
1

KasperskyOS Community Edition 1.2

© 2024 AO Kaspersky Lab

2

Contents

What's new

About KasperskyOS Community Edition

About this Guide

Distribution kit

System requirements

Included third-party libraries and applications

Limitations and known issues

Migrating application code from SDK version 1.1.1 to SDK version 1.2

Overview of KasperskyOS

Overview

KasperskyOS architecture

IPC

IPC mechanism

IPC control

Transport code for IPC

IPC between a process and the kernel

Resource Access Control

Structure and startup of a KasperskyOS-based solution

Getting started

Using a Docker container

Installation and removal

Con�guring the development environment

Building and running examples

Building the examples

Running examples on QEMU

Preparing Raspberry Pi 4 B to run examples

Running examples on Raspberry Pi 4 B

Development for KasperskyOS

Starting processes

Overview: Einit and init.yaml

Example init descriptions

Starting processes using the system program ExecutionManager

Overview: Env program

Examples of using Env to set the startup parameters and environment variables of programs

File systems and network

Contents of the VFS component

Creating an IPC channel to VFS

Including VFS functionality in a program

Overview: startup parameters and environment variables of VFS

Mounting �le systems when VFS starts

Using VFS backends to separate data streams

Creating a VFS backend

Dynamically con�guring the network stack

IPC and transport

Creating IPC channels

Adding an endpoint from KasperskyOS Community Edition to a solution

3

Creating and using your own endpoints

Overview: IPC message structure

Getting an IPC handle

Getting an endpoint ID (riid)

Example generation of transport methods and types

Working with an IPC message arena

Transport code in C++

Statically creating IPC channels for C++ development

Dynamically creating IPC channels for C++ development

KasperskyOS API

Return codes

libkos library

Managing handles (handle_api.h)

Handle permissions mask

Creating handles

Transferring handles

Duplicating handles

Dereferencing handles

Revoking handles

Closing handles

Getting a security ID (SID)

OCap usage example

Allocating and freeing memory (alloc.h)

Using DMA (dma.h)

Managing interrupt processing (irq.h)

Initializing IPC transport for interprocess communication and managing IPC request processing (transport-kos.h,
transport-kos-dispatch.h)

Initializing IPC transport for querying the security module (transport-kos-security.h)

Generating random numbers (random_api.h)

Getting and changing time values (time_api.h)

Using noti�cations (notice_api.h)

Dynamically creating IPC channels (cm_api.h, ns_api.h)

Using synchronization primitives (event.h, mutex.h, rwlock.h, semaphore.h, condvar.h)

Managing I/O memory isolation (iommu_api.h)

Using queues (queue.h)

Using memory barriers (barriers.h)

Executing system calls (syscalls.h)

IPC interrupt (ipc_api.h)

POSIX support

POSIX support limitations

POSIX implementation speci�cs

Concurrently using POSIX and the libkos API

Obtaining statistical data on the system

Obtaining statistical data on the system through the libkos library API

Obtaining statistical data on the system through the libc library API

MessageBus component

IProviderFactory interface

IProviderControl interface

4

IProvider interface (MessageBus component)

ISubscriber, IWaiter and ISubscriberRunner interfaces

ExecutionManager component

Building a KasperskyOS-based solution

Building a solution image

Build process overview

Using CMake from the contents of KasperskyOS Community Edition

CMakeLists.txt root �le

CMakeLists.txt �les for building applications

CMakeLists.txt �le for building the Einit program

init.yaml.in template

security.psl.in template

CMake libraries in KasperskyOS Community Edition

platform library

nk library

generate_edl_�le()

nk_build_idl_�les()

nk_build_cdl_�les()

nk_build_edl_�les()

Generating transport code for development in C++

add_nk_idl()

add_nk_cdl()

add_nk_edl()

image library

build_kos_qemu_image()

build_kos_hw_image()

Building without CMake

Tools for building a solution

Build scripts and tools

nk-gen-c

nk-psl-gen-c

einit

makekss

makeimg

Cross compilers

Example build without using CMake

Using dynamic libraries

Prerequisites for using dynamic libraries

Life cycle of a dynamic library

Including the BlobContainer system program in a KasperskyOS-based solution

Building dynamic libraries

Adding dynamic libraries to a KasperskyOS-based solution image

Developing security policies

Formal speci�cations of KasperskyOS-based solution components

Names of process classes, components, packages and interfaces

EDL description

CDL description

IDL description

5

IDL data types

Integer expressions in IDL

Description of a security policy for a KasperskyOS-based solution

General information about a KasperskyOS-based solution security policy description

PSL language syntax

Setting the global parameters of a KasperskyOS-based solution security policy

Including PSL �les in a KasperskyOS-based solution security policy description

Including EDL �les in a KasperskyOS-based solution security policy description

Creating security model objects

Binding methods of security models to security events

Creating security audit pro�les

Creating and performing tests for a KasperskyOS-based solution security policy

PSL data types

Examples of binding security model methods to security events

Example descriptions of basic security policies for KasperskyOS-based solutions

Examples of security audit pro�les

Examples of tests for KasperskyOS-based solution security policies

KasperskyOS Security models

Pred security model

Bool security model

Math security model

Struct security model

Base security model

Regex security model

HashSet security model

HashSet security model object

HashSet security model init rule

HashSet security model �ni rule

HashSet security model add rule

HashSet security model remove rule

HashSet security model contains expression

StaticMap security model

StaticMap security model object

StaticMap security model init rule

StaticMap security model �ni rule

StaticMap security model set rule

StaticMap security model commit rule

StaticMap security model rollback rule

StaticMap security model get expression

StaticMap security model get_uncommitted expression

Flow security model

Flow security model object

Flow security model init rule

Flow security model �ni rule

Flow security model enter rule

Flow security model allow rule

Flow security model query expression

Mic security model

6

Mic security model object

Mic security model create rule

Mic security model delete rule

Mic security model execute rule

Mic security model upgrade rule

Mic security model call rule

Mic security model invoke rule

Mic security model read rule

Mic security model write rule

Mic security model query_level expression

Methods of KasperskyOS core endpoints

Virtual memory endpoint

I/O endpoint

Threads endpoint

Handles endpoint

Processes endpoint

Synchronization endpoint

File system endpoints

Time endpoint

Hardware abstraction layer endpoint

XHCI controller management endpoint

Audit endpoint

Pro�ling endpoint

I/O memory isolation management endpoint

Connections endpoint

Power management endpoint

Noti�cations endpoint

Hypervisor endpoint

Trusted Execution Environment endpoints

IPC interrupt endpoint

CPU frequency management endpoint

Using the system programs Klog and KlogStorage to perform a security audit

Example of adding the system program Klog to a solution

Example of adding the system program KlogStorage to a solution to forward audit data to standard error

Example of adding the system program KlogStorage to a solution to write audit data to a �le

Security patterns for development under KasperskyOS

Distrustful Decomposition pattern

Secure Logger example

Separate Storage example

Defer to Kernel pattern

Defer to Kernel example

Policy Decision Point pattern

Privilege Separation pattern

Device Access example

Information Obscurity pattern

Secure Login (Civetweb, TLS-terminator) example

Appendices

Additional examples

7

hello example

echo example

ping example

net_with_separate_vfs example

net2_with_separate_vfs example

embedded_vfs example

vfs_extfs example

multi_vfs_ntpd example

multi_vfs_dns_client example

multi_vfs_dhcpcd example

mqtt_publisher (Mosquitto) example

mqtt_subscriber (Mosquitto) example

gpio_input example

gpio_output example

gpio_interrupt example

gpio_echo example

koslogger example

pcre example

messagebus example

I2c_ds1307_rtc example

iperf_separate_vfs example

Uart example

spi_check_regs example

barcode_scanner example

perfcnt example

watchdog_system_reset example

shared_libs example

Information about certain limits set in the system

Licensing

Data provision

Glossary

Application

Arena chunk descriptor

Arena descriptor

Callable handle

Capability

CDL

Client

Client library of the solution component

Client Process

Conditional variable

Constant part of an IPC message

Critical section

Description of a security policy for a KasperskyOS-based solution

Direct memory access

DMA

DMA bu�er

EDL

8

Endpoint

Endpoint ID

Endpoint Interface

Endpoint method

Endpoint Method ID

Event

Event mask

Execute interface

Formal speci�cation of the KasperskyOS-based solution component

Handle

Handle dereferencing

Handle inheritance tree

Handle permissions mask

Handle transport container

Hardware interrupt

IDL

Init description

Initializing program

Interface Method

Interprocess communication

IPC

IPC channel

IPC handle

IPC message

IPC message arena

IPC request

IPC response

IPC transport

KasperskyOS

KasperskyOS Security Model

KasperskyOS-based solution

KasperskyOS-based solution component

KSM

KSS

Listener handle

Memory barrier

Message signaled interrupt (MSI)

MID

Mutex

Noti�cation receiver

OCap

Operating Performance Point

OPP

PAL

Process

Program

PSL

Read-write lock

9

Recursive mutex

Resource

Resource consumer

Resource integrity level

Resource provider

Resource transfer context

Resource transfer context object

RIID

Security audit

Security audit con�guration

Security audit data

Security audit pro�le

Security audit runtime-level

Security context

Security event

Security ID

Security interface

Security model expression

Security model method

Security model object

Security model rule

Security module decision

Security pattern

Security pattern system

Security policy for a KasperskyOS-based solution

Security template

Seed

Semaphore

Server

Server library of the solution component

Server process

SID

Subject integrity level

System program

System resource

Thread

Transport code

Transport library

User resource

User resource context

Information about third-party code

Trademark notices

10

KasperskyOS Community Edition 1.2 has the following new capabilities and re�nements:

Due to modi�cations made to SDK components, you must make changes to application code that was
developed using KasperskyOS Community Edition version 1.1.1 before using that code with KasperskyOS
Community Edition version 1.2. For more details, refer to Migrating application code from version 1.1.1 to version
1.2.

