority.

[in] stackSize – size of
the stack for the thread,
or 0 for the default size.

[in] routine – pointer to
the function that will be
executed when creating
the thread.

[in] context – pointer to
the function that will be
executed in the thread
context.

[in] context2 – pointer
to the parameters that will
be passed to the function
de�ned through the
context parameter.

[in] flags – �ags de�ning
the parameters for
creating the thread.

[out] rc – return code.

Create a multitude of threads (including with high
priority) to reduce the CPU time available to the
threads of other processes (it is recommended to
monitor thread priority).

Exhaust the RAM.

Exhaust the kernel memory by creating a multitude
of objects within it.

Purpose

Blocks a thread.

Parameters

[in] tid – thread ID (TID).

[out] rc – return code.

Lets you lock a standard thread that has captured the
synchronization entity expected by the real-time
thread in whose context the interrupt is being handled.
This could stop the handling of this interrupt by other
processes.

Purpose

Resumes a thread.

Parameters

[in] tid – thread ID (TID).

[out] rc – return code.

N/A

Purpose N/A

268

Exit N/A

Wait N/A

SetPriority Allows the priority of a thread to be elevated to
reduce the CPU time available to all other threads,
including from other processes.

It is recommended to monitor thread priority.

Terminates a thread.

Parameters

[in] tid – thread ID (TID).

[in] zombie – �ctitious
parameter.

[in] code – thread exit
code.

[out] rc – return code.

Purpose

Terminates the current
thread.

Parameters

[in] zombie – �ctitious
parameter.

[in] code – thread exit
code.

[out] rc – return code.

Purpose

Locks the current thread until
the de�ned thread is
terminated.

Parameters

[in] tid – thread ID (TID).

[in] msec – thread
termination timeout (in
milliseconds).

[out] code – thread exit
code.

[out] rc – return code.

Purpose

De�nes the priority of a
thread.

Parameters

269

GetTcb N/A

SetTls N/A

Sleep N/A

GetInfo N/A

[in] tid – thread ID (TID).

[in] priority – value
de�ning the thread
priority.

[out] rc – return code.

Purpose

Allows access to the local
memory of the current thread
(TLS of the current thread).

Parameters

[out] va – pointer to the
local memory of the
current thread.

[out] rc – return code.

Purpose

De�nes the base address of
the local memory of the
current thread (TLS of the
current thread).

Parameters

[in] va – pointer to the
local memory of the
current thread.

[out] rc – return code.

Purpose

Locks the current thread for
the speci�ed duration.

Parameters

[in] mdelay – thread
lockout duration (in
milliseconds).

[out] rc – return code.

Purpose

Lets you get information
about a thread.

270

DetachIrq N/A

GetAffinity N/A

SetAffinity N/A

SetSchedPolicy Allows the following:

Parameters

[in] tid – thread ID (TID).

[out] info – structure
containing information
about the thread.

[out] rc – return code.

Purpose

Detaches the current thread
from the interrupt handled in
its context.

Parameters

[out] rc – return code.

Purpose

Lets you get a thread a�inity
mask.

Parameters

[in] tid – thread ID (TID).

[out] mask – thread
a�inity mask.

[out] rc – return code.

Purpose

De�nes a thread a�inity
mask.

Parameters

[in] tid – thread ID (TID).

[in] mask – thread a�inity
mask.

[out] rc – return code.

Purpose

De�nes the thread scheduler
class.

Parameters

Convert a thread into a real-time thread that takes
up all the CPU time from all other threads, including
from other processes (it is recommended to
monitor the thread scheduler class).

271

GetSchedPolicy N/A

Methods of the handle.Handle endpoint (kl.core.Handle interface)

Method Method purpose and parameters

Potential
danger of

the
method

Copy Allows

[in] tid – thread ID (TID).

[in] policy – value
de�ning the thread
scheduler class.

[in] priority – value
de�ning the thread
priority.

[in] param – union
containing parameters of
a thread scheduler class.

[out] rc – return code.

Elevate the priority of a thread to reduce the CPU
time available to all other threads, including from
other processes (it is recommended to monitor
thread priority).

Purpose

Lets you get information
about the thread scheduler
class.

Parameters

[in] tid – thread ID (TID).

[out] policy – value
indicating the thread
scheduler class.

[out] priority – value
indicating the thread
priority.

[out] param – union
containing parameters of
a thread scheduler class.

[out] rc – return code.

Handles endpoint

This endpoint is intended for working with handles.

Information about methods of the endpoint is provided in the table below.

Purpose

272

the
kernel
memory
to be
used up
by
creating
a
multitude
of
objects
within it.

CreateUserObject

Allows
the
kernel
memory
to be
used up
by
creating
a
multitude
of
objects
within it.

Close N/A

Creates a handle based on an existing one.

Parameters

[in] inHandle – value whose binary representation consists of
multiple �elds, including an original handle �eld and an original
handle permissions mask �eld.

[in] newRightsMask – permissions mask of the created handle.

[in] copyBadge – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handle identi�es the resource transfer context
object.

[out] outHandle – value whose binary representation consists of
multiple �elds, including a �eld for the created handle and a �eld
for the permissions mask of the created handle.

[out] rc – return code.

Purpose

Creates a handle for a user resource.

Parameters

[in] type – handle type.

[in] rights – permissions mask of the created handle.

[in] context – pointer to the context of the user resource.

[in] ipcChannel – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handle is the server IPC handle of the IPC channel
associated with the user resource.

[out] riid – ID of the endpoint (RIID) associated with the user
resource.

[in] handle – value whose binary representation consists of
multiple �elds, including a �eld for the created handle and a �eld
for the permissions mask of the created handle. The handle
identi�es the user resource.

[out] rc – return code.

Purpose

Deletes a handle.

Parameters

273

Connect

Allows
the
kernel
memory
to be
used up
by
creating
a
multitude
of
objects
within it.

Disconnect N/A

SecurityConnect Allows a
multitude
of
possible
kernel
process
handle
values to
be used
up.

[in] handle – value whose binary representation consists of
multiple �elds, including a �eld for the deleted handle and a �eld
for the permissions mask of the deleted handle.

[out] rc – return code.

Purpose

Creates and connects the client-, server-, and listener IPC handles.

Parameters

[in] server – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handle identi�es the server process.

[in] srListener – listener IPC handle that was already created by
the previous method call, or the value 0xFFFFFFFF to create the
listener IPC handle.

[in] client – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handle identi�es the client process.

[out] outSrListerner – the created listener IPC handle.

[out] outSrEndpoint – server IPC handle.

[out] outClEndpoint – client IPC handle.

[out] rc – return code.

Purpose

Disconnects the client- and server IPC handles.

Parameters

[in] client – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handle is the client IPC handle.

[out] rc – return code.

Purpose

Creates a handle and connects it to a security interface.

Parameters

[out] client – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handle is used to query the security module
through the security interface.

274

SecurityDisconnect N/A

UidAlloc

This method is used for backward compatibility because handles are
currently being used instead of unique IDs.

Allows a
multitude
of
possible
unique ID
values to
be used
up.

UidFree
This method is used for backward compatibility because handles are
currently being used instead of unique IDs.

Allows a
unique ID
value
used by
another
process
to be
freed.

GetSidByHandle N/A

[out] rc – return code.

Purpose

Disconnects a handle from a security interface.

Parameters

[in] client – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handle is used to query the security module
through the security interface.

[out] rc – return code.

Purpose

Allocates a unique ID value.

Parameters

[out] uid – unique ID value.

[out] rc – return code.

Purpose

Frees the value of a unique ID. (This value must be freed so that it can
be available for re-use.)

Parameters

[in] uid – unique ID value.

[out] rc – return code.

Purpose

Lets you receive a security ID (SID) based on a handle.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld.

[out] sid – security ID (SID).

[out] rc – return code.

275

Revoke N/A

RevokeSubtree N/A

CreateBadge Allows
the
kernel
memory
to be
used up
by
creating
a
multitude
of
objects
within it.

Purpose

Deletes a handle and revokes its descendants.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld.

[out] rc – return code.

Purpose

Revokes the handles that make up the inheritance subtree of the
speci�ed handle.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handles forming the inheritance subtree of this
handle are revoked.

[in] badge – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handle identi�es the resource transfer context
object that de�nes the inheritance subtree to revoke. The root
node of this subtree is the handle that was generated by the
transfer of the handle that is de�ned through the handle
parameter and is associated with the resource transfer context
object.

[out] rc – return code.

Purpose

Creates a resource transfer context object and con�gures a
noti�cation mechanism for monitoring the life cycle of this object.

Parameters

[in] notify – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions
mask �eld. The handle identi�es the noti�cation receiver.

[in] notifyContext – ID of the "resource–event mask" entry in
the noti�cation receiver.

[in] badgeContext – pointer to the resource transfer context.

[out] badge – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions

276

Methods of the task.Task endpoint (kl.core.Task interface)

Method Method purpose and parameters Potential danger of the
method

Create

Allows the following:

LoadSeg Allows code to be loaded
into process memory for
subsequent execution of
that code.

mask �eld. The handle identi�es the resource transfer context
object.

[out] rc – return code.

Processes endpoint

This endpoint is intended for managing processes.

Information about methods of the endpoint is provided in the table below.

Purpose

Creates a process.

Parameters

[in] name – process name.

[in] eiid – process class name.

[in] path – name of the executable
�le in ROMFS.

[in] stackSize – size of the
process stack in bytes.

[in] priority – value de�ning the
priority of the initial thread.

[in] flags – �ags de�ning the
parameters for creating the
process.

[out] child – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the created
process.

[out] rc – return code.

Create a process that will
be privileged from the
perspective of the
solution security policy
(indicating the name of
the process class with
privileges).

Reserve a process name
so that another process
with this name cannot be
created.

Create a process that will
cause the operating
system to stop if an
unhandled exception
occurs.

Load code from an
executable �le into
process memory for
subsequent execution of
that code.

Exhaust RAM by creating
a multitude of processes.

Exhaust the kernel
memory by creating a
multitude of objects
within it.

Purpose

Loads a program image segment into
process memory from the MDL bu�er.

277

SetEntry
Creates conditions for
executing code loaded into
process memory.

LoadElfSyms N/A

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process.

[in] mdl – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er
containing the program image
segment.

[in] segAttr – structure
containing the parameters for
loading a program image segment.

[out] rc – return code.

[out] retaddr – base address of
the process virtual memory region
where the program image segment
is loaded.

Purpose

De�nes a process entry point.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process.

[in] entry – entry point of the
initial thread of the process.

[out] rc – return code.

Purpose

Loads the character table and string
table from MDL bu�ers into process
memory.

MDL bu�ers contain a character table
and string table from non-loadable
segments of the ELF �le. These tables
are necessary for receiving stack
backtrace data (information about call
stacks).

278

SetEnv Allows the kernel memory to
be used up by creating a
multitude of objects within it.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process.

[in] relocBase – base address for
loading the program image.

[in] symMdl – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er
containing the character table.

[in] symSegAttr – structure
containing the parameters for
loading the character table.

[in] symSize – size of the
character table in bytes.

[in] strMdl – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er
containing the string table.

[in] strSegAttr – structure
containing the parameters for
loading the string table.

[in] strSize – size of the string
table in bytes.

[out] rc – return code.

Purpose

Loads the parameters of a process
into its memory.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process.

[in] env – sequence containing
process parameters.

279

FreeSelfEnv N/A

Resume

Allows the following:

Exit N/A

Terminate

Allows another process to be
terminated if its handle is
available. (The handle
permissions mask must allow
termination of the process.)

GetExitInfo N/A

[out] rc – return code.

Purpose

Frees the memory of the current
process occupied by parameters that
were loaded by the SetEnv method.

Parameters

[out] rc – return code.

Purpose

Starts a process.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process.

[out] rc – return code.

Execute code loaded into
process memory.

Start a multitude of
previously created
processes to reduce the
computing resources
available to other
processes (it is
recommended to monitor
the priority of the initial
thread when the Create
method is called).

Purpose

Terminates the current process.

Parameters

[in] status – exit code of the
current process.

[out] rc – return code.

Purpose

Terminates a process.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process.

[out] rc – return code.

Purpose

280

GetThreadContext

Lets you disrupt isolation of
a process that has been
frozen due to an unhandled
exception. For example, the
received thread context can
contain the values of
variables.

GetNextVmRegion Lets you disrupt isolation of
a process that has been
frozen due to an unhandled

Lets you get information about a
terminated process.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the terminated
process.

[out] status – process exit code.

[out] info – union containing
information about the terminated
process.

[out] rc – return code.

Purpose

Lets you receive the context of a
thread that is part of a process that
has been frozen due to an unhandled
exception.

When a process is frozen, execution
of the process stops but its resources
are not freed. Therefore, data on this
process can be collected.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process that
is in a frozen state.

[in] index – thread index. It is used
to enumerate threads.
Enumeration starts with zero. A
thread in which an unhandled
exception occurred has a zero
index.

[out] context – sequence
containing the thread context.

[out] rc – return code.

Purpose

281

exception. Process isolation
is disrupted due to the
opened access to the
process memory region.

TerminateAfterFreezing Allows termination of a
process that has been frozen
due to an unhandled
exception. This will not allow
collection of data about this
process for diagnostic
purposes.

Lets you get information about the
virtual memory region belonging to a
process that has been frozen due to
an unhandled exception.

When a process is frozen, execution
of the process stops but its resources
are not freed. Therefore, data on this
process can be collected.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process that
is in a frozen state.

[in] after – address that is
followed by the virtual memory
region.

[out] next – base address of the
virtual memory region.

[out] size – size of the virtual
memory region in bytes.

[out] flags – �ags indicating the
parameters of the virtual memory
region.

[out] handle – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er
mapped to a virtual memory region.

[out] rc – return code.

Purpose

Terminates a process that has been
frozen due to an unhandled exception.

When a process is frozen, execution
of the process stops but its resources
are not freed. Therefore, data on this
process can be collected. A frozen
process cannot be restarted. It can
only be terminated.

Parameters

282

GetName N/A

GetPath N/A

GetInitialThreadPriority N/A

SetInitialThreadPriority Allows the priority of the
initial thread of a process to
be elevated to reduce the

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process that
is in a frozen state.

[out] rc – return code.

Purpose

Lets you get the name of the current
process.

Parameters

[out] name – process name.

[out] rc – return code.

Purpose

Lets you get the name of the
executable �le that was used to start
the current process.

Parameters

[out] path – name of the
executable �le in ROMFS.

[out] rc – return code.

Purpose

Lets you get the priority of the initial
thread of a process.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process.

[out] priority – value indicating
the priority of the initial thread.

[out] rc – return code.

Purpose

283

CPU time available to all
other threads, including from
other processes.

It is recommended to
monitor the priority of an
initial thread.

GetTasksList
Allows the kernel memory to
be used up by creating a
multitude of objects within it.

SetInitialThreadSchedPolicy Allows the following:

De�nes the priority of the initial thread
of a process.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process.

[in] priority – value de�ning the
priority of the initial thread.

[out] rc – return code.

Purpose

Lets you get information about
existing processes.

Parameters

[out] notice – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the noti�cation
receiver that is con�gured to
receive noti�cations regarding the
termination of processes.

[out] strings – sequence
containing the parameters of
processes.

[out] sids – sequence containing
the security IDs of processes (the
SID of each process).

[out] count – number of
processes.

[out] rc – return code.

Purpose

De�nes the scheduler class and
priority of the initial thread of a
process.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a

Convert the initial thread
of a process into a real-
time thread that takes up
all the CPU time from all
other threads, including
from other processes (it
is recommended to
monitor the scheduler
class of an initial thread).

284

ReseedAslr N/A

Methods of the sync.Sync endpoint (kl.core.Sync interface)

Method Method purpose and parameters Potential danger of the
method

Wait N/A

handle permissions mask �eld. The
handle identi�es the process.

[in] policy – value de�ning the
scheduler class of the initial thread.

[in] priority – value de�ning the
priority of the initial thread.

[in] params – union containing
parameters of the scheduler class
of the initial thread.

[out] rc – return code.

Elevate the priority of the
initial thread of a process
to reduce the CPU time
available to all other
threads, including from
other processes (it is
recommended to monitor
initial thread priority).

Purpose

De�nes the initial vector in the random
number generator for ASLR support.

A�ects the results from calling the
Allocate method of the virtual
memory endpoint in the context of
the de�ned process.

Parameters

[in] task – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the process.

[in] seed – sequence containing
the initial vector for random
number generation.

[out] rc – return code.

Synchronization endpoint

This endpoint is intended for working with futexes.

Information about methods of the endpoint is provided in the table below.

Purpose

Locks execution of the current thread if the futex value is equal to the
expected value.

285

Wake N/A

Methods of the fs.FS endpoint (kl.core.FS interface)

Method Method purpose and parameters Potential danger of the
method

Open Allows the kernel memory
to be used up by creating a
multitude of objects within
it.

Parameters

[in] ptr – pointer to the futex.

[in] val – expected value of the futex.

[in] delay – maximum lockout duration in milliseconds.

[out] outDelay – actual lockout duration in milliseconds.

[out] rc – return code.

Purpose

Resumes execution of threads that were blocked by a Wait method call
with the de�ned futex.

Parameters

[in] ptr – pointer to the futex.

[in] nThreads – maximum number of threads whose execution can
be resumed.

[out] wokenCnt – actual number of threads whose execution was
resumed.

[out] rc – return code.

File system endpoints

These endpoints are intended for working with the ROMFS �le system used by the KasperskyOS kernel.

Information about methods of endpoints is provided in the tables below.

Purpose

Opens a �le.

Parameters

[in] name – name of the �le.

[out] handle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the opened �le.

[out] rc – return code.

286

Close N/A

Read N/A

GetSize N/A

GetId N/A

Purpose

Closes a �le.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the opened �le.

[out] rc – return code.

Purpose

Reads data from a �le.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the opened �le.

[in] sectorNumber – data block number. Enumeration
starts with zero.

[out] read – size of the read data in bytes.

[out] data – sequence containing the read data.

[out] rc – return code.

Purpose

Lets you get the size of a �le.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the opened �le.

[out] size – �le size in bytes.

[out] rc – return code.

Purpose

Lets you get the unique ID of a �le.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle

287

Count N/A

GetInfo N/A

GetFsSize N/A

Methods of the fs.FSUnsafe endpoint (kl.core.FSUnsafe interface)

Method Method purpose and parameters Potential danger of the
method

Change Allows the following:

permissions mask �eld. The handle identi�es the opened �le.

[out] id – unique ID of the �le.

[out] rc – return code.

Purpose

Lets you get the number of �les in the �le system.

Parameters

[out] count – number of �les in the �le system.

[out] rc – return code.

Purpose

Lets you get the name and unique ID of a �le based on the �le
index.

Parameters

[in] index – �le index. Enumeration starts with zero.

[in] nameLenMax – bu�er size for saving the �le name.

[out] name – name of the �le.

[out] id – unique ID of the �le.

[out] rc – return code.

Purpose

Lets you get the size of the �le system.

Parameters

[out] fsSize – size of the �le system in bytes.

[out] rc – return code.

Purpose

Changes the �le system image.
Use an ROMFS image
containing arbitrary
programs and data.

288

Methods of the time.Time endpoint (kl.core.Time interface)

Method Method purpose and parameters Potential danger of
the method

SetSystemTime Allows the system
time to be set.

Methods of the hal.HAL endpoint (kl.core.HAL interface)

Method Method purpose and parameters Potential danger of the method

GetEnv Lets you get values of HAL parameters
that could contain critical system
information.

A di�erent ROMFS image loaded into process memory will be
used instead of the ROMFS image that was created during the
solution build.

Parameters

[in] base – pointer to the �le system image.

[in] size – size of the �le system image in bytes.

[out] rc – return code.

Gain read-access to
some kernel objects.

Time endpoint

This endpoint is intended for setting the system time.

Information about methods of the endpoint is provided in the table below.

Purpose

Sets the system time.

Parameters

[in] secs – time (in seconds) that has elapsed since January 1,
1970.

[in] nsecs – additional time (in nanoseconds) added to the
time de�ned through the secs parameter.

[out] rc – return code.

Hardware abstraction layer endpoint

This endpoint is intended for receiving the values of HAL parameters, working with privileged registers, clearing the
processor cache, and diagnostic output.

Information about methods of the endpoint is provided in the table below.

Purpose

Lets you get the value of a HAL parameter.

289

GetPrivReg

Lets you set up a data transfer channel
with a process that has access to the
SetPrivReg or SetPrivRegRange
method.

It is recommended to monitor the name
of a register.

SetPrivReg

Allows the following:

GetPrivRegRange

Lets you set up a data transfer channel
with a process that has access to the
SetPrivReg or SetPrivRegRange
method.

It is recommended to monitor the name
of the registers range and the register
o�set in this range.

SetPrivRegRange Allows the following:

Parameters

[in] name – name of the parameter.

[out] value – value of the parameter.

[out] rc – return code.

Purpose

Lets you get the value of a privileged
register.

Parameters

[in] reg – name of the register.

[out] val – value of the register.

[out] rc – return code.

Purpose

Sets the value of a privileged register.

Parameters

[in] reg – name of the register.

[in] val – value of the register.

[out] rc – return code.

Set the value of a privileged register.

Set up a data transfer channel with
a process that has access to the
GetPrivReg or GetPrivRegRange
method.

It is recommended to monitor the name
of a register.

Purpose

Lets you get the value of a privileged
register.

Parameters

[in] regRange – name of the registers
range.

[in] offset – register o�set in the
registers range.

[out] val – value of the register.

[out] rc – return code.

Purpose

Sets the value of a privileged register.
Set the value of a privileged register.

290

FlushCache Allows the processor cache to be
cleared.

DebugWrite Lets you populate diagnostic output
with �ctitious (uninformative) data.

Parameters

[in] regRange – name of the registers
range.

[in] offset – register o�set in the
registers range.

[in] val – value of the register.

[out] rc – return code.

Set up a data transfer channel with
a process that has access to the
GetPrivReg or GetPrivRegRange
method.

It is recommended to monitor the name
of the registers range and the register
o�set in this range.

Purpose

Clears the processor cache.

Parameters

[in] type – value de�ning the cache
type (data cache, instructions cache, or
joint data and instructions cache).

[in] va – base address of the virtual
memory region. The cache
corresponding to this region is cleared.

[in] size – size of the virtual memory
region. The cache corresponding to this
region is cleared.

[out] rc – return code.

Purpose

Puts data into the diagnostic output that is
written, for example, to a COM port or USB
port (version 3.0 or later, with DbC
support).

Parameters

[in] data – sequence containing the
data to be put into the diagnostic
output.

[out] rc – return code.

XHCI controller management endpoint

This endpoint is intended for disabling and re-enabling debug mode for the XHCI controller (with DbC support)
when it is restarted.

291

Methods of the xhcidbg.XHCIDBG endpoint (kl.core.XHCIDBG interface)

Method Method purpose and
parameters

Potential danger of the method

Start Lets you con�gure the XHCI controller to send diagnostic output
through a USB port (version 3.0 or later).

Stop Lets you con�gure the XHCI controller to not send diagnostic
output through a USB port (version 3.0 or later).

Methods of the audit.Audit endpoint (kl.core.Audit interface)

Method Method purpose and parameters Potential danger of the method

Open N/A

Close N/A

Information about methods of the endpoint is provided in the table below.

Purpose

Enables debug mode of
the XHCI controller.

Parameters

[out] rc – return code.