What's new

Updated system requirements: the Ubuntu GNU/Linux 22.04 "Jammy Jelly�sh" operating system is required for
SDK installation.

Added capability to use dynamic libraries.

Added capability to use a hardware watchdog on the Raspberry Pi 4 Model B.

Added ExecutionManager component designed for creating, starting, and stopping processes.

Added script for automatically setting environment variables used by SDK tools.

Added data transmission to Kaspersky servers when starting a build of examples from the SDK. Data is
transmitted to account for the number of users of KasperskyOS Community Edition and to obtain information
about the distribution and use of KasperskyOS Community Edition. You can disable this functionality.

Updated Developer's Guide, including:

Added the following third-party libraries and applications:

Updated the following third-party libraries and applications:

Added section titled "Working with an IPC message arena".

Added section titled "Information about certain limits set in the system".

Added descriptions of scenarios for working with libkos library interfaces.

Updated instructions on building and running solution security policy tests.

Added glossary.

Guidelines Support Library (GSL) (2.1.0)

json_scheme_validator (2.1.0)

libpcap (1.10.4)

libunwind (1.6.2)

libxml2

Mbedtls

Mosquitto

11

KasperskyOS Community Edition 1.1.1 has the following new capabilities and re�nements:

KasperskyOS Community Edition 1.1 has the following new capabilities and re�nements:

Excluded the following third-party libraries and applications from the SDK:

OpenSSL

spdlog

sqlite

fmt

zlib

�ex

bison

QEMU

�mpeg

opencv

libjpeg-turbo

libpng

protobuf

Updated the following third-party libraries and applications:

Added support for the Raspberry Pi 4 Model B hardware platform (Revision 1.5).

FFmpeg

libxml2

Eclipse Mosquitto

opencv

OpenSSL

protobuf

sqlite

usb

Added support for working with an I2C bus in master device mode.

12

KasperskyOS Community Edition 1.0 has the following new capabilities and re�nements:

Added support for working with an SPI bus in master device mode.

Added support for USB HID devices.

Added support for Symmetric Multiprocessing (SMP).

Expanded capabilities for device pro�ling: added iperf library and counters that track system parameters.

Added PCRE library and usage example.

Added SPDLOG library and usage example.

Added MessageBus component and usage example.

Added dynamic code analysis tools (ASAN, UBSAN).

Added support for the Raspberry Pi 4 Model B hardware platform.

Added SD card support for the Raspberry Pi 4 Model B hardware platform.

Added Ethernet support for the Raspberry Pi 4 Model B hardware platform.

Added GPIO port support for the Raspberry Pi 4 Model B hardware platform.

Added network services for DHCP, DNS, and NTP and usage examples.

Added library for working with the MQTT protocol and usage examples.

13

About KasperskyOS Community Edition

KasperskyOS Community Edition (CE) is a publicly available version of KasperskyOS that is designed to help you
master the main principles of application development under KasperskyOS. KasperskyOS Community Edition will
let you see how the concepts rooted in KasperskyOS actually work in practical applications. KasperskyOS
Community Edition includes sample applications with source code, detailed explanations, and instructions and
tools for building applications.

KasperskyOS Community Edition will help you:

Learn the principles and techniques of "secure by design" development based on practical examples.

Explore KasperskyOS as a potential platform for implementing your own projects.

Make prototypes of solutions (primarily Embedded/IoT) based on KasperskyOS.

Port applications/components to KasperskyOS.

Explore security issues in software development.

KasperskyOS Community Edition lets you develop applications in the C and C++ languages. For more details about
setting up the development environment, see "Con�guring the development environment".

You can download KasperskyOS Community Edition here .

In addition to this documentation, we also recommend that you explore the materials provided in the speci�c
KasperskyOS website section for developers.

About this Guide

The KasperskyOS Community Edition Developer's Guide is intended for specialists involved in the development of
secure solutions based on KasperskyOS.

The Guide is designed for specialists who know the C/C++ programming languages, have experience developing for
POSIX-compatible systems, and are familiar with GNU Binary Utilities (binutils).

You can use the information in this Guide to:

Install and remove KasperskyOS Community Edition.

Use KasperskyOS Community Edition.

Distribution kit

The KasperskyOS SDK is a set of software tools for creating KasperskyOS-based solutions.

The distribution kit of KasperskyOS Community Edition includes the following:

DEB package for installation of KasperskyOS Community Edition, including:

Image of the KasperskyOS kernel

https://os.kaspersky.com/development/download/
https://os.kaspersky.com/development/

14

1. Ubuntu GNU/Linux 22.04 (Jammy Jelly�sh). A Docker container can be used.

2. x86-64 architecture (support for hardware virtualization is required for higher performance).

3. : it is recommended to have at least 4 GB of RAM for convenient use of the build tools.

4. : at least 3 GB of free space in the /opt folder (depending on the solution being developed).

KasperskyOS Community Edition Developer's Guide (Online Help)

Release Notes

Development tools (GCC compiler, LD linker, binutils toolset, QEMU emulator, and accompanying tools)

Utilities and scripts (for example, source code generators, makekss script for creating the Kaspersky
Security Module, and makeimg script for creating the solution image)

A set of libraries that provide partial compatibility with the POSIX standard

Drivers

System programs (for example, virtual �le system)

Usage examples for components of KasperskyOS Community Edition

End User License Agreement

Information about third-party code (Legal Notices)

The KasperskyOS SDK is installed to a computer running the Ubuntu GNU/Linux® operating system.

The following components included in the KasperskyOS Community Edition distribution kit are the Runtime
Components as de�ned by the terms of the License Agreement:

Image of the KasperskyOS kernel.

All the other components of the distribution kit are not the Runtime Components. Terms and conditions of the use
of each component can be additionally de�ned in the section "Information about third-party code".

System requirements

To install KasperskyOS Community Edition and run examples on QEMU, the following is required:

Operating system:

Processor:

RAM

Disk space

To run examples on the Raspberry Pi hardware platform, the following is required:

Raspberry Pi 4 Model B (Revision 1.1, 1.2, 1.4, 1.5) with 2, 4, or 8 GB of RAM

MicroSD card with at least 2 GB

USB-UART converter

Included third-party libraries and applications

15

To simplify the application development process, KasperskyOS Community Edition also includes the following
third-party libraries and applications:

 is a lexical analyzer generator.

Documentation: https://github.com/westes/�ex

 is a tool that provides an interface for getting information about the libraries installed in
the system (such as the version and parameters for the C/C ++ compiler and linker).

Documentation: https://sourceforge.net/projects/pkgcon�glite

 is a cross-platform software tool that automatically builds software from source code.

Documentation: https://cmake.org/documentation

 is a set of macros for the Autoconf tool, which creates con�guration scripts
for automatically con�guring and building software from source code.

Documentation: https://www.gnu.org/software/autoconf-archive

 is a tool that generates standard Makefile.in �les for automatically con�guring
and building software from source code.

Documentation: https://www.gnu.org/software/automake

 is a tool that generates configure scripts for automatically con�guring and building
software from source code.

Documentation: https://www.gnu.org/software/autoconf

 is a wrapper for the Autoconf and Automake tools that determines which
installed version of a tool is suitable for automatically con�guring and building software.

Documentation: https://gitweb.gentoo.org/proj/autotools-wrappers.git/tree

 is a generic library support script that conceals the complexity of using shared libraries behind
a consistent, portable interface.

Documentation: https://www.gnu.org/software/libtool

 is a set of tools for working with binary �les that includes an assembler, linker, archiver, and
other tools.

Documentation: https://www.gnu.org/software/binutils

 is a general-purpose syntax analyzer generator that converts an annotated context-free
grammar into an LR or GLR parser employing LALR(1) parser tables.

Documentation: https://www.gnu.org/software/bison

 is a set of compilers for various programming languages, including C
and C ++.

Documentation: https://gcc.gnu.org/onlinedocs

 is a program that emulates hardware of various platforms.

Documentation: https://www.qemu.org/docs/master

 is a set of libraries for writing tests for programs in C, C++ and
POSIX shell.