Purpose

Disables debug mode of
the XHCI controller.

Parameters

[out] rc – return code.

Audit endpoint

This endpoint is intended for reading messages from KasperskyOS kernel logs. There are two kernel logs: kss and
core. The kss log contains security audit data. The core log contains diagnostic output. (Diagnostic output
includes kernel output and the output of programs.)

Information about methods of the endpoint is provided in the table below.

Purpose

Opens the kernel log to read data from it.

Parameters

[in] name – name of the kernel log (kss or core).

[out] handle – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
kernel log.

[out] rc – return code.

Purpose

292

Read

Lets you extract messages from
the kernel log so that these
messages are not received by
another process.

Methods of the pro�ler.Pro�ler endpoint (kl.core.Pro�ler interface)

Method Method purpose and parameters

Potential
danger of

the
method

CreateUser Allows the
kernel
memory to
be used up
by
creating a
multitude
of objects
within it.

Closes the kernel log.

Parameters

[in] handle – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
kernel log.

[out] rc – return code.

Purpose

Lets you receive a message from a kernel log.

Parameters

[in] handle – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
kernel log.

[out] msg – sequence containing a message.

[out] outDropMsgs – number of messages that were
not included in the kernel log due to an over�ow of the
bu�er where this log is stored.

[out] rc – return code.

Pro�ling endpoint

This endpoint is intended for pro�ling user code and kernel code, receiving information about coverage of kernel
code and user code, and receiving values of performance counters.

Information about methods of the endpoint is provided in the table below.

Purpose

Assigns user code pro�ling.

Pro�ling generates statistics on the execution of user code in the
context of the de�ned thread. These statistics show how many times
the user code from di�erent sections of the de�ned virtual address
range was triggered during the pro�ling period.

Parameters

293

DestroyUser N/A

CreateKernel N/A

DestroyKernel N/A

[in] tid – thread ID (TID).

[in] from – starting address of the virtual address range for which
the statistics are being gathered.

[in] to – end address of the virtual address range for which the
statistics are being gathered.

[in] scale – value de�ning the granularity for dividing user code
within the virtual address range de�ned through the from and to
parameters. The address range will be divided into the speci�c
number of sections according to this value.

[out] rc – return code.

Purpose

Cancels user code pro�ling.

Parameters

[in] tid – thread ID (TID).

[out] rc – return code.

Purpose

Assigns kernel code pro�ling.

Pro�ling results in statistics on kernel code execution. These statistics
show how many times the kernel code was triggered from di�erent
sections of the memory address range of the process that called this
method. The range of virtual addresses occupied by kernel code are
identical for all processes. Kernel code execution statistics are gathered
in the aggregate and not within the context of one process or thread.

Parameters

[out] from – starting address of the virtual address range for which
the statistics are being gathered.

[out] to – end address of the virtual address range for which the
statistics are being gathered.

[out] scale – value indicating the granularity for dividing kernel code
within the virtual address range corresponding to the from and to
parameters. The address range will be divided into the speci�c
number of sections de�ned by this value.

[out] size – size of data containing the statistics in bytes.

[out] rc – return code.

Purpose

294

StartKernel N/A

StopKernel N/A

GetKernelData N/A

GetCoverageData N/A

Cancels kernel code pro�ling.

Parameters

[out] rc – return code.

Purpose

Starts kernel code pro�ling.

Parameters

[out] rc – return code.

Purpose

Stops kernel code pro�ling.

Parameters

[out] rc – return code.

Purpose

Lets you get data containing the kernel code execution statistics
received during pro�ling.

Parameters

[in] buf – pointer to the bu�er used to save data containing kernel
code execution statistics.

[out] rc – return code.

Purpose

Lets you get information about kernel code coverage.

Parameters

[in] index – index for enumerating object �les containing
instrumented code for gathering coverage data. Enumeration starts
with zero.

[out] buf – sequence containing information about the code
coverage of an object �le (in gcda format).

[out] size – size (in bytes) of data containing information about the
code coverage of an object �le.

[out] name – path to the *.gcda �le that was assigned during
compilation.

295

FlushGcov N/A

FlushGcovFile N/A

GetCounters N/A

Methods of the iommu.IOMMU endpoint (kl.core.IOMMU interface)

[out] rc – return code.

Purpose

Output of data on kernel code coverage in gcda format via UART.

Parameters

[out] rc – return code.

Purpose

Output of data on code coverage in gcda format via UART.

Parameters

[in] name – path to the *.gcda �le that was assigned during
compilation.

[in] buf – pointer to the bu�er containing information about code
coverage in gcda format.

[in] size – size of data containing code coverage information.

[out] rc – return code.

Purpose

Lets you get the values of performance counters.

Parameters

[in] prefix – pre�x for names of performance counters.

[in] names – sequence containing the names of performance
counters.

[out] values – sequence containing the values of performance
counters.

[out] rc – return code.

I/O memory management endpoint

This endpoint is intended for managing the isolation of physical memory regions used by devices on a PCIe bus.
(Isolation is provided by the IOMMU.)

Information about methods of the endpoint is provided in the table below.

296

Method Method purpose and parameters Potential danger of the method

Attach

Lets you attach a device on a PCIe bus managed by
another process to an IOMMU domain associated with the
current process, which leads to failure of the device.

It is recommended to monitor the address of a device on a
PCIe bus.

Detach N/A

Methods of the cm.CM endpoint (kl.core.CM interface)

Method Method purpose and parameters Potential danger of the method

Connect Lets you create a load on a
server by sending a large
number of requests to create
an IPC channel.

Purpose

Attaches a device on a PCIe bus to
the IOMMU domain associated with
the current process.

Parameters

[in] bdf – address of the device
on the PCIe bus in BDF format.

[out] rc – return code.

Purpose

Detaches the device on a PCIe bus
from the IOMMU domain
associated with the current
process.

Parameters

[in] bdf – address of the device
on the PCIe bus in BDF format.

[out] rc – return code.

Connections endpoint

This endpoint is intended for dynamic creation of IPC channels.

Information about methods of the endpoint is provided in the table below.

Purpose

Requests to create an IPC channel with a server for use of
the de�ned endpoint.

Parameters

[in] server – name of the server.

[in] service – quali�ed name of the endpoint.

[in] msecs – timeout for the request to be accepted by
the server, in milliseconds.

297

Listen N/A

Drop N/A

Accept N/A

[out] handle – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle is the client IPC
handle.

[out] id – endpoint ID.

[out] rc – return code.

Purpose

Checks for a client request to create an IPC channel for use
of an endpoint.

Parameters

[in] filter – �ctitious parameter.

[in] msecs – client request timeout, in milliseconds.

[out] client – client name.

[out] service – quali�ed name of the endpoint.

[out] rc – return code.

Purpose

Rejects a client request to create an IPC channel for use of
the de�ned endpoint.

Parameters

[in] client – client name.

[in] service – quali�ed name of the endpoint.

[out] rc – return code.

Purpose

Accepts a client request to create an IPC channel for use of
the de�ned endpoint.

Parameters

[in] client – client name.

[in] service – quali�ed name of the endpoint.

[in] id – endpoint ID.

[in] listener – value whose binary representation
consists of multiple �elds, including a handle �eld and a

298

Methods of the pm.PM endpoint (kl.core.PM interface)

Method Method purpose and parameters Potential danger of the method

Request Allows the computer power
mode to be changed.

SetCpusOnline Lets you disable and enable
processors.

GetCpusOnline N/A

handle permissions mask �eld. The handle is the listener
IPC handle.

[out] handle – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle is the server IPC
handle.

[out] rc – return code.

Power management endpoint

This endpoint is intended for changing the power management mode of a computer (for example, shutting down or
restarting the computer), and for enabling and disabling processors (processor cores).

Information about methods of the endpoint is provided in the table below.

Purpose

Requests to change the power mode of a computer.

Parameters

[in] request – value de�ning the necessary power
mode of the computer.

[out] rc – return code.

Purpose

Requests to enable and/or disable processors.

Parameters

[in] request – value de�ning a large number of
processors in the active state.

[in] timeout – request ful�llment timeout, in
milliseconds.

[out] rc – return code.

Purpose

Lets you get information regarding which processors
are in the active state.

Parameters

299

Methods of the notice.Notice endpoint (kl.core.Notice interface)

Method Method purpose and parameters
Potential

danger of the
method

Create

Allows the
kernel memory
to be used up
by creating a
multitude of
objects within
it.

SubscribeToObject Allows the
kernel memory
to be used up
by creating a
multitude of
objects within
it.

[out] online – value indicating the set of
processors in the active state.

[out] rc – return code.

Noti�cations endpoint

This endpoint is intended for working with noti�cations about events that occur with resources.

Information about methods of the endpoint is provided in the table below.

Purpose

Creates a noti�cation receiver.

Parameters

[out] notify – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
noti�cation receiver.

[out] rc – return code.

Purpose

Adds a "resource–event mask" entry to the noti�cation
receiver so that it can receive noti�cations about events
that occur with the de�ned resource and match the de�ned
event mask.

Parameters

[in] notify – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] object – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the resource.

[in] evMask – event mask.

[in] evId – ID of the "resource–event mask" entry. It is
used to identify the entry in received noti�cations.

[out] rc – return code.

300

UnsubscribeFromEvent N/A

UnsubscribeFromObject N/A

GetEvent N/A

Purpose

Deletes noti�cations matching a "resource–event mask"
entry with the de�ned ID from the noti�cation receiver.

Parameters

[in] notify – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] evId – ID of the "resource–event mask" entry.

[out] rc – return code.

Purpose

Deletes noti�cations matching the de�ned resource from
the noti�cation receiver.

Parameters

[in] notify – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] object – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the resource.

[out] rc – return code.

Purpose

Extracts noti�cations from the receiver.

Parameters

[in] notify – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] mdelay – timeout for noti�cations to appear in the
receiver, in milliseconds.

[out] evId – ID of the "resource–event mask" entry
matching the resource for which the noti�cations are
extracted.

[out] evMask – mask of events that occurred with the
resource.

301

DropAndWake N/A

SetObjectEvent N/A

[out] rc – return code.

Purpose

Deletes all "resource–event mask" entries from the de�ned
noti�cation receiver, resumes execution of all threads
awaiting an event associated with the de�ned noti�cation
receiver, and (optionally) prohibits the addition of "resource–
event mask" entries to the de�ned noti�cation receiver.

Parameters

[in] notify – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] finish – value de�ning whether or not the addition
of "resource–event mask" entries will be prohibited (0 –
will not be prohibited, 1 – will be prohibited).

[out] rc – return code.

Purpose

Signals that events from the de�ned event mask occurred
with the de�ned user resource.

Parameters

[in] object – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the user
resource.

[in] evMask – mask of events to be signaled.

[out] rc – return code.

Hypervisor endpoint

This endpoint is intended for working with a hypervisor.

Methods of the hypervisor.Hypervisor endpoint (kl.core.Hypervisor interface) are potentially dangerous.
Access to these methods can be granted only to the specialized vmapp program.

Trusted Execution Environment endpoints

These endpoints are intended for transferring data between a Trusted Execution Environment (TEE) and a Rich
Execution Environment (REE), and for obtaining access to the physical memory of the REE from the TEE.

302

Methods of the tee.TEE endpoint (kl.core.TEE interface)

Method Method purpose and parameters Potential danger of the method

Dispatch

Allows a process in a REE to receive a
response from a TEE regarding a
request from another process in the
REE.

FreeToken

Lets you free the values used by
other processes in a REE as unique
IDs of messages transferred
between a TEE and a REE.

Methods of the tee.TEEVMM endpoint (kl.core.TEEVMM interface)

Method Method purpose and parameters Potential danger of the
method

MdlAllocate Allows the kernel memory
to be used up by creating
a multitude of objects
within it.

Information about methods of endpoints is provided in the tables below.