Documentation: https://github.com/jmmv/atf

�ex (v.2.6.2)

pkg-con�g-lite (v.0.28)

CMake (v.3.25.0)

autoconf-archive (v.2022.09.03)

Automake (v.1.13 and v.1.16.4)

Autoconf (v.2.69)

autotools-wrappers (v.am-10)

Libtool (v.2.4.2)

Binutils (v.2.38)

Bison (v.3.5.4)

GNU Compiler Collection (GCC) (v.9.2.1)

QEMU (v.8.1.3)

Automated Testing Framework (ATF) (v.0.20)

https://github.com/westes/flex
https://sourceforge.net/projects/pkgconfiglite
https://cmake.org/documentation
https://www.gnu.org/software/autoconf-archive
https://www.gnu.org/software/automake
https://www.gnu.org/software/autoconf
https://gitweb.gentoo.org/proj/autotools-wrappers.git/tree
https://www.gnu.org/software/libtool
https://www.gnu.org/software/binutils
https://www.gnu.org/software/bison
https://gcc.gnu.org/onlinedocs
https://www.qemu.org/docs/master
https://github.com/jmmv/atf

16

 is a set of class libraries that utilize C++ language functionality and provide a convenient cross-
platform, high-level interface for concise coding of various everyday programming subtasks (such as working
with data, algorithms, �les, threads, and more).

Documentation: https://www.boost.org/doc

 is the library for working with JSON format.

Documentation: https://github.com/nlohmann/json

 is an easy-to-use, powerful, embeddable web server based on C/C++ with additional support
for CGI, SSL and Lua.

Documentation: http://civetweb.github.io/civetweb/UserManual.html

 is an open-source formatting library.

Documentation: https://fmt.dev/latest/index.html

 is a library containing functions and types that are suggested for
use by the C++ Core Guidelines maintained by the Standard C++ Foundation.

Documentation: https://github.com/microsoft/gsl

 is a C++ code testing library.

Documentation: https://google.github.io/googletest

 is a network performance testing library.

Documentation: https://software.es.net/iperf

 is a library designed for validating data in JSON format according to de�ned
JSON schemas.

Documentation: https://github.com/pboettch/json-schema-validator

 is a library providing a C interface for calling previously compiled code.

Documentation: https://github.com/lib�i/lib�i

 is a library for working with JSON format.

Documentation: https://github.com/open-source-parsers/jsoncpp

 is a library for developing programs that can capture, �lter, and analyze network tra�ic in UNIX-
like systems.

Documentation: https://www.tcpdump.org/index.html#documentation

 is a library for handling exceptional situations and implementing a mechanism for backtracing
the stack of function calls when a process crashes.

Documentation: https://www.nongnu.org/libunwind/docs.html

 is a library for working with XML.

Documentation: http://xmlsoft.org

 is a library that implements cryptographic protocols such as TLS/SSL and DTLS, and
algorithms for encryption, hashing, and authentication.

Documentation: https://mbed-tls.readthedocs.io/en/latest

 is a message broker that implements the MQTT protocol.

Documentation: https://mosquitto.org/documentation

Boost (v.1.78.0)

nlohmann_json (v.3.9.1)

Civetweb (v.1.11)

fmt (v.9.1.0)

Guidelines Support Library (GSL) (v.2.1.0)

GoogleTest (v.1.10.0)

iperf (v.3.10.1)

json-schema-validator (v.2.1.0)

lib�i (v.3.2.1)

jsoncpp (v.1.9.4)

libpcap (v.1.10.4)

libunwind (v.1.6.2)

libxml2 (v.2.10.4)

Mbed TLS (v.3.3.0)

Eclipse Mosquitto (v2.0.18)

https://www.boost.org/doc/
https://github.com/nlohmann/json
http://civetweb.github.io/civetweb/UserManual.html
https://fmt.dev/latest/index.html
https://github.com/microsoft/gsl
https://google.github.io/googletest/
https://software.es.net/iperf/
https://github.com/pboettch/json-schema-validator
https://github.com/libffi/libffi
https://github.com/open-source-parsers/jsoncpp
https://www.tcpdump.org/index.html#documentation
https://www.nongnu.org/libunwind/docs.html
http://xmlsoft.org/
https://mbed-tls.readthedocs.io/en/latest
https://mosquitto.org/documentation/

17

1. The maximum supported number of running programs is 32.

2. When a program is terminated through any method (for example, "return" from the main thread), the resources
allocated by the program are not released, and the program goes to sleep. Programs cannot be started
repeatedly.

3. You cannot start two or more programs that have the same EDL description.

4. The system stops if no running programs remain, or if one of the driver program threads has been terminated,
whether normally or abnormally.

5. When running examples on the Raspberry Pi 4 Model B hardware platform, the maximum size of the solution
image (kos-image �le) must not exceed 248 MB.

 is a library for working with the NTP time protocol.

Documentation: http://www.ntp.org/documentation.html

 is a full-�edged open-source encryption library.

Documentation: https://www.openssl.org/docs/

 is a library for working with regular expressions.

Documentation: https://www.pcre.org/current/doc/html

 is a logging library.

Documentation: https://github.com/gabime/spdlog

 is a library for working with databases.

Documentation: https://www.sqlite.org/docs.html

 is the data compression library.

Documentation: https://zlib.net/manual.html

 is a library for working with USB devices.

Documentation: https://github.com/freebsd/freebsd-src/tree/release/13.0.0/sys/dev/usb

 is a library for working with evdev peripheral devices.

Documentation: https://www.freedesktop.org/software/libevdev/doc/latest

 is a DHCP/DHCPv6 client intended for automatic con�guration of network settings on the
client side.

Documentation: https://github.com/NetworkCon�guration/dhcpcd

 is a library for working with the ext2/3/4 �le systems.

Documentation: https://github.com/gkostka/lwext4.git

jsoncpp (v.4.2.8P15)

OpenSSL (v.1.1.1t)

pcre (v.8.44)

spdlog (v.1.11.0)

sqlite (v.3.41.2)

Zlib (v.1.2.13)

usb (v.13.0.0)

libevdev (v.1.6.0)

dhcpcd (v.9.4.1)

Lwext4 (v.1.0.0)

See also Information about third-party code.

Limitations and known issues

Because the KasperskyOS Community Edition is intended for educational purposes only, it includes several
limitations:

http://www.ntp.org/documentation.html
https://www.openssl.org/docs/
https://www.pcre.org/current/doc/html/
https://github.com/gabime/spdlog
https://www.sqlite.org/docs.html
https://zlib.net/manual.html
https://github.com/freebsd/freebsd-src/tree/release/13.0.0/sys/dev/usb
https://www.freedesktop.org/software/libevdev/doc/latest/
https://github.com/NetworkConfiguration/dhcpcd
https://github.com/gkostka/lwext4.git

18

1. The SDK now includes a driver for working with the VideoCore (VC6) coprocessor via mailbox technology:
kl.drivers.Bcm2711MboxArmToVc . The kl.drivers.DNetSrv and kl.drivers.USB drivers require
access to this new driver.

- name: kl.drivers.Bcm2711MboxArmToVc
 path: bcm2711_mbox_arm2vc_h

- name: kl.drivers.USB
 path: usb
 connections:
 ...
 - target: kl.drivers.Bcm2711MboxArmToVc
 id: kl.drivers.Bcm2711MboxArmToVc

- name: kl.drivers.DNetSrv
 path: dnet_entity
 connections:
 ...
 - target: kl.drivers.Bcm2711MboxArmToVc
 id: kl.drivers.Bcm2711MboxArmToVc

...
use kl.drivers.Bcm2711MboxArmToVc._

...

execute src = Einit dst = kl.drivers.Bcm2711MboxArmToVc { grant () }

request src = kl.drivers.Bcm2711MboxArmToVc dst = kl.core.Core { grant () }
response src = kl.core.Core dst = kl.drivers.Bcm2711MboxArmToVc { grant () }

request src = kl.drivers.DNetSrv dst = kl.drivers.Bcm2711MboxArmToVc { grant () }
response src = kl.drivers.Bcm2711MboxArmToVc dst = kl.drivers.DNetSrv { grant () }

Migrating application code from SDK version 1.1.1 to SDK version 1.2

Due to modi�cations made to SDK components in version 1.2, you must make changes to application code that was
developed using KasperskyOS Community Edition version 1.1.1 before using that code with KasperskyOS
Community Edition version 1.2.

Required changes:

If the init.yaml.in template is used to create the solution init description (init.yaml �le) and the
@INIT_ProgramName_ENTITY_CONNECTIONS+@ or @INIT_ProgramName_ENTITY_CONNECTIONS@ macros
were used for the kl.drivers.DNetSrv and kl.drivers.USB processes, no changes to the init
description are required.