Purpose

Sends and receives messages transferred between a
TEE and a REE.

This method is used in the TEE and in the REE.

Parameters

[in] msgIn – structure containing a request for
the TEE (when the method is called in the REE) or
a response for the REE (when the method is called
in the TEE).

[out] msgOut – structure containing a response
from the TEE (when the method is called in the
REE) or a request from the REE (when the method
is called in the TEE).

[out] rc – return code.

Purpose

Frees the values of unique IDs of messages
transferred between a TEE and a REE. (These values
must be freed so that they can become available for
re-use.)

This method is used in REE.

Parameters

[in] token – value of the unique ID of a message.

[out] rc – return code.

Purpose

Creates a blank MDL bu�er so that physical memory from an
REE can be subsequently added to it.

This method is used in TEE.

Parameters

[in] size – size of the MDL bu�er in bytes.

303

MdlAddFrame

Allows access to an
arbitrary region of the
physical memory of a REE
from a TEE.

Methods of the ipc.IPC endpoint (kl.core.IPC interface)

Method Method purpose and parameters
Potential

danger of the
method

CreateSyncObject Allows the
kernel memory
to be used up
by creating a
multitude of
objects within
it.

[in] prot – �ags de�ning the access rights to the MDL
bu�er.

[out] handle – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
MDL bu�er.

[out] rc – return code.

Purpose

Adds a REE physical memory region to the blank MDL bu�er
created by the MdlAllocate method.

This method is used in TEE.

Parameters

[in] handle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the MDL
bu�er.

[in] pa – base address of the physical memory region.

[in] pages – size of the physical memory region, in
memory pages.

[out] rc – return code.

IPC interrupt endpoint

This endpoint is intended for interrupting the Call() and Recv() locking system calls. (For example, this may be
required to correctly terminate a process.)

Information about methods of the endpoint is provided in the table below.

Purpose

Creates an IPC synchronization object.

An IPC synchronization object is used to interrupt Call() and
Recv() locking system calls in all threads of the current process.
A Call() can be interrupted only when it is awaiting a Recv()
call by the server. Recv() can be interrupted only when it is
waiting to receive data from a client.

304

SetInterrupt N/A

ClearInterrupt N/A

Methods of the cpufreq.CpuFreq endpoint (kl.core.CpuFreq interface)

Method Method purpose and parameters

Potential
danger of

the
method

The handle of an IPC synchronization object cannot be
transferred to another process because the necessary �ag for
this operation is not set in the permissions mask of this handle.

Parameters

[out] syncHandle – value whose binary representation
consists of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the IPC
synchronization object.

[out] rc – return code.

Purpose

Switches the de�ned IPC synchronization object to a state in
which the Call() and Recv() system calls are interrupted.

Parameters

[in] syncHandle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the IPC
synchronization object.

[out] rc – return code.

Purpose

Switches the de�ned IPC synchronization object to a state in
which the Call() and Recv() system calls are not interrupted.

Parameters

[in] syncHandle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the IPC
synchronization object.

[out] rc – return code.

CPU frequency management endpoint

This endpoint is intended for changing the frequency of processors (processor cores).

Information about methods of the endpoint is provided in the table below.

305

GetLayout N/A

GetCurOppId N/A

SetOppId

Lets you
change
the
frequency
of a
processor
group.

Purpose

Allows you to receive information about processor groups.

Processor group information lists the existing processor groups while
indicating the possible values of the performance parameter for each of them.
This parameter is a combination of the matching frequency and voltage
(Operating Performance Point, or OPP). The frequency is indicated in kiloherz
(kHz) and the voltage is indicated in microvolts (µV).

Parameters

[out] layout – sequence containing information about processor groups.

[out] rc – return code.

Purpose

Lets you get the index of the current OPP for the de�ned processor group.

Parameters

[in] cpuGroupId – index of the processor group. Enumeration starts with
zero.

[out] oppId – index of the current OPP. Enumeration starts with zero.

[out] rc – return code.

Purpose

Sets the de�ned OPP for the de�ned processor group.

Parameters

[in] GroupId – index of the processor group. Enumeration starts with zero.

[in] oppId – OPP index. Enumeration starts with zero.

[out] rc – return code.

306

Security patterns are described in a multitude of information security resources. Each pattern is
accompanied by a list of the resources that were used to prepare its description.

Description

Alternate names

Context

Security patterns for development under KasperskyOS

Each KasperskyOS-based solution has speci�c usage scenarios and is designed to counteract speci�c security
threats. Nonetheless, there are some typical scenarios and threats encountered in many di�erent solutions. This
section describes the typical risks and threats, and contains a description of architectural patterns that can be
employed to increase the security of a solution.

A security pattern (or template) describes a speci�c recurring security issue that arises in certain known contexts,
and provides a well-proven, general scheme for resolving this kind of security issue. A pattern is not a �nished
project that can be converted directly into code. Instead, it is a solution to a general problem encountered in
various projects.

A security pattern system is a set of security patterns together with instructions on their implementation,
combination, and practical use when designing secure software systems.

Security patterns resolve security issues at di�erent levels, beginning with patterns at the architectural level,
including high-level design of the system, and ending with implementation-level patterns that contain
recommendations on how to implement functions or methods.

This section describes the set of security patterns whose implementation examples are provided in KasperskyOS
Community Edition.

Distrustful Decomposition pattern

When using a monolithic application, a single process must be granted all the privileges necessary for the
application to operate. This issue is resolved by the Distrustful Decomposition pattern.

The purpose of the Distrustful Decomposition pattern is to divide application functionality among individual
processes that require di�erent levels of privileges, and to control the interaction between these processes
instead of creating a monolithic application.

Using the Distrustful Decomposition pattern reduces the following:

Attack surface for each process.

Functionality and data that a hacker will be able to access if one of the processes is compromised.

Privilege Reduction.

307

Problem

Solution

Structure

Operation

Implementation recommendations

Di�erent functions of an application require di�erent levels of privileges.

An unsophisticated implementation of an application combines many functions requiring di�erent privileges into
one component. This component would need to be run with the maximum level of privileges required for any one of
these many functions.

The Distrustful Decomposition pattern divides functionality among individual processes and isolates
potential vulnerabilities within a small subset of the system. A cybercriminal who conducts a successful attack will
be able to use only the functionality and data of a single compromised component instead of the entire
application.

This pattern divides one monolithic application into multiple applications that are run as individual processes that
could potentially have di�erent privileges. Each process implements a small, clearly de�ned set of functions of the
application. Processes use interprocess communication mechanism to exchange data.

In KasperskyOS, an application is divided into processes.

Processes can exchange messages via IPC.

A user or remote system connects to the process that provides the necessary functionality with the level of
privileges su�icient to perform the requested functions.

308

Specialized implementation in KasperskyOS

Linked patterns

Implementation examples

Sources of information

Interaction between processes can be unidirectional or bidirectional. It is recommended to always use
unidirectional interaction whenever possible. Otherwise, the potential attack surface of individual components
increases, which reduces the overall security of the entire system. If bidirectional IPC is used, processes should not
trust bidirectional data exchange. For example, if a �le system is used for IPC, �le contents cannot be trusted.

In universal operating systems such as Linux or Windows, this pattern does not use anything except the standard
process/privileges model that already exists in these operating systems. Each program is run in its own process
space with potentially di�erent privileges of the speci�c user in each process. However, an attack on the OS kernel
would reduce the e�ectiveness of this pattern.

Use of this pattern when developing for KasperskyOS means that control over processes and IPC is entrusted to
the microkernel, which is di�icult to successfully attack. The Kaspersky Security Module is used for IPC control.

Use of KasperskyOS mechanisms ensures a high level of reliability of the software system with the same or less
e�ort required from the developer when compared to the use of this pattern in programs running under universal
operating systems.

In addition, KasperskyOS provides the capability for �exible con�guration of security policies. Moreover, the
process of de�ning and editing security policies is potentially independent of the process of developing the
applications.

Use of the Distrustful Decomposition pattern involves use of the Defer to Kernel and Policy Decision Point
patterns.

Examples of an implementation of the Distrustful Decomposition pattern:

Secure Logger

Separate Storage

The Distrustful Decomposition pattern is described in detail in the following resources:

Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, Kazuya Togashi (JPCERT/CC), "Secure Design
Patterns" (March-October 2009). Software Engineering Institute.
https://resources.sei.cmu.edu/asset_�les/TechnicalReport/2009_005_001_15110.pdf

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Secure Logger example

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2009_005_001_15110.pdf
https://dc.etsu.edu/etd/1119

309

Example architecture

The Secure Logger example demonstrates use of the Distrustful Decomposition pattern for separating event
log read/write functionality.

The security goal of the Secure Logger example is to prevent any possibility of distortion or deletion of
information from the event log. This example utilizes the capabilities provided by KasperskyOS to achieve this
security goal.

A logging system can be examined by distinguishing the following functional steps:

Generate information to be written to the log.

Save information to the log.

Read entries from the log.

Provide entries in a convenient format for the consumer.

Accordingly, the logging subsystem can be divided into four processes depending on the required functional
capabilities of each process.

For this purpose, the Secure Logger example contains the following four programs: Application, Logger,
Reader and LogViewer.

The Application program initiates the creation of entries in the event log maintained by the Logger program.

The Logger program creates entries in the log and writes them to the disk.

The Reader program reads entries from the disk to send them to the LogViewer program.

The LogViewer program sends entries to the user.

The IPC interface provided by the Logger program is intended only for writing to storage. The IPC interface of the
Reader program is intended only for reading from storage. The example architecture looks as follows:

The Application program uses the interface of the Logger program to save log entries.

310

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/secure_logger

Building and running example

Example architecture

The LogViewer program uses the interface of the Reader program to read the log entries and present them
to a user.

The LogViewer program normally has external channels for interacting with a user (for example, to receive data
write commands and to provide data to a user). Naturally, this program is an untrusted component of the system,
and therefore could potentially be used to conduct an attack. However, even if a successful attack results in the
in�ltration of unauthorized executable code into the LogViewer program, information in the log cannot be
distorted through this program. This is because the program can only utilize the data read interface, which cannot
actually be used to distort or delete data. Moreover, the LogViewer program does not have the capability to gain
access to other interfaces because this access is controlled by the security module.

A security policy in the Secure Logger example has the following characteristics:

The Application program has the capability to query the Logger program to create a new entry in the event
log.

The LogViewer program has the capability to query the Reader program to read entries from the event log.

The Application program does not have the capability to query the Reader program to read entries from the
event log.

The LogViewer program does not have the capability to query the Logger program to create a new entry in
the event log.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

Separate Storage example

The Separate Storage example demonstrates use of the Distrustful Decomposition pattern to separate data
storage for trusted and untrusted applications.

The Separate Storage example contains two user programs: UserManager and CertificateManager.

These programs work with data located in the corresponding �les:

The UserManager program works with data from the userlist.txt �le.

The CertificateManager program works with data from the certificate.cer �le.

311

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/separate_storage

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.

Each of these programs uses its own instance of the VFS program to access a separate �le system. Each VFS
program includes a block device driver linked to an individual logical drive partition. The UserManager program
does not have access to the �le system of the CertificateManager program, and vice versa.

This architecture guarantees that if there is an attack or error in any of the UserManager or
CertificateManager programs, this program will not be able to access any �le that was not intended for the
speci�c program's operations.

A security policy in the Separate Storage example has the following characteristics:

The UserManager program has access to the �le system only through the VfsUser program.

The CertificateManager program has access to the �le system only through the VfsCertificate program.

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

312

$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -sd
hdd.img -kernel kos-qemu-image

Preparing an SD card to run on Raspberry Pi 4 B

To run the Separate Storage example on Raspberry Pi 4 B, you can use an SD card prepared for running
the embed_ext2_with_separate_vfs example on Raspberry Pi 4 B, after copying the userlist.txt and
certificate.cer �les to the appropriate partitions.