Otherwise, if IPC channels for the kl.drivers.DNetSrv and kl.drivers.USB processes are manually
speci�ed, you must add the kl.drivers.Bcm2711MboxArmToVc process to the init description and de�ne
the IPC channels between it and the kl.drivers.DNetSrv and kl.drivers.USB processes:

You must add the kl.drivers.Bcm2711MboxArmToVc process to the security.psl �le and allow the
kl.drivers.DNetSrv and kl.drivers.USB processes and the kernel to interact with it:

19

request src = kl.drivers.USB dst = kl.drivers.Bcm2711MboxArmToVc { grant () }
response src = kl.drivers.Bcm2711MboxArmToVc dst = kl.drivers.USB{ grant () }

2. All implementations of the VFS component now require access to the kl.EntropyEntity program.

- name: kl.VfsSdCardFs
 path: VfsSdCardFs
 connections:
 ...
 - target: kl.EntropyEntity
 id: kl.EntropyEntity

- name: kl.VfsNet
 path: VfsNet
 connections:
 ...
 - target: kl.EntropyEntity
 id: kl.EntropyEntity

- name: kl.ProgramWithEmbeddedVfs
 path: ProgramWithEmbedVfs
 connections:
 ...
 - target: kl.EntropyEntity
 id: kl.EntropyEntity

- name: kl.EntropyEntity
 path: Entropy

...
use kl.EntropyEntity._
...

execute src = Einit dst = kl.drivers.EntropyEntity { grant () }
...
request src = kl.EntropyEntity dst = kl.core.Core { grant () }
response src = kl.core.Core dst = kl.EntropyEntity { grant () }

request src = kl.VfsNet dst = kl.EntropyEntity { grant () }
response src = kl.EntropyEntity dst = kl.VfsNet { grant () }

request src = kl.VfsSdCardFs dst = kl.EntropyEntity { grant () }
response src = kl.EntropyEntity dst = kl.VfsSdCardFs { grant () }

If the init.yaml.in template is used to create the solution init description (init.yaml �le) and the
@INIT_ProgramName_ENTITY_CONNECTIONS+@ or @INIT_ProgramName_ENTITY_CONNECTIONS@ macros
were used for processes that use the VFS component (the kl.VfsNet , kl.VfsRamFs , and
kl.VfsSdCardFs processes as well as the processes that statically include VFS), no changes to the init
description are required.

Otherwise, if IPC channels for processes that use the VFS component are manually speci�ed, you must add
the kl.EntropyEntity process to the init description and de�ne the IPC channels between it and the
processes that use the VFS component:

You must add the kl.EntropyEntity process to the security.psl �le and allow the kernel and
processes that use the VFS component to interact with it:

20

request src = kl.ProgramWithEmbeddedVfs dst = kl.EntropyEntity { grant () }
response src = kl.EntropyEntity dst = kl.ProgramWithEmbeddedVfs { grant () }

3. The kl.drivers.USB driver now requires access to the kl.core.NameServer program.

- name: kl.core.NameServer
 path: ns

- name: kl.drivers.USB
 path: usb
 connections:
 ...
 - target: kl.core.NameServer
 id: kl.core.NameServer

...
use kl.core.NameServer
...

execute src = Einit dst = kl.core.NameServer { grant () }
...
request src = kl.core.NameServer dst = kl.core.Core { grant () }
response src = kl.core.Core dst = kl.core.NameServer { grant () }

request src = kl.drivers.USB dst = kl.core.NameServer { grant () }
response src = core.NameServer dst = kl.drivers.USB { grant () }

4. The capability to use dynamic libraries has been added to the SDK. Now all solutions are built using dynamic
linking by default. This may a�ect the build of solutions containing libraries that have both static and dynamic
variants.

If the init.yaml.in template is used to create the solution init description (init.yaml �le) and the
@INIT_ProgramName_ENTITY_CONNECTIONS+@ or @INIT_ProgramName_ENTITY_CONNECTIONS@ macros
were used for the kl.drivers.USB process, no changes to the init description are required.

Otherwise, if IPC channels for the kl.drivers.USB process are manually speci�ed, you must add the
kl.core.NameServer process to the init description and de�ne the IPC channels between it and the
kl.drivers.USB process:

You must add the kl.core.NameServer process to the security.psl �le and allow the
kl.drivers.USB process and the kernel to interact with it:

To include enforced static linking of executable �les, replace initialize_platform() with
initialize_platform (FORCE_STATIC) in the root CMakeLists.txt of the project.

To switch from static linking to dynamic linking, you must complete additional steps as described in the
article titled Using dynamic libraries.

To use dynamic libraries, your solution must include the system program BlobContainer.

You must add the kl.bc.BlobContainer process to the security.psl �le and allow processes that use
dynamic libraries to interact with it:

21

...
use kl.bc.BlobContainer
...

execute src = Einit dst = kl.bc.BlobContainer { grant () }

request
{
 /* Allows tasks with the kl.bc.BlobContainer class to send requests to
specified tasks. */
 match src = kl.bc.BlobContainer
 {
 match dst = kl.core.Core { grant () }
 match dst = kl.VfsSdCardFs { grant () }
 }
 /* Allows task with the kl.bc.BlobContainer class to recive request from any
task. */
 match dst = kl.bc.BlobContainer { grant () }
}

response
{
 /* Allows tasks with the kl.bc.BlobContainer class to get responses from
specified tasks. */
 match dst = kl.bc.BlobContainer
 {
 match src = kl.core.Core { grant () }
 match src = kl.VfsSdCardFs { grant () }
 }
 /* Allows task with the kl.bc.BlobContainer class to send response to any task.
*/
 match src = kl.bc.BlobContainer { grant () }
}

You can move the permissions for kl.bc.BlobContainer operations to a separate PSL �le and include this
�le in the solution. (see the secure_logger example in the SDK).

5. The romfs �le system can now be mounted only in read-only mode.

Example of mounting the romfs �le system in the init.yaml �le:

- name: kl.VfsSdCardFs
 path: VfsSdCardFs
 connections:
 - target: kl.drivers.SDCard
 id: kl.drivers.SDCard
 - target: kl.EntropyEntity
 id: kl.EntropyEntity

 args:
 - -l
 - nodev /tmp ramfs 0
 - -l

When mounting romfs in C/C++ code using the mount() function, you must pass the MS_RDONLY �ag.

You must also make changes to the command-line arguments of the VFS program in the init description or in
the CMakeLists.txt �le for building the Einit program.

22

 - romfs /etc romfs ro
 env:
 ROOTFS: mmc0,0 / fat32 0
 VFS_FILESYSTEM_BACKEND: server:kl.VfsSdCardFs

Example of mounting the romfs �le system in the CMakeLists.txt �le:

set (VFS_NET_ARGS "
 - -l
 - devfs /dev devfs 0
 - -l
 - romfs /etc romfs ro")

set_target_properties (${precompiled_vfsVfsNet} PROPERTIES
 EXTRA_ARGS ${VFS_NET_ARGS})

23

Microkernel

Processes and endpoints

Implementation of the MILS and FLASK architectural approaches

Overview of KasperskyOS

KasperskyOS is a specialized operating system based on a separation microkernel and security monitor.

See also:

What's new

About KasperskyOS Community Edition

System requirements

Getting started

Overview

KasperskyOS is a microkernel operating system. The kernel provides minimal functionality, including scheduling of
program execution, management of memory and input/output. The code of device drivers, �le systems, network
protocols and other system software is executed in user mode (outside of the kernel context).

Software managed by KasperskyOS is executed as processes. A process is a running program that has the
following distinguishing characteristics:

It can provide endpoints to other processes and/or use the endpoints of other processes via the IPC
mechanism.

It uses core endpoints via the IPC mechanism.

It is associated with security rules that regulate the interactions of the process with other processes and with
the kernel.

An endpoint is a set of logically related methods available via the IPC mechanism (for example, an endpoint for
receiving and transmitting data over the network, or an endpoint for handling interrupts).

When developing a KasperskyOS-based system, software is designed as a set of components (programs) whose
interactions are regulated by security mechanisms. In terms of security, the degree of trust in each component
may be high or low. In other words, the system software includes trusted and untrusted components. Interactions
between di�erent components (and between components and the kernel) are controlled by the kernel (see the
�gure below), which has a high level of trust. This type of system design is based on the architectural approach
known as MILS (Multiple Independent Levels of Security), which is employed when developing critical information
systems.

24

Interaction between di�erent processes and between processes and the kernel in KasperskyOS

KasperskyOS-based solution

Security policy for a KasperskyOS-based solution

Kaspersky Security System technology

Source code generators

A decision on whether to allow or deny a speci�c interaction is made by the Kaspersky Security Module. (This
decision is referred to as the security module decision.) The security module is a kernel module whose trust level is
high like the trust level of the kernel. The kernel executes the security module decision. This type of division of
interaction management functions is based on the architectural approach known as FLASK (Flux Advanced
Security Kernel), which is used in operating systems for �exible application of security policies.

A KasperskyOS-based solution (hereinafter also referred to as the solution) consists of system software (including
the KasperskyOS kernel and Kaspersky Security Module) and applications integrated to work as part of the
software/hardware system. The programs included in a KasperskyOS-based solution are considered to be
components of the KasperskyOS-based solution (hereinafter referred to as solution components). Each instance
of a solution component is executed in the context of a separate process.