Description

Alternate names

Context

See also Building and running examples section.

To run the Separate Storage example on Raspberry Pi 4 B, the following additional actions are necessary:

The SD card must contain both a bootable partition with the solution image as well as 2 additional partitions
with the ext2 or ext3 �le systems.

The �rst additional partition must contain the userlist.txt �le from the ./resources/files/ directory.

The second additional partition must contain the certificate.cer �le from the ./resources/files/
directory.

Defer to Kernel pattern

The Defer to Kernel pattern lets you take advantage of permission control at the OS kernel level.

The purpose of this pattern is to utilize mechanisms available at the OS kernel level to clearly separate the
functionality requiring elevated privileges from the functionality that does not require elevated privileges. By using
kernel mechanisms, we do not have to implement new tools for arbitrating security decisions at the user level.

Policy Enforcement Point (PEP), Protected System, Enclave.

The Defer to Kernel pattern is applicable if the system has the following characteristics:

The system has processes that run without elevated privileges, including user processes.

Some system functions require elevated privileges that must be veri�ed before processes are granted access
to data.

You need to verify not only the privileges of the requesting process, but also the overall permissibility of the
requested operation within the operational context of the entire system and its overall security.

313

Problem

Solution

Structure

Operation

Implementation recommendations

When functionality is divided among various processes with di�erent levels of privileges, these privileges must be
veri�ed when a request is made from one process to another. These veri�cations must be carried out and their
resulting permissions must be granted by trusted code that has a minimal risk of being compromised. The
trustworthiness of application code is almost always questionable due to its sheer volume and due to its primary
orientation toward implementation of functional requirements.

Clearly separate privileged functionality and data from non-privileged functionality and data at the process level,
and give the OS kernel control of interprocess communication (IPC), including veri�cation of access rights when
there is a request for functionality or data requiring elevated privileges, and veri�cation of the overall state of the
system and the states of individual processes at the time of the request.

Functionality and management of data with various privileges are compartmentalized among processes.

The OS kernel ensures isolation of processes.

Process-1 wants to request privileged functionality or data from Process-2 using IPC.

The kernel controls IPC and allows or denies communication based on security policies and based on the
available information regarding the operational context and state of Process-1.

To ensure that a speci�c implementation of a pattern operates securely and reliably, the following is required:

Complete and guaranteed isolation of processes must be ensured.

Absolutely all IPC interactions must be controlled by the kernel.

The trustworthiness of the kernel must be ensured through its own means of protection against compromise.

Isolation

Inability to bypass the kernel

Kernel self-defense

314

Specialized implementation in KasperskyOS

Linked patterns

Impacts

Implementation examples

Sources of information

The kernel requires a certain level of guaranteed security and reliability.

Access permissions must be computed at the OS level, and must not be implemented in application code.

For this purpose, tools must be provided for describing access policies so that security policies are detached
from the business logic.

Provability

Capability for external computation of access permissions

The KasperskyOS kernel guarantees isolation of processes and serves as a Policy Enforcement Point (PEP).

The Defer to Kernel pattern is a special case of the Distrustful Decomposition and Policy Decision Point
patterns. The Policy Decision Point pattern de�nes the abstraction process that intercepts all requests to
resources and veri�es that they comply with the de�ned security policy. The distinctive feature of the Defer to
Kernel pattern is that the veri�cation process is performed by the OS kernel, which is a more reliable and portable
solution that reduces the time spent on development and testing.

By making the OS kernel responsible for applying the access policy, you separate the security policy from the
business logic (which may be very complicated) and thereby simplify development and improve portability through
the use of OS kernel functions.

This also makes it possible to prove the overall security of a solution by simply demonstrating that the kernel is
operating correctly. The di�iculty in proving correct execution of code grows nonlinearly as the size of the code
increases. The Defer to Kernel pattern minimizes the amount of trusted code, provided that the OS kernel
itself is not too large.

Example of a Defer to Kernel pattern implementation: Defer to Kernel example.

The Defer to Kernel pattern is described in detail in the following resources:

Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, Kazuya Togashi (JPCERT/CC), "Secure Design
Patterns" (March-October 2009). Software Engineering Institute.
https://resources.sei.cmu.edu/asset_�les/TechnicalReport/2009_005_001_15110.pdf

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Schumacher, Markus, Fernandez-Buglioni, Eduardo, Hybertson, Duane, Buschmann, Frank, and Sommerlad,
Peter. "Security Patterns: Integrating Security and Systems Engineering" (2006).

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2009_005_001_15110.pdf
https://dc.etsu.edu/etd/1119

315

Dynamically created IPC channels

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/defer_to_kernel

Building and running example

Defer to Kernel example

The Defer to Kernel example demonstrates the use of Defer to Kernel and Policy Decision Point patterns.

The Defer to Kernel example contains three user programs: PictureManager, ValidPictureClient and
NonValidPictureClient.

In this example, the ValidPictureClient and NonValidPictureClient programs query the PictureManager
program to receive information.

Only the ValidPictureClient program is allowed to interact with the PictureManager program.

The KasperskyOS kernel guarantees isolation of running programs (processes).

Control of interaction between programs in KasperskyOS is delegated to the Kaspersky Security Module. The
subsystem analyzes each sent request and response and decides whether to allow or deny delivery based on the
de�ned security policy.

A security policy in the Defer to Kernel example has the following characteristics:

The ValidPictureClient program is explicitly allowed to interact with the PictureManager program.

The NonValidPictureClient program is explicitly not allowed to interact with the PictureManager program.
This means that this interaction is denied (based on the Default Deny principle).

The example also demonstrates the capability to dynamically create IPC channels between processes. IPC
channels are dynamically created by using a name server, which is a special kernel service provided by the
NameServer program. The capability to dynamically create IPC channels allows you to change the topology of
interaction between programs on the �y.

Any program that is allowed to interact with NameServer via IPC can register its own interfaces in the name server.
Another program can request the registered interfaces from the name server, and then connect to the relevant
interface.

The security module is used to control interactions via IPC (even those that were created dynamically).

The code of the example and build scripts are available at the following path:

See Building and running examples section.

316

Description

Alternate names

Context

Problem

Solution

Structure

Policy Decision Point pattern

The Policy Decision Point pattern encapsulates the computation of decisions based on security model
methods into a separate system component that ensures that these security methods are performed in their full
scope and correct sequence.

Check Point, Access Decision Function.

The system has functions with di�erent levels of privileges, and the security policy is complex (contains many
security model methods bound to security events).

If security policy checks are divided among di�erent system components, the following issues arise:

You have to carefully make sure that all necessary checks are performed in all required cases.

It is di�icult to ensure that all checks are performed in the correct order.

It is di�icult to prove that the veri�cation system is operating correctly, has no con�icts, and its integrity has
not been compromised.

The security policy is linked to the business logic. This means that any modi�cation of the security policy
requires changes to the business logic, which complicates support and increases the likelihood of errors.

All veri�cations of security policy compliance are conducted in a separate component called a Policy Decision
Point (PDP). This component is responsible for ensuring that veri�cations are conducted in their correct sequence
and scope. Policy checks are separated from the code that implements the business logic.

317

Operation

Implementation recommendations

Specialized implementation in KasperskyOS

Impacts

A Policy Enforcement Point (PEP) receives a request to access functionality or data.

For example, the PEP may be the OS kernel. For more details, refer to Defer to Kernel pattern.

The PEP gathers the request attributes required for making decisions on access control.

The PEP requests an access control decision from the Policy Decision Point (PDP).

The PDP computes a decision on whether to grant access based on the security policy and based on the
information received in the request from the PEP.

The PEP denies or allows interaction based on the decision of the PDP.

Implementations must take into account the problem of "Veri�cation time vs. Usage time". For example, if a security
policy depends on the quickly changing status of a speci�c system object, a computed decision loses its relevance
as quickly as the status changes. In a system that utilizes the pattern, you must take care to
minimize the time interval between the access decision and the time when the request based on this decision is
ful�lled.

Policy Decision Point

The KasperskyOS kernel guarantees isolation of processes and serves as a Policy Enforcement Point (PEP).

Control of interaction between processes in KasperskyOS is delegated to the Kaspersky Security Module. This
module analyzes each sent request and response and decides whether to allow or deny delivery based on the
de�ned security policy. Therefore, the Kaspersky Security Module performs the role of the Policy Decision Point
(PDP).

This pattern lets you con�gure a security policy without making any modi�cations to the code that implements the
business logic, and delegate system support involving information security.

318

Linked patterns

Implementation examples

Sources of information

Description

Example

Context

Use of the Policy Decision Point pattern involves use of the Distrustful Decomposition and Defer to Kernel
patterns.

Example of a Policy Decision Point pattern implementation: Defer to Kernel example.

The Policy Decision Point pattern is described in detail in the following resources:

Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, Kazuya Togashi (JPCERT/CC), "Secure Design
Patterns" (March-October 2009). Software Engineering Institute.
https://resources.sei.cmu.edu/asset_�les/TechnicalReport/2009_005_001_15110.pdf

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Schumacher, Markus, Fernandez-Buglioni, Eduardo, Hybertson, Duane, Buschmann, Frank, and Sommerlad,
Peter. "Security Patterns: Integrating Security and Systems Engineering" (2006).

Bob Blakley, Craig Heath, and members of The Open Group Security Forum. "Security Design Patterns" (April
2004). The Open Group. https://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf

Privilege Separation pattern

The Privilege Separation pattern involves the use of non-privileged isolated system modules for interaction
with clients (other modules or users) that do not have any privileges. The purpose of the Privilege Separation
pattern is to reduce the amount of code that is executed with special privileges without impacting or restricting
application functionality.

The Privilege Separation pattern is a special case of the Distrustful Decomposition pattern.

An unauthenticated user connects to a system that has functions requiring elevated privileges.

The system has components with a large attack surface due to their high number of connections with unsafe
sources and/or a complicated, potentially error-prone implementation.

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2009_005_001_15110.pdf
https://dc.etsu.edu/etd/1119
https://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf

319

Problem

Solution

Operation

Recommendations on implementation in KasperskyOS

Impacts

Implementation examples

Sources of information

When a client with unknown privileges interacts with a privileged component of the system, there are risks that the
data and functionality accessible to that component could be compromised.

Interactions with unsafe clients must be conducted only through specially allocated components that have no
privileges. The Privilege Separation pattern does not modify system functionality. Instead, it merely
separates functionality into components with di�erent privileges.

Pattern operations can be divided into two phases:

 The client is not yet authenticated. It sends a request to a privileged master process. The
master process creates a child process with no privileges (and no access to the �le system). This child process
performs client authentication.

 The client is authenticated and authorized. The privileged master process creates a new
child process that has privileges corresponding to the permissions of the client. This process is responsible for
all subsequent interaction with the client.

Pre-Authentication.

Post-Authentication.

At the phase, the master process can save the state of each non-privileged process in the
form of a �nite-state machine and change the state of the �nite-state machine during authentication.

Pre-Authentication

Requests from child processes to the master process are performed using standard IPC mechanisms. However,
interaction control is conducted using the Kaspersky Security Module.

If attackers gain control of a non-privileged process, they will not gain access to any privileged functions or data. If
attackers gain control of an authorized process, they will obtain only the privileges of this process.

In addition, code that is organized in this manner is easier to check and test. You just have to pay special attention
to the functionality that operates with elevated privileges.

Example of a Privilege Separation pattern implementation: Device Access example.

The Privilege Separation pattern is described in detail in the following resources:

Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, Kazuya Togashi (JPCERT/CC), "Secure Design
Patterns" (March-October 2009). Software Engineering Institute.

320

Example architecture

https://resources.sei.cmu.edu/asset_�les/TechnicalReport/2009_005_001_15110.pdf

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Device Access example

The Device Access example demonstrates use of the Privilege Separation pattern.

The example contains the following three programs: Device, LoginManager and Storage.