Interactions between the various processes and between processes and the KasperskyOS kernel are allowed or
denied according to the KasperskyOS-based solution security policy (hereinafter referred to as the solution
security policy or simply the policy). The solution security policy is stored in the Kaspersky Security Module and is
used by this module whenever it makes decisions on whether to allow or deny interactions.

The solution security policy can also de�ne the logic for handling queries sent by a process to the security module
via the security interface. A process can use the security interface to send some data to the security module (for
example, to in�uence future decisions made by the security module) or to receive a security module decision that
is needed by the process to determine its own further actions.

Kaspersky Security System technology lets you implement diverse security policies for solutions. You can also
combine multiple security mechanisms and �exibly regulate the interactions between di�erent processes and
between processes and the KasperskyOS kernel. A Kaspersky Security Module to be used in a speci�c solution is
created based on the solution security policy description.

25

KasperskyOS architecture

Kernel subsystems and their purpose

Designation Name Purpose

HAL Hardware
abstraction
subsystem

Basic hardware support: timers, interrupt controllers, memory management
unit (MMU). This subsystem includes UART drivers and low-level means for
power management.

IO I/O manager Registration and deallocation of hardware platform resources required for
the operation of drivers, such as Interrupt ReQuest (IRQ), Memory-Mapped
Input-Output (MMIO), I/O ports, and DMA bu�ers. If the hardware platform

Some of the source code of a KasperskyOS-based solution is created by source code generators. Specialized
programs generate the source code in C from declarative descriptions. They generate source code of the
Kaspersky Security Module, source code of the initializing program (which starts all other programs in the solution
and statically de�nes the topology of interaction between them), and the source code of the methods and types
for carrying out IPC (transport code).

The transport code is generated by the nk-gen-c compiler based on the formal speci�cations of solution
components.

The source code of the Kaspersky Security Module is generated by the nk-psl-gen-c compiler from the solution
security policy description and formal speci�cations of solution components.

The source code of the initializing program is generated by the einit tool from the init description and formal
speci�cations of solution components.

KasperskyOS architecture

The KasperskyOS architecture is presented in the �gure below:

In KasperskyOS, applications and drivers interact with each other and with the kernel by using the libkos library,
which provides the interfaces for querying core endpoints. (In KasperskyOS, a driver generally operates with the
same level of privileges as the application.) The libkos library queries the kernel by executing only three system
calls: Call() , Recv() and Reply() . These calls are implemented by the IPC mechanism. Core endpoints are
supported by kernel subsystems whose purposes are presented in the table below. Kernel subsystems interact with
hardware through the hardware abstraction layer (HAL), which makes it easier to port KasperskyOS to various
platforms.

26

has an input–output memory management unit (IOMMU), this subsystem
guarantees the allocation of memory used by devices.

MM Physical
memory
manager

Allocation and deallocation of physical memory pages, distribution of
physically contiguous page areas.

VMM Virtual memory
manager

Management of physical and virtual memory: reserving, committing, and
releasing memory. Working with memory page tables for insulating the
address spaces of processes.

THREAD Thread
manager

Management of threads: creating, terminating, locking, and resuming
threads.

TIME Real-time clock
subsystem

Getting the time and setting the system clock. Using clocks provided by
hardware.

SCHED Scheduler Scheduling of threads: standard threads, real-time threads, and idle
threads.

SYNC Synchronization
primitive
support
subsystem

Implementation of basic synchronization primitives: spinlocks, mutexes, and
events. The kernel supports only one primitive—futex. All other primitives
are implemented based on a futex in the user space.

IPC Interprocess
communication
subsystem

Implementation of a synchronous IPC mechanism based on the rendezvous
principle.

KSMS Security
module
interaction
subsystem

This subsystem is used for working with the security module. It provides all
messages relayed via IPC to the security module so that these messages
can be checked.

OBJ Object
manager

Management of the general behavior of all KasperskyOS resources:
tracking their life cycle and assigning unique security IDs (for details,
see "Resource Access Control"). This subsystem is closely linked to the
capability-based access control mechanism (OCap).

ROMFS Immutable �le
system image
startup
subsystem

Operations with �les from ROMFS: opening and closing, receiving a list of
�les and their descriptions, and receiving �le characteristics (name, size).

TASK Process
management
subsystem

Management of processes: creating, starting, and terminating processes.
Receiving information about running processes (such as names and paths)
and their exit codes.

ELF Executable �le
loading
subsystem

Loading executable ELF �les from ROMFS into RAM, parsing headers of
ELF �les.

DBG Debug support
subsystem

Debugging mechanism based on GDB (GNU Debugger). The availability of
this subsystem in the kernel is optional.

PM Power manager Power management: restart and shutdown.

IPC

27

Exchanging IPC messages

1. The client sends an IPC request to the server. To do so, one of the client's threads makes the Call() system
call and is locked until an IPC response is received from the server.

2. The server thread that has made the Recv() system call waits for IPC requests. When an IPC request is
received, this thread is unlocked and handles the request, then sends an IPC response by making the Reply()
system call.

3. When an IPC response is received, the client thread is unlocked and continues execution.

Exchanging IPC messages between a client and a server

Calling methods of server endpoints

IPC mechanism

In KasperskyOS, processes interact with each other by exchanging IPC messages (IPC request and IPC response).
In an interaction between processes, there are two separate roles: client (the process that initiates the interaction)
and server (the process that handles the request). Additionally, a process that acts as a client in one interaction
can act as a server in another.

To exchange IPC messages, the client and server use three system calls: Call() , Recv() and Reply() (see the
�gure below):

IPC requests are sent to the server when the client calls endpoint methods of the server (hereinafter also referred
to as interface methods) (see the �gure below). The IPC request contains input parameters for the called method,
as well as the endpoint ID (RIID) and the called method ID (MID). Upon receiving a request, the server uses these
identi�ers to �nd the method's implementation. The server calls the method's implementation while passing in the
input parameters from the IPC request. After handling the request, the server sends the client an IPC response
that contains the output parameters of the method.

28

Calling a server endpoint method

IPC channels

1. The static mechanism allows the parent process to create an IPC channel between child processes. Static
creation of IPC channels is normally performed by the initializing program.

2. The dynamic mechanism allows already running processes to create IPC channels between each other.

1. The security module veri�es that the IPC message complies with the called method of the endpoint (the size of
the IPC message is veri�ed along with the size and location of certain structural elements).

2. If the IPC message is incorrect, the security module makes the "deny" decision and the next step of the
scenario is not carried out. If the IPC message is correct, the next step of the scenario is carried out.

3. The security module checks whether the security rules allow the requested action. If allowed, the security
module makes the "granted" decision. Otherwise it makes the "denied" decision.

To enable two processes to exchange IPC messages, an IPC channel must be established between them. An IPC
channel has a client side and a server side. One process can use multiple IPC channels at the same time. A process
may act as a server for some IPC channels while acting as a client for other IPC channels.

KasperskyOS has two mechanisms for creating IPC channels:

IPC control

The Kaspersky Security Module is integrated into the IPC implementation mechanism. The security module is
aware of the structure of IPC messages for all possible interactions because IDL, CDL and EDL descriptions are
used to generate the source code of this module. This enables the security module to verify that the interactions
between processes comply with the solution security policy.

The KasperskyOS kernel queries the security module each time a process sends an IPC message to another
process. The security module operating scenario includes the following steps:

The kernel executes the security module decision. In other words, it either delivers the IPC message to the
recipient process or rejects its delivery. If delivery of an IPC message is rejected, the sender process receives an
error code via the return code of the Call() or Reply() system call.

29

Controlled exchange of IPC messages between a client and a server

Transport code for developed components of a solution

Transport code for supplied components of a solution

The security module checks IPC requests as well as IPC responses. The �gure below depicts the controlled
exchange of IPC messages between a client and a server.

Transport code for IPC

Implementation of interprocess interaction requires transport code, which is responsible for generating, sending,
receiving, and processing IPC messages. However, developers of KasperskyOS-based solutions do not have to
write their own transport code. Instead, you can use special tools and libraries included in the KasperskyOS SDK.

A developer of a KasperskyOS-based solution component can generate transport code based on IDL, CDL and
EDL descriptions related to this component. The KasperskyOS SDK includes the nk-gen-c compiler for this
purpose. The nk-gen-c compiler generates transport methods and types for use by both a client and a server.

Most components included in the KasperskyOS SDK may be used in a solution both locally (through static linking
with other components) as well as via IPC.

To use a supplied component via IPC, the KasperskyOS SDK provides the following transport libraries:

Solution component's client library, which converts local calls into IPC requests.

Solution component's server library, which converts IPC requests into local calls.

The client library is linked to the client code (the component code that will use the supplied component). The
server library is linked to the implementation of the supplied component (see the �gure below).

30

Using a supplied solution component via IPC

Types of resources

Handles

IPC between a process and the kernel

The IPC mechanism is used for interaction between processes and the KasperskyOS kernel. In other words,
processes exchange IPC messages with the kernel. The kernel provides endpoints, and processes use those
endpoints. Processes query core endpoints by calling functions of the libkos library (directly or via other
libraries). The client transport code for interaction between a process and the kernel is included in this library.