In this example, the Device program queries the Storage program to receive information and queries the
LoginManager program for authorization.

The Device program obtains access to the Storage program after successful authorization.

This example demonstrates the capability to separate the authorization logic and the data access logic into
independent components. This separation guarantees that data access can be opened only after successful
authorization. The security module monitors whether authorization was successfully completed. This architecture
also enables independent development and testing of the authorization logic and the data access provision logic.

A security policy in the Device Access example has the following characteristics:

The Device program has the capability to query the LoginManager program for authorization.

Calls of the GetInfo() method of the Storage program are managed by methods of the Flow security model:

The �nite-state machine described in the session object con�guration has two states: unauthenticated
and authenticated.

The initial state is unauthenticated.

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2009_005_001_15110.pdf
https://dc.etsu.edu/etd/1119

321

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/device_access

Building and running example

Description

Context

Problem

Solution

Only transitions from unauthenticated to authenticated and vice versa are allowed.

The session object is created when the Device program is started.

When the Device program successfully calls the Login() method of the LoginManager program, the
state of the session object changes to authenticated.

When the Device program successfully calls the Logout() method of the LoginManager program, the
state of the session object changes to unauthenticated.

When the Device program calls the GetInfo() method of the Storage program, the current state of the
session object is veri�ed. The call is allowed only if the current state of the object is authenticated.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

Information Obscurity pattern

The purpose of the Information Obscurity pattern is to encrypt con�dential data in otherwise unsafe
environments and thereby protect against data theft.

This pattern should be used when data is frequently transferred between parts of a system and/or between the
system and other (external) systems.

Con�dential data may be transmitted through an untrusted environment within one system (through untrusted
components) or between di�erent systems (through untrusted networks). If this environment is compromised,
con�dential data could be intercepted by a cybercriminal.

322

Implementation examples

Sources of information

Example architecture

1. Con�gure interaction between the data source and the device over the HTTPS protocol. This helps prevent
unauthorized surveillance of HTTP tra�ic and MITM (man-in-the-middle) attacks.

2. Generate a shared secret between the data source and the information processing subsystem.

The security policy must separate individual data based on its speci�c level of con�dentiality so that you can
determine which data should be encrypted and which encryption algorithms should be used. Encryption and
decryption may take a lot of time, therefore their use should be limited whenever possible. The Information
Obscurity pattern resolves this issue by utilizing a speci�c con�dentiality level to determine what exactly must be
concealed with encryption.

Example of an Information Obscurity pattern implementation: Secure Login example.

The Information Obscurity pattern is described in detail in the following resources:

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Schumacher, Markus, Fernandez-Buglioni, Eduardo, Hybertson, Duane, Buschmann, Frank, and Sommerlad,
Peter. "Security Patterns: Integrating Security and Systems Engineering" (2006).

Secure Login (Civetweb, TLS-terminator) example

The Secure Login example demonstrates use of the Information Obscurity pattern. This example demonstrates
the capability to transmit critical system information through an untrusted environment.

This example simulates the acquisition of remote access to an IoT device by sending user account credentials (user
name and password) to this device. The untrusted environment within the IoT device is the web server that
responds to requests from users. Practical experience has shown that this kind of web server is easy to detect and
frequently attacked successfully because IoT devices do not have built-in tools for protection against intrusion
and other attacks. Users also gain access to the IoT device through an untrusted network. Obviously, encryption
algorithms must be used in these types of conditions to protect user account credentials from being
compromised.

In terms of the architecture in these systems, the following objects can be distinguished:

Data source: user's browser.

Point of communication with the device: web server.

Subsystem for processing information from the user: authentication subsystem.

To employ cryptographic protection, the following steps must be completed:

https://dc.etsu.edu/etd/1119

323

3. Use this secret to encrypt information on the data source side and to decrypt the information on the
information processing subsystem side. This helps prevent data within the device from being compromised (at
the point of communication).

1. Using their browser, the user opens the page at https://localhost:1106 (when running the example on
QEMU) or at https://<Raspberry Pi IP address>:1106 (when running the example on Raspberry Pi 4 B).
HTTP tra�ic between the browser and TLS terminator will be transmitted in encrypted form, but the web
server will work only with unencrypted HTTP tra�ic.
This example uses a self-signed certi�cate, so most up-to-date browsers will warn you that the connection is
not secure. You need to agree to use this "insecure" connection, which will actually be encrypted despite the
warning. In some browsers, you may encounter the message "TLS: Error performing handshake:
-30592: errno = Success".

2. The Civetweb web server running in the WebServer program displays the index.html page containing an
authentication prompt.

3. The user clicks the Log in button.

4. The WebServer program queries the AuthService program via IPC to get the page containing the user name
and password input form.

5. The AuthService program performs the following actions:

6. The Civetweb web server running in the WebServer program displays the auth.html page containing the
user name and password input form.

7. The user completes the form and clicks the Submit button (correct data for authentication is contained in the
�le secure_login/auth_service/src/authservice.cpp).

8. The auth.html page code executed by the browser performs the following actions:

The Secure Login example includes the following components:

Civetweb web server (untrusted component, WebServer program).

User authentication subsystem (trusted component, AuthService program).

TLS terminator (trusted component, TlsEntity program). This component supports the TLS (transport layer
security) mechanism. Together with the web server, the TLS terminator supports the HTTPS protocol on the
device side (the web server interacts with the browser through the TLS terminator).

The user authentication process occurs as follows:

Generates a private key and public settings, and calculates the public key based on the Di�ie-Hellman
algorithm.

Creates the auth.html page containing the user name and password input form (the page code contains
the public settings and the public key).

Transfers the received page to the WebServer program via IPC.

Generates a private key and calculates the public key and shared secret key based on the Di�ie-Hellman
algorithm.

Encrypts the password by using the XOR operation with the shared secret key.

324

9. The WebServer program queries the AuthService program via IPC to get the page containing the
authentication result by transmitting the user name, encrypted password and public key.

10. The AuthService program performs the following actions:

11. The Civetweb web server running in the WebServer program displays the result_err.html page or the
result_ok.html page.

Unit testing using the GoogleTest framework

1. Go to the directory with the Secure Login example.

2. Delete the build directory containing the results of the previous build by running the following command:

sudo rm -rf build/

3. Open the cross-build.sh script �le in a text editor.

4. Add the -D RUN_TESTS="y" \ build �ag to the script (for example, after the -
D CMAKE_BUILD_TYPE:STRING=Release \ build �ag).

5. Save the script �le and then run the command:

$ sudo ./cross-build.sh

Transmits the user name, encrypted password and public key to the web server.

Calculates the shared secret key based on the Di�ie-Hellman algorithm.

Decrypts the password by using the shared secret key.

Returns the result_err.html page or result_ok.html page depending on the authentication result.

This way, con�dential data is transmitted only in encrypted form through the network and web server. In addition,
all HTTP tra�ic is transmitted through the network in encrypted form. Data is transferred between components via
IPC interactions controlled by the Kaspersky Security Module.

In addition to the Information Obscurity pattern, the Secure Login example demonstrates use of the GoogleTest
framework to conduct unit testing of applications developed for KasperskyOS (this framework is provided in
KasperskyOS Community Edition).

The source code of the tests is located at the following path:

/opt/KasperskyOS-Community-Edition-<version>/examples/secure_login/tests

These unit tests are designed for veri�cation of certain CPP modules of the authentication subsystem and web
server.

To start testing:

325

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/secure_login

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -net
nic,macaddr=52:54:00:12:34:56 -net user,hostfwd=tcp::1106-:1106 -sd sdcard0.img -
kernel kos-qemu-image

Tests are conducted in the TestEntity program. The AuthService and WebServer programs are not started in
this case. Therefore, the example cannot be used to demonstrate the Information Obscurity pattern when testing
is being conducted.

After testing is �nished, the results of the tests are displayed.

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

See also Building and running examples section.

326

hello.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, const char *argv[])

{

 fprintf(stderr,"Hello world!\n");

 return EXIT_SUCCESS;

}

aarch64-kos-gcc -o hello hello.c

The program name (and, consequently, the name of the executable �le) must begin with an uppercase letter.

Appendices

This section provides additional information to supplement the primary text of the document.

Additional examples

This section provides descriptions of additional examples that are included in KasperskyOS Community Edition.

See also the descriptions of security pattern implementation examples:

Secure Logger example

Separate Storage example

Defer to Kernel example

Device Access example

Secure Login (Civetweb, TLS-terminator) example

hello example

The hello.c code looks familiar and simple to a developer that uses C, and is fully compatible with POSIX:

Compile this code using aarch64-kos-gcc, which is included in the development tools of KasperskyOS
Community Edition:

327

EDL description of the Hello process class

Hello.edl

/* The process class name follows the reserved word "entity". */
entity Hello

The process class name must begin with an uppercase letter. The name of an EDL �le must match the name
of the class that it describes.

Creating the Einit initializing program

When KasperskyOS is loaded, the kernel starts a program named Einit. The Einit program starts all other
programs included in the solution, which means that it serves as the initializing program.
The KasperskyOS Community Edition toolkit includes the einit tool, which lets you generate the code of the
initializing program (einit.c) based on the init description. In the example provided below, the �le containing
the init description is named init.yaml, but it can have any name.
For more details, refer to "Starting processes".

init.yaml

entities:
Start the "Hello" application.
- name: Hello

Building the security module

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/hello

Building and running example

A static description of the Hello program consists of a single �le named Hello.edl that must indicate the name
of the process class:

If you want the Hello application to start after the operating system is loaded, all you need to do is specify its
name in the init.yaml �le and build an Einit application from it.

The hello example contains a basic solution security policy (security.psl) that allows all interactions.

The security module (ksm.module) is built based on security.psl.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

328

1. The Client program sends a number (value) to the Server program.

2. The Server program modi�es this number and sends the new number (result) to the Client program.

3. The Client program prints the result number to the screen.

1. Connect the Client and Server programs by using the init description.

2. On the server, implement an interface with a single Ping method that has one input argument (the original
number (value)) and one output argument (the modi�ed number (result)).

Description of the Ping method in the IDL language:

Ping(in UInt32 value, out UInt32 result);

The general build scheme for the hello example looks as follows:

echo example

The echo example demonstrates the use of IPC transport.

It shows how to use the main tools that let you implement interaction between programs.

The echo example describes a basic case of interaction between two programs:

To set up this interaction between programs:

329

3. Create static description �les in the EDL, CDL and IDL languages. Use the NK compiler to generate �les
containing transport methods and types (proxy object, dispatchers, etc.).

4. In the code of the Client program, initialize all required objects (transport, proxy object, request structure,
etc.) and call the interface method.

5. In the code of the Server program, prepare all the required objects (transport, component dispatcher and
program dispatcher, etc.), accept the request from the client, process it and send a response.

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/echo

Building and running example

The code of the example and build scripts are available at the following path:

The echo example consists of the following source �les:

client/src/client.c – implementation of the Client program.

server/src/server.c – implementation of the Server program.

resources/Server.edl, resources/Client.edl, resources/Ping.cdl, resources/Ping.idl – static
descriptions.

init.yaml – init description.

See Building and running examples section.

The build scheme for the echo example looks as follows:

330

Ping(in UInt32 value, out UInt32 result);
Pong(in UInt32 value, out UInt32 result);

The transport part of the ping example is virtually identical to its counterpart in the echo example. The only
di�erence is that the ping example uses two methods (Ping and Pong) instead of one.

Solution security policy in the ping example

ping example

The ping example demonstrates the use of a solution security policy to control interactions between programs.

The ping example includes two programs: Client and Server.

The Server program provides two identical Ping and Pong methods that receive a number and return a modi�ed
number:

The Client program calls both of these methods in a di�erent sequence. If the method call is denied by the
solution security policy, the Failed to call... message is displayed.