A solution developer is not required to create IPC channels between processes and the kernel because these
channels are created automatically when processes are created. (To set up interaction between processes, the
solution developer has to create IPC channels between them.)

The Kaspersky Security Module makes decisions regarding interaction between processes and the kernel the same
way it makes decisions regarding interaction between a process and other processes. (The KasperskyOS SDK has
IDL, CDL and EDL descriptions for the kernel that are used to generate source code of the security module.)

Resource Access Control

KasperskyOS has two types of resources:

System resources, which are managed by the kernel. Some examples of these include processes, memory
regions, and interrupts.

User resources, which are managed by processes. Examples of user resources: �les, input-output devices, data
storage.

31

Security identi�ers (SID)

When transmitting an IPC message containing handles, the kernel modi�es the message so that it contains SID
values instead of handles when the message is checked by the security module. When the IPC message is
delivered to its recipient, it will contain the handles.
The kernel also has an SID like other resources.

Security context

Resource access control by the KasperskyOS kernel

Both system resources and user resources are identi�ed by handles. Processes (and the KasperskyOS kernel) can
transfer handles to other processes. By receiving a handle, a process obtains access to the resource that is
identi�ed by this handle. In other words, the process that receives a handle can request operations to be
performed on a resource by specifying its received handle in the request. The same resource can be identi�ed by
multiple handles used by di�erent processes.

The KasperskyOS kernel assigns security identi�ers to system resources and user resources. A security identi�er
(SID) is a global unique ID of a resource (in other words, a resource can have only one SID but can have multiple
handles). The Kaspersky Security Module identi�es resources based on their SID.

Kaspersky Security System technology lets you employ security mechanisms that receive SID values as inputs.
When employing these mechanisms, the Kaspersky Security Module distinguishes resources (and the
KasperskyOS kernel) and binds security contexts to them. A security context consists of data that is associated
with an SID and used by the security module to make decisions.

The contents of a security context depend on the security mechanisms being used. For example, a security
context may contain the state of a resource and the levels of integrity of access subjects and/or access objects. If
a security context stores the state of a resource, this lets you allow certain operations to be performed on a
resource only if the resource is in a speci�c state, for example.

The security module can modify a security context when it makes a decision. For example, it can modify
information about the state of a resource (the security module used the security context to verify that a �le is in
the "not in use" state and allowed the �le to be opened for write access and wrote a new state called "opened for
write access" into the security context of this �le).

The KasperskyOS kernel controls access to resources by using two mutually complementary methods at the same
time: executing the decisions of the Kaspersky Security Module and implementing a security mechanism based on
object capabilities (OCap).

Each handle is associated with access rights to the resource identi�ed by this handle, which means it is a capability
in OCap terms. By receiving a handle, a process obtains the access rights to the resource that is identi�ed by this
handle. For example, these access rights may consist of read permissions, write permissions, and/or permissions to
allow another process to perform operations on the resource (handle transfer permission).

Processes that use the resources provided by the kernel or other processes are referred to as resource
consumers. When a resource consumer opens a system resource, the kernel sends the consumer the handle
associated with the access rights to this resource. These access rights are assigned by the kernel. Before an
operation is performed on a system resource requested by a consumer, the kernel veri�es that the consumer has
su�icient rights. If the consumer does not have su�icient rights, the kernel rejects the request of the consumer.

32

Resource access control by resource providers

Structure of a solution

In an IPC message, a handle is sent together with its permissions mask. The handle permissions mask is a value
whose bits are interpreted as access rights to the resource identi�ed by the handle. A resource consumer can �nd
out their access rights to a system resource from the handle permissions mask of this resource. The kernel uses
the handle permissions mask to verify that the consumer is allowed to request the operations to be performed on
the system resource.

The security module can verify the permissions masks of handles and use these veri�cations to either allow or
deny interactions between di�erent processes and between processes and the kernel when such interactions are
related to resource access.

The kernel prohibits the expansion of access rights when handles are transferred among processes (when a handle
is transferred, access rights can only be restricted).

Processes that control user resources and access to those resources for other processes are referred to as
resource providers. For example, drivers are resource providers. Resource providers control access to resources
by using two mutually complementary methods: executing the decisions of the Kaspersky Security Module and
using the OCap mechanism that is provided by the KasperskyOS kernel.

If a resource is queried by its name (for example, to open it), the security module cannot be used to control access
to the resource without the involvement of the resource provider. This is because the security module identi�es a
resource by its SID, not by its name. In such cases, the resource provider �nds the resource handle based on the
resource name and forwards this handle (together with other data, such as the required state of the resource) to
the security module via the security interface (the security module receives the SID corresponding to the
transferred handle). The security module makes a decision and returns it to the resource provider. The resource
provider implements the decision of the security module.

When a resource consumer opens a user resource, the resource provider sends the consumer the handle
associated with the access rights to this resource. In addition, the resource provider decides which speci�c rights
for accessing the resource will be granted to the resource consumer. Before an operation is performed on a user
resource as requested by a consumer, the resource provider veri�es that the consumer has su�icient rights. If the
consumer does not have su�icient rights, the resource provider rejects the request of the consumer.

A resource consumer can �nd out their access rights to a user resource from the permissions mask of the handle
of this resource. The resource provider uses the handle permissions mask to verify that the consumer is allowed to
request the operations to be performed on the user resource.

Structure and startup of a KasperskyOS-based solution

The image of the KasperskyOS-based solution loaded into hardware contains the following �les:

Image of the KasperskyOS kernel

File containing the executable code of the Kaspersky Security Module

Executable �le of the initializing program

Executable �les of all other solution components (for example, applications and drivers)

Files used by programs (for example, dynamic libraries, �les containing settings, fonts, graphical and audio data)

33

Starting a solution

1. The bootloader starts the KasperskyOS kernel.

2. The kernel �nds and loads the security module (as a kernel module).

3. The kernel starts the initializing program.

4. The initializing program starts the programs included in the solution (one, several, or all).

The ROMFS �le system is used to save �les in the solution image.

A KasperskyOS-based solution is started as follows:

34

1. Make sure that the Docker software is installed and running.

2. To download the o�icial Docker image of the Ubuntu GNU/Linux 22.04 (Jammy Jelly�sh) operating system from
the public Docker Hub repository, run the following command:

docker pull ubuntu:22.04

3. To run the image, run the following command:

docker run --net=host --user root --privileged -it --rm ubuntu:22.04 bash

4. Copy the DEB package for installation of KasperskyOS Community Edition into the container.

5. Install KasperskyOS Community Edition.

6. To ensure correct operation of some examples, you must add the /usr/sbin directory to the PATH
environment variable within the container by running the following command:

export PATH=/usr/sbin:$PATH

Installation

$ sudo apt update && sudo apt install <path-to-deb-package>

Getting started

This section tells you what you need to know to start working with KasperskyOS Community Edition.

Using a Docker container

To install and use KasperskyOS Community Edition, you can use a Docker container in which an image of one of the
supported operating systems is deployed.

To use a Docker container for installing KasperskyOS Community Edition:

Installation and removal

KasperskyOS Community Edition is distributed as a DEB package. It is recommended to use the apt package
installer to install KasperskyOS Community Edition.

To deploy the package using apt , run the following command:

The package will be installed in /opt/KasperskyOS-Community-Edition-<version> .

To conveniently work with tools provided in the KasperskyOS Community Edition SDK, the path to the executable
�les of these tools in /opt/KasperskyOS-Community-Edition-<version>/toolchain/bin must be added to
the PATH environment variable. To avoid having to do this each time you log in to a user session, run the script
/opt/KasperskyOS-Community-Edition-<version>/set_env.sh , log out and log in to a session again.

35

$ sudo ./set_env.sh [-h] [-d]

Removal

$ sudo apt remove --purge kasperskyos-community-edition

Con�guring the code editor

Example of how to con�gure Visual Studio Code

Syntax of the command for calling the set_env.sh script:

Parameters:

-d

Cancels the action of the script.

-h , --help

Displays the Help text.

In addition to changing the PATH environment variable, the script de�nes the KOSCEVER and KOSCEDIR
environment variables that contain the version and absolute path to the KasperskyOS Community Edition SDK,
respectively. Use of these environment variables allows the build system to determine the SDK installation path at
startup, and to verify that the solution version matches the SDK version.

Prior to removing KasperskyOS Community Edition, cancel the action of the set_env.sh script if you ran this
script after installing the SDK.

To remove KasperskyOS Community Edition, run the following command:

After running this command, all installed �les in the /opt/KasperskyOS-Community-Edition-<version>
directory will be deleted.

Con�guring the development environment

This section provides brief instructions on con�guring the development environment and adding the header �les
included in KasperskyOS Community Edition to a development project.

Before getting started, you should do the following to simplify your development of solutions based on
KasperskyOS:

Install code editor extensions and plugins for your programming language (C and/or C++).

Add the header �les included in KasperskyOS Community Edition to the development project.

The header �les are located in the directory: /opt/KasperskyOS-Community-Edition-
<version>/sysroot-aarch64-kos/include .

36

1. Create a new workspace or open an existing workspace in Visual Studio Code.

A workspace can be opened implicitly by using the File > Open folder menu options.

2. Make sure the C/C++ for Visual Studio Code extension is installed.

3. In the View menu, select the Command Palette item.

4. Select the C/C++: Edit Configurations (UI) item.

5. In the Include path �eld, enter /opt/KasperskyOS-Community-Edition-<version>/sysroot-
aarch64-kos/include .

6. Close the C/C++ Configurations window.

You need to build the examples in a directory in which you have write access, such as the home directory.

Building the examples to run on QEMU

$./cross-build.sh

Building the examples to run on Raspberry Pi 4 B

For example, during KasperskyOS development, you can work with source code in Visual Studio Code.

To more conveniently navigate the project code, including the system API:

Building and running examples

Building the examples

The examples are built using the CMake build system that is included in KasperskyOS Community Edition.

The code of the examples and build scripts are available at the following path:

/opt/KasperskyOS-Community-Edition-<version>/examples

To build an example, go to the directory with the example and run this command:

Running the cross-build.sh script creates a KasperskyOS-based solution image that includes the example, and
initiates startup of the example in QEMU. The kos-qemu-image solution image is located in the <name of
example>/build/einit directory.

To build an example, go to the directory with the example and run this command:

https://code.visualstudio.com/docs/languages/cpp

37

$./cross-build.sh --target {kos-image|sd-image}

Running examples on QEMU on Linux with a graphical shell

$ sudo ./cross-build.sh

Running examples on QEMU on Linux without a graphical shell

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15,secure=on -cpu cortex-a72 -
nographic -monitor none -smp 4 -nic user -serial stdio -kernel kos-qemu-image

Connecting a computer and Raspberry Pi 4 B

The type of image that is created by the cross-build.sh script depends on the value that you choose for the
target parameter:

kos-image

This creates a KasperskyOS-based solution image that includes the example. The kos-image solution image is
located in the <name of example>/build/einit directory.

sd-image

This creates a �le system image for a bootable SD card. The following is loaded into the �le system image: kos-
image , U-Boot bootloader that starts the example, and the �rmware for Raspberry Pi 4 B. The source code for
the U-Boot bootloader and �rmware can be downloaded from the website https://github.com. The �le system
image �le rpi4kos.img is saved in the directory <example name>/build .

Running examples on QEMU

An example is run on QEMU on Linux with a graphical shell using the cross-build.sh script, which also builds the
example. To run the script, go to the folder with the example and run the command:

To run an example on QEMU on Linux without a graphical shell, go to the directory with the example, build the
example and run the following commands:

Preparing Raspberry Pi 4 B to run examples

To see the output from Raspberry Pi 4 B on a computer, do the following:

https://github.com/

38

1. Connect the pins of the FT232 USB-UART converter to the corresponding GPIO pins of the Raspberry Pi 4 B
(see the �gure below).

Diagram for connecting the USB-UART converter and Raspberry Pi 4 B

2. Connect the computer's USB port to the USB-UART converter.

3. Install PuTTY or another equivalent program. Con�gure the settings as follows: bps = 115200 , data bits =
8 , stop bits = 1 , parity = none , flow control = none . De�ne the USB port connected to the USB-
UART converter used for receiving output from Raspberry Pi 4 B.

1. Connect the network cards of the computer and Raspberry Pi 4 B to a switch or to each other.

2. Con�gure the computer's network card so that its IP address is in the same subnet as the IP address of the
Raspberry Pi 4 B network card (the settings of the Raspberry Pi 4 B network card are de�ned in the
dhcpcd.conf �le, which is found at the path <example name>/resources/...).

Preparing a bootable SD card for Raspberry Pi 4 B

In the following command, path_to_img is the path to the image file
[X] is the final character in the name of the SD card block device.
$ sudo pv -L 32M path_to_img | sudo dd bs=64k of=/dev/sd[X] conv=fsync

To create a bootable drive image file (*.img),
run the script:
$ sudo /opt/KasperskyOS-Community-Edition-
<version>/common/rpi4_prepare_sdcard_image.sh

To allow a computer and Raspberry Pi 4 B to interact through Ethernet:

If the rpi4kos.img image was created when building the example, all you have to do is write the resulting image to
the SD card. To do this, connect the SD card to the computer and run the following command:

If kos-image was created when building the example, the SD card requires additional preparations before you can
write the image to it. A bootable SD card for Raspberry Pi 4 B can be prepared automatically or manually.

To automatically prepare the bootable SD card, connect the SD card to the computer and run the following
commands:

39

In the following command, path_to_img is the path to the image file
of the bootable drive (this path is displayed upon completion
of the previous command), [X] is the final character
in the name of the SD card block device.
$ sudo pv -L 32M path_to_img | sudo dd bs=64k of=/dev/sd[X] conv=fsync

1. Build the U-Boot bootloader for ARMv8, which will automatically run the example. To do this, run the following
commands:

$ sudo apt install git build-essential libssl-dev bison flex unzip parted gcc-
aarch64-linux-gnu pv -y
$ git clone --depth 1 --branch v2022.01 https://github.com/u-boot/u-boot.git u-
boot-armv8
$ cd u-boot-armv8
$ make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- rpi_4_defconfig
$ echo 'CONFIG_SERIAL_PROBE_ALL=y' > ./.custom_config
$ echo 'CONFIG_BOOTCOMMAND="fatload mmc 0 ${loadaddr} kos-image; bootelf
${loadaddr} ${fdt_addr}"' >> ./.custom_config
$ echo 'CONFIG_PREBOOT="pci enum;"' >> ./.custom_config
$./scripts/kconfig/merge_config.sh '.config' '.custom_config'
$ make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- u-boot.bin

2. Prepare the image containing the �le system for the SD card.

Image will contain a boot partition of 1 GB in fat32 and three partitions of
350 MB each in ext2, ext3 and ext4, respectively.
$ fs_image_name=sdcard.img
$ dd if=/dev/zero of=${fs_image_name} bs=1024k count=2048
$ sudo parted ${fs_image_name} mklabel msdos
$ loop_device=$(sudo losetup --find --show --partscan ${fs_image_name})
$ sudo parted ${loop_device} mkpart primary fat32 8192s 50%
$ sudo parted ${loop_device} mkpart extended 50% 100%
$ sudo parted ${loop_device} mkpart logical ext2 50% 67%
$ sudo parted ${loop_device} mkpart logical ext3 67% 84%
$ sudo parted ${loop_device} mkpart logical ext4 84% 100%
$ sudo parted ${loop_device} set 1 boot on
$ sudo mkfs.vfat ${loop_device}p1
$ sudo mkfs.ext2 ${loop_device}p5
$ sudo mkfs.ext3 ${loop_device}p6
$ sudo mkfs.ext4 -O ^64bit,^extent ${loop_device}p7

3. Copy the U-Boot bootloader and embedded software (�rmware) for Raspberry Pi 4 B to the received �le
system image by running the following commands:

In the following commands, the path ~/mnt/fat32 is just an example.
You can use a different path.
$ mount_temp_dir=~/mnt/fat32
$ mkdir -p ${mount_temp_dir}
$ sudo mount ${loop_device}p1 ${mount_temp_dir}
$ git clone --depth 1 --branch 1.20220331
https://github.com/raspberrypi/firmware.git firmware
$ sudo cp u-boot.bin ${mount_temp_dir}/u-boot.bin
$ sudo cp -r firmware/boot/. ${mount_temp_dir}

To manually prepare the bootable SD card:

40

4. Fill in the con�guration �le for the U-Boot bootloader in the image by using the following commands:

$ sudo sh -c "echo '[all]' > ${mount_temp_dir}/config.txt"
$ sudo sh -c "echo 'arm_64bit=1' >> ${mount_temp_dir}/config.txt"
$ sudo sh -c "echo 'enable_uart=1' >> ${mount_temp_dir}/config.txt"
$ sudo sh -c "echo 'kernel=u-boot.bin' >> ${mount_temp_dir}/config.txt"
$ sudo sh -c "echo 'dtparam=i2c_arm=on' >> ${mount_temp_dir}/config.txt"
$ sudo sh -c "echo 'dtparam=i2c=on' >> ${mount_temp_dir}/config.txt"
$ sudo sh -c "echo 'dtparam=spi=on' >> ${mount_temp_dir}/config.txt"
$ sudo sh -c "echo 'device_tree_address=0x2eff5b00' >>
${mount_temp_dir}/config.txt"
$ sudo sh -c "echo 'device_tree_end=0x2f0f5b00' >> ${mount_temp_dir}/config.txt"
$ sudo sh -c "echo 'dtoverlay=uart5' >> ${mount_temp_dir}/config.txt"
$ sudo umount ${mount_temp_dir}
$ sudo losetup -d ${loop_device}

5. Write the resulting image to an SD card. To do this, connect the SD card to the computer and run the following
command:

In the following command, [X] is the last symbol in the name of the block device
for the SD card.
$ sudo pv -L 32M ${fs_image_name} | sudo dd bs=64k of=/dev/sd[X] conv=fsync

1. Go to the directory with the example and build the example.

2. Make sure that Raspberry Pi 4 B and the bootable SD card are prepared to run examples.

3. Connect the bootable SD card to the Raspberry Pi 4 B.

4. Supply power to the Raspberry Pi 4 B and wait for the example to run.

The output displayed on the computer connected to Raspberry Pi 4 B indicates that the example started.