The solution security policy in this example allows you to start all programs, and allows any program to query the
Core and Server programs. Queries to the Server program are managed by methods of the Flow security model.

The �nite-state machine described in the con�guration of the request_state Flow security model object has
two states: ping_next and pong_next. The initial state is ping_next. Only transitions from ping_next to
pong_next and the reverse are allowed.

When the Ping and Pong methods are called, the current state of the request_state object is checked. In the
ping_next state, only a Ping call is allowed, in which case the state changes to pong_next. Likewise, in the
pong_next state, only a Pong call is allowed, in which case the state changes to ping_next.

331

security.psl

/* Solution security policy for demonstrating use of the
 * Flow security model in the ping example */

/* Include PSL files containing formal representations of
 * Base and Flow security models */
use nk.base._
use nk.flow._

/* Create Flow security model object */
policy object request_state : Flow {
 type States = "ping_next" | "pong_next"
 config = {
 states : ["ping_next" , "pong_next"],
 initial : "ping_next",
 transitions : {
 "ping_next" : ["pong_next"],
 "pong_next" : ["ping_next"]
 }
 }
}

/* Startup of all programs is allowed. */
execute {
 grant ()
}

/* All requests are allowed. */
request {
 grant ()
}

/* All responses are allowed. */
response {
 grant ()
}

/* Including EDL files */
use EDL kl.core.Core
use EDL ping.Client
use EDL ping.Server
use EDL Einit

/* When the Server program is started, initiate this program with the finite-state
machine */
execute dst=ping.Server {
 request_state.init {sid: dst_sid}
}

/* When the Ping method is called, verify that the finite-state machine is in the
ping_next state.
 If it is, allow the Ping method call and switch the finite-state machine to the
pong_next state. */
request dst=ping.Server, endpoint=controlimpl.connectionimpl, method=Ping {
 request_state.allow {sid: dst_sid, states: ["ping_next"]}
 request_state.enter {sid: dst_sid, state: "pong_next"}
}

Therefore, the Ping and Pong methods can be called only in succession.

332

/* When the Pong method is called, verify that the finite-state machine is in the
pong_next state.
 If it is, allow the Pong method call and switch the finite-state machine to the
ping_next state. */
request dst=ping.Server, endpoint=controlimpl.connectionimpl, method=Pong {
 request_state.allow {sid: dst_sid, states: ["pong_next"]}
 request_state.enter {sid: dst_sid, state: "ping_next"}
}

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/ping

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/net_with_separate_vfs

Building and running example

The code of the example and build scripts are available at the following path:

See Building and running examples section.

net_with_separate_vfs example

This example presents a basic case of network interaction using Berkeley sockets.

The example consists of Client and Server programs linked by a TCP socket using a loopback interface.
Standard POSIX functions are used in the code of the programs.

To connect programs using a socket through a loopback, they must use the same network stack instance. This
means that they must interact with a "shared" VFS program (in this example, this program is called NetVfs).

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

net2_with_separate_vfs example

333

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/net2_with_separate_vfs

Building and running example

/opt/KasperskyOS-Community-Edition-
<version>/examples/net2_with_separate_vfs/build/host/server/

$ cd net2_with_separate_vfs/server/src/
$ gcc -o server server.c

This example demonstrates the special features of a solution in which a program uses standard POSIX functions to
interact with an external server.

The net2_with_separate_vfs example is a modi�ed net_with_separate_vfs example. In contrast to the
net_with_separate_vfs example, in this example a program interacts over the network with an external server
rather than another program running in KasperskyOS.

This example consists of the Client program running in KasperskyOS on QEMU or Raspberry Pi and the Server
program running in a Linux host operating system. The Client program and Server program are bound by a TCP
socket. Standard POSIX functions are used in the code of the Client program.

To connect the Client program and the Server program using a socket, the Client program must interact with
the NetVfs program. During the build, the NetVfs program is linked to a network driver that supports interaction
with the Server program running in Linux.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

To ensure that an example runs correctly, you must run the Server program in a Linux host operating system or on
a computer connected to Raspberry Pi.

After performing the build, the server executable �le of the Server program is located in the following directory:

To independently build the executable �le of the Server program, you need to run the following commands:

embedded_vfs example

This example demonstrates how to embed the virtual �le system (VFS) provided in KasperskyOS Community
Edition into a program being developed.

334

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/embedded_vfs

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -sd
hdd.img -kernel kos-qemu-image

In this example, the Client program fully encapsulates the VFS implementation from KasperskyOS Community
Edition. This lets you eliminate the use of IPC for all the standard I/O functions (stdio.h, socket.h, etc.) for
debugging or performance improvement purposes, for example.

The Client program tests the following operations:

Create a folder.

Create and delete a �le.

Read from a �le and write to a �le.

The example includes the hdd.img image of a hard drive with the FAT32 �le system.

This example does not contain an implementation of drivers of block devices used by the Client. These drivers
(the ATA and SDCard programs) are provided in KasperskyOS Community Edition and are added in the build �le
./CMakeLists.txt.

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

See also Building and running examples section.

embed_ext2_with_separate_vfs example

This example shows how to embed a new �le system into the virtual �le system (VFS) that is provided in
KasperskyOS Community Edition.

335

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/embed_ext2_with_separate_vfs

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -sd
hdd.img -kernel kos-qemu-image

Preparing an SD card to run on Raspberry Pi 4 B

In this example, the Client program tests the operation of �le systems (ext2, ext3, ext4) on block devices. To do
so, the Client queries the virtual �le system (the FileVfs program) via IPC, and FileVfs in turn queries the
block device via IPC.

The ext2 and ext3 �le systems work with the default settings. The ext4 �le system works if you disable extent
(mkfs.ext4 -O ^64bit,^extent /dev/foo).

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

See also Building and running examples section.

To run the embed_ext2_with_separate_vfs example on Raspberry Pi 4 B, the SD card needs to have both a
bootable partition with the solution image as well as 3 additional partitions with the ext2, ext3 and ext4 �le
systems, respectively.

multi_vfs_ntpd example

This example shows how to use an external NTP server in KasperskyOS. The kl.Ntpd program is included in
KasperskyOS Community Edition and is an implementation of an NTP client, which gets time parameters from
external NTP servers in the background and passes them to the KasperskyOS kernel.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution. The example uses
di�erent VFS to access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

The VfsRamfs and VfsSdCardFs programs are used for working with the �le system.

336

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/multi_vfs_ntpd

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -sd
sdcard0.img -kernel kos-qemu-image

The Client program uses standard libc library functions for getting time data. These functions are converted into
queries to the VFS program via IPC.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The following con�guration �les are included in the example:

./resources/include/config.h.in contains a description of the backend �le system that will be used in
the solution: sdcard or ramfs.

A separate VFS program (VfsSdCardFs or VfsRamfs, respectively) is used for each backend in the solution.

The ./resources/ramfs/etc and /resources/sdcard/etc directories contain con�guration �les for the
VFS and Ntpd programs. The standard ntpd.conf syntax is used for the ntpd program con�guration.

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

See also Building and running examples section.

multi_vfs_dns_client example

This example shows how to use an external DNS server in KasperskyOS.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution. The example uses
di�erent VFS to access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

The VfsRamfs and VfsSdCardFs programs are used for working with the �le system.

337

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/multi_vfs_dns_client

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -sd
sdcard0.img -kernel kos-qemu-image

The Client program uses standard libc library functions for contacting an external DNS service. These functions
are converted into queries to the VfsNet program via IPC.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The following con�guration �les are included in the example:

./resources/include/config.h.in contains a description of the backend �le system that will be used in
the solution: sdcard or ramfs.

A separate VFS program (VfsSdCardFs or VfsRamfs, respectively) is used for each backend in the solution.

The ./resources/ramfs/etc and /resources/sdcard/etc directories contain con�guration �les for the
VFS program.

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

See also Building and running examples section.

multi_vfs_dhcpcd example

Example use of the kl.rump.Dhcpcd program.

The Dhcpcd program is an implementation of a DHCP client, which gets network interface parameters from an
external DHCP server in the background and passes them to a virtual �le system (hereinafter referred to as a VFS).

The example also demonstrates the use of di�erent VFSes in a single solution. The example uses di�erent VFS to
access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

338

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/multi_vfs_dhcpcd

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -sd
sdcard0.img -kernel kos-qemu-image

The VfsRamfs and VfsSdCardFs programs are used for working with the �le system.

The Client program uses standard libc library functions for getting information on network interfaces (ioctl).
These functions are converted into queries to the VFS program via IPC.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The following con�guration �les are included in the example:

./resources/include/config.h.in contains a description of the backend �le system that will be used in
the solution: sdcard or ramfs.

A separate VFS program (VfsSdCardFs or VfsRamfs, respectively) is used for each backend in the solution.

The ./resources/ramfs/etc and /resources/sdcard/etc directories contain con�guration �les for the
VFS and Dhcpcd programs. The standard dhcpcd.conf syntax is used for the dhcpcd program con�guration.

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

See also Building and running examples section.

mqtt_publisher (Mosquitto) example

Example use of the MQTT protocol in KasperskyOS.

In this example, an MQTT subscriber must be started on the host operating system, and an MQTT publisher must
be started on KasperskyOS. The Publisher program is an implementation of an MQTT publisher that publishes
the current time with a 5-second interval.

339

Starting Mosquitto

$ sudo apt install mosquitto mosquitto-clients
$ sudo /etc/init.d/mosquitto start

$ mosquitto_sub -d -t "datetime"

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/mqtt_publisher

Building and running example

When the example starts and runs successfully, an MQTT subscriber started on the host operating system prints a
"received PUBLISH" message with a "datetime" topic.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution. The example uses
di�erent VFS to access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

The VfsRamfs and VfsSdCardFs programs are used for working with the �le system.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

To run this example, a Mosquitto MQTT broker must be installed and started on the host system. To install and start
Mosquitto, run the following commands:

To start an MQTT subscriber on the host system, run the following command:

The following con�guration �les are included in the example:

./resources/include/config.h.in contains a description of the backend �le system that will be used in
the solution: sdcard or ramfs.

A separate VFS program (VfsSdCardFs or VfsRamfs, respectively) is used for each backend in the solution.

The ./resources/ramfs/etc and /resources/sdcard/etc directories contain con�guration �les for the
VFS, Dhcpcd and Ntpd programs.

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

340

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -sd
sdcard0.img -kernel kos-qemu-image

Starting Mosquitto

$ sudo apt install mosquitto mosquitto-clients
$ sudo /etc/init.d/mosquitto start

$ mosquitto_pub -t "my/awesome/topic" -m "hello"

Supplied resources

See also Building and running examples section.

mqtt_subscriber (Mosquitto) example

Example use of the MQTT protocol in KasperskyOS.

In this example, an MQTT publisher must be started on the host operating system, and an MQTT subscriber must
be started on KasperskyOS. The Subscriber program is an implementation of an MQTT subscriber.

When the example starts and runs successfully, an MQTT subscriber started on KasperskyOS prints a "Got
message with topic: my/awesome/topic, payload: hello" message.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution. The example uses
di�erent VFS to access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

The VfsRamfs and VfsSdCardFs programs are used for working with the �le system.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

To run this example, a Mosquitto MQTT broker must be installed and started on the host system. To install and start
Mosquitto, run the following commands:

To start an MQTT publisher on the host system, run the following command:

The following con�guration �les are included in the example:

./resources/include/config.h.in contains a description of the backend �le system that will be used in
the solution: sdcard or ramfs.

A separate VFS program (VfsSdCardFs or VfsRamfs, respectively) is used for each backend in the solution.

341

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/mqtt_subscriber

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -sd
sdcard0.img -kernel kos-qemu-image

Example �les

The ./resources/ramfs/etc and /resources/sdcard/etc directories contain con�guration �les for the
VFS, Dhcpcd and Ntpd programs.

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

See also Building and running examples section.

gpio_input example

Example use of the GPIO driver.

This example lets you verify the functionality of GPIO input pins. The "gpio0" port is used. All pins except those
indicated in exceptionPinArr array are set for input by default. The voltage on the pins corresponds to the state
of the registers of the pull-up resistors. The state of all pins, starting from GPIO0 (accounting for the pins
indicated in the exceptionPinArr array), will be read in succession. Messages about the state of the pins will be
displayed on the console. The delay between the readings of adjacent pins is determined by the DELAY_S macro
(the time is indicated in seconds).

exceptionPinArr is an array of GPIO pin numbers that need to be excluded from the example. This may be
necessary if some pins are already being used for other functions, e.g. if pins are being used for a UART connection
during debugging.

If you build and run this example on QEMU, an error will occur. This is the expected behavior, because there is no
GPIO driver for QEMU.

If you build and run this example on Raspberry Pi 4 B, an error will occur.

The code of the example and build scripts are available at the following path:

342

/opt/KasperskyOS-Community-Edition-<version>/examples/gpio_input

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/gpio_output

Building and running example

See Building and running examples section.

gpio_output example

Example use of the GPIO driver.

This example lets you verify the functionality of GPIO output pins. The "gpio0" port is used. The initial state of all
GPIO pins should correspond to a logical zero (no voltage on the pin). All pins other than those indicated in the
exceptionPinArr array are con�gured for output. Each pin, starting with GPIO0 (accounting for those indicated
in the exceptionPinArr array), will be sequentially changed to a logical one (voltage on the pin) and then to a
logical zero. The delay between the changes of pin state is determined by the DELAY_S macro (the time is
indicated in seconds). The pins are turned on/o� from GPIO0 to GPIO27 and then back against to GPIO0.

exceptionPinArr is an array of GPIO pin numbers that need to be excluded from the example. This may be
necessary if some pins are already being used for other functions, e.g. if pins are being used for a UART connection
during debugging.

If you build and run this example on QEMU, an error will occur. This is the expected behavior, because there is no
GPIO driver for QEMU.

If you build and run this example on Raspberry Pi 4 B, an error will occur.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

gpio_interrupt example

Example use of the GPIO driver.

This example lets you verify the functionality of GPIO pin interrupts. The "gpio0" port is used. In the pinsBitmap
bitmask of the CallBackContext interrupt context, the pins from exceptionPinArr array are marked as
handled so that the example can properly terminate later. All pins other than those indicated in the
exceptionPinArr array are switched to the PINS_MODE state. An interrupt handler will be registered for all pins
other than those indicated in the exceptionPinArr array.

343

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/gpio_interrupt

Building and running example

Example �les

In an endless loop, the example checks whether the pinsBitmap bitmask from the CallBackContext interrupt
context is equal to the DONE_BITMASK bitmask (which corresponds to the condition when an interrupt has
occurred on each GPIO pin). Additionally, the handler function for the latest interrupted pin is removed in the loop.
When a pin is interrupted for the �rst time, the handler function is called, which marks the corresponding pin in the
pinsBitmap bitmask in the CallBackContext interrupt context. The handler function for this pin is removed
later.

Keep in mind how the example may be a�ected by the initial state of the registers of pull-up resistors for each pin.

Interrupts for the GPIO_EVENT_LOW_LEVEL and GPIO_EVENT_HIGH_LEVEL events are not supported.

exceptionPinArr is an array of GPIO pin numbers that need to be excluded from the example. This may be
necessary if some pins are already being used for other functions, e.g. if pins are being used for a UART connection
during debugging.

If you build and run this example on QEMU, an error will occur. This is the expected behavior, because there is no
GPIO driver for QEMU.

If you build and run this example on Raspberry Pi 4 B, an error will occur.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

gpio_echo example

Example use of the GPIO driver.

This example makes it possible to verify the functionality of GPIO pins as well as the operation of GPIO interrupts.
The "gpio0" port is used. The output pin (GPIO_PIN_OUT) should be connected to the input pin (GPIO_PIN_IN).
The output pin (the pin number is de�ned in the GPIO_PIN_OUT macro) as well as the input pin (GPIO_PIN_IN) are
con�gured. Use of the input pin is con�gured in the IN_MODE macro. The interrupt handler for the input pin is
registered. The state of the output pin changes several times. If the example works correctly, then when the state
of the output pin changes the interrupt handler will be called and will display the state of the input pin. What's
more, the state of the output pin and the input pin must match.

If you build and run this example on QEMU, an error will occur. This is the expected behavior, because there is no
GPIO driver for QEMU.

If you build and run this example on Raspberry Pi 4 B, an error will occur.

344

/opt/KasperskyOS-Community-Edition-<version>/examples/gpio_echo

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/koslogger

Building and running example

The code of the example and build scripts are available at the following path:

See Building and running examples section.

koslogger example

This example demonstrates use of the spdlog library in KasperskyOS using the KOSLogger wrapper library.

In this example, the Client program creates log entries that are saved on an SD card (when running the example
on Raspberry Pi) or in the image �le named build/einit/sdcard0.img (when running the example in QEMU).

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution. The example uses
di�erent VFS to access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

The VfsRamfs and VfsSdCardFs programs are used for working with the �le system.

The kl.Ntpd program is included in KasperskyOS Community Edition and is an implementation of an NTP client,
which gets time parameters from external NTP servers in the background and passes them to the KasperskyOS
kernel.

The kl.rump.Dhcpcd program is included in KasperskyOS Community Edition and is an implementation of a
DHCP client, which gets the parameters of network interfaces from an external DHCP server in the background
and passes them to the virtual �le system.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

pcre example

This example demonstrates use of the pcre library in KasperskyOS.

345

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/pcre

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/messagebus

In this example, the Client program uses the pcre library and prints the results to the console.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

messagebus example

This example demonstrates use of the MessageBus component in KasperskyOS.

In this example, the Publisher, SubscriberA and SubscriberB programs use the MessageBus component to
exchange messages.

The MessageBus component implements the message bus. The Publisher program is the publisher that
transfers messages to the bus. The SubscriberA and SubscriberB programs are the subscribers that receive
messages from the bus.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution. The example uses
di�erent VFS to access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

The VfsRamfs and VfsSdCardFs programs are used for working with the �le system.

The kl.Ntpd program is included in KasperskyOS Community Edition and is an implementation of an NTP client,
which gets time parameters from external NTP servers in the background and passes them to the KasperskyOS
kernel.

The kl.rump.Dhcpcd program is included in KasperskyOS Community Edition and is an implementation of a
DHCP client, which gets the parameters of network interfaces from an external DHCP server in the background
and passes them to the virtual �le system.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

346

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/i2c_ds1307_rtc

Building and running example

This example is intended to run only on Raspberry Pi. For the example to work correctly, you must connect a
DS1307Z real-time clock module to the i2c port.

See Building and running examples section.

I2c_ds1307_rtc example

This example demonstrates use of the i2c driver (Inter-Integrated Circuit) in KasperskyOS.

In this example, the I2cClient program uses the i2c driver interface.

The client library of the i2c driver is statically linked to the I2cClient program. The i2c driver implementation
uses a BSP (Board Support Platform) subsystem for con�guring clock frequencies (Clocks) and pins multiplexing
(PinMux). Therefore, to ensure correct operation of the driver, you need to do the following:

Link the I2cClient program to the i2c_CLIENT_LIB client library.

Link the I2cClient program to the bsp_CLIENT_LIB client library.

Create an IPC channel between the I2cClient program and the kl.drivers.I2C driver.

Create an IPC channel between the I2cClient program and the kl.drivers.BSP driver.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

iperf_separate_vfs example

This example demonstrates use of the iperf library in KasperskyOS.

In this example, the Server program uses the iperf library.

By default, the example uses network software emulation (SLIRP) in QEMU. If you con�gured TAP interfaces for
QEMU, you need to change the network settings for starting QEMU (QEMU_NET_FLAGS variable) in the
einit/CMakeLists.txt �le to make sure that the example works correctly (for more details, see the comments
in the �le).

347

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/iperf_separate_vfs

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/uart

Building and running example

The example does not use DHCP, therefore the IP address of the network interface must be manually indicated in
the code of the Server program (server/src/main.cpp). SLIRP uses the default values.

The iperf library in the example is used in server mode. To connect to this server, install the iperf3 program on
the host machine and run it by using the iperf3 -c localhost command. If you con�gured TAP interfaces,
indicate the current IP address instead of localhost.

The �rst startup of the example may take a long time because the iperf client uses /dev/urandom to �ll packets
with random data. To avoid this, run the iperf client with the --repeating-payload parameter.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

Uart example

Example use of the UART driver.

This example shows how to print "Hello World!" to the appropriate port using the UART driver.

When running the example simulation in QEMU, -serial stdio is indicated in the QEMU �ags. This means that
the �rst UART port will be printed only to the standard stream of the host machine.

A full description of the UART driver interface is provided in the �le /opt/KasperskyOS-Community-Edition-
<version>/sysroot-aarch64-kos/include/uart/uart.h.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

spi_check_regs example

348

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/spi_check_regs

Building and running example

This example is intended to run only on Raspberry Pi. For the example to work correctly, you must connect
the Sense HAT module to the SPI port.

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/barcode_scanner

Building and running example

This example demonstrates use of the SPI (Serial Peripheral Interface) driver in KasperskyOS.

The example shows how to work with the SPI interface on the Sense HAT add-on board for Raspberry Pi. In this
example, the Client program uses the SPI driver interface. The program opens an SPI channel, displays its
parameters and sets the necessary operating mode. Then the program sends a data sequence over this channel
and waits to receive the ID of the ATTiny controller installed on the Sense HAT board.

The client library of the SPI driver is statically linked to the Client program. The Client program also uses the
gpio driver to set the controller operating mode and the BSP (Board Support Platform) subsystem for con�guring
clock frequencies (Clocks) and pins multiplexing (PinMux).

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

barcode_scanner example

This example demonstrates use of a USB (Universal Serial Bus) driver in KasperskyOS using the libevdev library.

In this example, the BarcodeScanner program uses the libevdev library for interaction with a barcode scanner
connected to the USB port of Raspberry Pi.

The program waits for signals from the barcode scanner and prints the obtained data to stderr.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

349

This example is intended to run only on Raspberry Pi. For the example to work correctly, you must connect a
barcode scanner running in keyboard emulation mode (such as Zebra Symbol LS2208) to the USB port.

If you build and run this example on QEMU, some performance counters may not function correctly.

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/perfcnt

Building and running example

See Building and running examples section.

perfcnt example

This example demonstrates use of the performance counters in KasperskyOS.

The example includes two programs: Worker and Monitor.

The Worker program performs computations in a loop by periodically loading the processor and utilizing memory.

The Monitor program uses the KnProfilerGetCounter() function of the libkos library to get the values of
performance counters for the Worker program and prints them to the console.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

350

Licensing the application

The terms of use of the application are set out in the End User License Agreement or a similar document under
which the application is used.

351

Data provision

KasperskyOS Community Edition does not save, process, or ask you for any personal information or any other
information whatsoever.

352

Information about third-party code

Information about third-party code is contained in the �le named legal_notices.txt in the application installation
folder.

353

Trademark notices

Registered trademarks and endpoint marks are the property of their respective owners.

Arm and Mbed are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere.

CentOS is a trademark or registered trademark of Red Hat, Inc. or its subsidiaries in the United States and other
countries.

Debian is a registered trademark of Software in the Public Interest, Inc.

Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or
other countries. Docker, Inc. and other parties may also have trademark rights in other terms used herein.

Eclipse Mosquitto is a trademark of Eclipse Foundation, Inc.

GoogleTest is a trademark of Google LLC.

Intel and Core are trademarks of Intel Corporation in the U.S. and/or other countries.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Ubuntu is a registered trademark of Canonical Ltd.

Visual Studio and Windows are trademarks of the Microsoft group of companies.