Running examples on Raspberry Pi 4 B

To run an example on a Raspberry Pi 4 B:

41

Einit initializing program

Generating the source code of the initializing program

You are not required to create formal speci�cation �les for the initializing program. These �les are provided in
the KasperskyOS SDK and are automatically applied during a solution build. However, the Einit process class
must be speci�ed in the security.psl �le.

Syntax of init.yaml

Process dictionary keys in an init description

Development for KasperskyOS

Starting processes

Overview: Einit and init.yaml

When a solution is started, the KasperskyOS kernel �nds the executable �le named Einit (initializing program) in
the solution image and runs this executable �le. The initializing program performs the following operations:

Creates and starts processes when a solution is started.

Creates IPC channels between processes when a solution is started (statically creates IPC channels).

A process of the initializing program belongs to the Einit class.

The KasperskyOS SDK includes the einit tool, which generates the C-language source code of the initializing
program. The standard way to use the einit tool is to integrate an einit call into one of the steps of the build
script, which generates the einit.c �le containing the source code of the initializing program. In one of the
following steps of the build script, you must compile the einit.c �le into the executable �le of Einit and include
it into the solution image.

The einit tool generates the source code of the initializing program based on the init description, which consists
of a text �le that is usually named init.yaml .

An init description contains data in YAML format. This data identi�es the following:

Processes that are started when the solution starts.

IPC channels that are created when the solution starts and are used by processes to interact with each other
(not with the kernel).

This data consists of a dictionary with the entities key containing a list of dictionaries of processes. Process
dictionary keys are presented in the table below.

42

Key Required Value

name Yes Process class name (from the EDL description).

task No

Process name. If this name is not speci�ed, the process class name will be used.
Each process must have a unique name.

You can start multiple processes of the same class if they have di�erent
names.

path No

Name of the executable �le in ROMFS (in the solution image). If this name is not
speci�ed, the process class name (without pre�xes and dots) will be used. For
example, processes of the Client and net.Client classes for which an
executable �le name is not speci�ed will be started from the Client �le.

You can start multiple processes from the same executable �le.

connections No

Process IPC channel dictionaries list. This list de�nes the statically created IPC
channels whose client IPC handles will be owned by the process. The list is
empty by default. (In addition to statically created IPC channels, processes can
also use dynamically created IPC channels.)

args No
List of program startup parameters (main() function parameters). The
maximum size of one item on the list is 1024 bytes.

env No
Dictionary of program environment variables. The keys in this dictionary are the
names of environment variables. The maximum size of an environment variable
value is 1024 bytes.

IPC channel dictionary keys in an init description

Key Required Value

id Yes
IPC channel name, which can be de�ned as a speci�c value or as a link such as

{var: <constant name>, include: <path to header file>} .

target Yes Name of the process that will own the server handle of the IPC channel.

The build system can automatically create an init description based on the init.yaml.in template.

Starting a client and server and creating an IPC channel between them

init.yaml

entities:
- name: Client
 connections:

Process IPC channel dictionary keys are presented in the table below.

Example init descriptions

This section provides examples of init descriptions that demonstrate various aspects of starting processes.

In this example, a process of the Client class and a process of the Server class are started. The names of the
processes are not speci�ed, so they will match the names of their respective process classes. The names of the
executable �les are not speci�ed, so they will also match the names of their respective process classes. The
processes will be connected by an IPC channel named server_connection .

43

 - target: Server
 id: server_connection
- name: Server

Starting processes from de�ned executable �les

init.yaml

entities:
- name: Client
 path: cl
- name: ClientServer
 path: csr
- name: MainServer
 path: msr

Starting two processes from the same executable �le

init.yaml

entities:
- name: Client
- name: MainServer
 path: srv
- name: BkServer
 path: srv

Starting two servers of the same class and a client, and creating IPC channels between the
client and servers

init.yaml

entities:
- name: Client
 connections:
 - id: server_connection_us
 target: UserServer
 - id: server_connection_ps

This example will start a Client-class process from the executable �le named cl , a ClientServer-class
process from the executable �le named csr , and a MainServer-class process from the executable �le named
msr . The names of the processes are not speci�ed, so they will match the names of their respective process
classes.

This example will start a Client-class process from the executable �le named Client , and two processes of the
MainServer and BkServer classes from the executable �le named srv . The names of the processes are not
speci�ed, so they will match the names of their respective process classes.

This example will start a Client-class process (named Client) and two Server-class processes named
UserServer and PrivilegedServer . The client will be connected to the servers via IPC channels named
server_connection_us and server_connection_ps . The names of the executable �les are not speci�ed, so
they will match the names of their respective process classes.

44

 target: PrivilegedServer
- task: UserServer
 name: Server
- task: PrivilegedServer
 name: Server

Setting the startup parameters and environment variables of programs

init.yaml

entities:
- name: VfsFirst
 args:
 - -f
 - /etc/fstab
 env:
 ROOTFS: ramdisk0,0 / ext2 0
 UNMAP_ROMFS: 1
- name: VfsSecond
 args:
 - -l
 - devfs /dev devfs 0

The interface of the ExecutionManager component is not suitable for use in code that is written in C. To manage
processes in the C language, use the task.h interface of the libkos library.

ExecutionManager component usage scenario

This example will start a VfsFirst-class process (named VfsFirst) and a VfsSecond-class process (named
VfsSecond). The program that will run in the context of the VfsFirst process will be started with the parameter
-f /etc/fstab , and will receive the ROOTFS environment variable with the value ramdisk0,0 / ext2 0 and
the UNMAP_ROMFS environment variable with the value 1 . The program that will run in the context of the
VfsSecond process will be started with the -l devfs /dev devfs 0 parameter. The names of the executable
�les are not speci�ed, so they will match the names of their respective process classes.

Starting processes using the system program ExecutionManager

The ExecutionManager component provides a C++ interface for creating, starting and stopping processes in
solutions that are based on KasperskyOS.

The ExecutionManager component API is an add-on over IPC that helps simplify the program development
process. ExecutionManager is a separate system program that is accessed through IPC. However, developers are
provided with a client library that eliminates the necessity of directly using IPC calls.

The programming interface of the ExecutionManager component is described in the article titled
"ExecutionManager component".

Hereinafter "the client" refers to the application that uses the ExecutionManager component API to manage other
applications.

45

1. Add the ExecutionManager program to a solution. To add ExecutionManager to a solution:

find_package (execution_manager REQUIRED)
include_directories (${execution_manager_INCLUDE})
add_subdirectory (execution_manager)

The BlobContainer program is required for the ExecutionManager program to work properly. This program
is automatically added to a solution when adding ExecutionManager.

include (execution_manager/create_execution_manager_entity)
create_execution_manager_entity(
 ENTITY ExecMgrEntity
 MAIN_CONN_NAME ${ENTITY_NAME}
 ROOT_PATH "/root"
 VFS_CLIENT_LIB ${vfs_CLIENT_LIB})

The typical usage scenario for the ExecutionManager component includes the following steps:

Add the following commands to the CMakeLists.txt root �le:

The ExecutionManager component is provided in the SDK as a set of static libraries and header �les, and is
built for a speci�c solution by using the CMake command create_execution_manager_entity() from
the CMake library execution_manager .

To build the ExecutionManager program, create a directory named execution_manager in the root
directory of the project. In the new directory, create a CMakeLists.txt �le containing the
create_execution_manager_entity() command.

The CMake command create_execution_manager_entity() takes the following parameters:

Mandatory ENTITY parameter that speci�es the name of the executable �le for the ExecutionManager
program.

Optional parameters:

DEPENDS – additional dependencies for building the ExecutionManager program.

MAIN_CONN_NAME – name of the IPC channel for connecting to the ExecutionManager process. It must
match the value of the mainConnection variable when calling the ExecutionManager API in the client
code.

ROOT_PATH – path to the root directory for service �les of the ExecutionManager program. The default
root path is "/ROOT" .

VFS_CLIENT_LIB – name of the client transport library used to connect the ExecutionManager program
to the VFS program.

When building a solution (CMakeLists.txt �le for the Einit program), add the following executable �les to the
solution image:

Executable �le of the ExecutionManager program

Executable �le of the BlobContainer program

46

2. Link the client executable �le to the client proxy library of ExecutionManager by adding the following command
to the CMakeLists.txt �le for building the client:

target_link_libraries (<name of the CMake target for building the client>
${execution_manager_EXECMGR_PROXY})

3. Add permissions for the necessary events to the solution security policy description:

a. To enable the ExecutionManager program to run other processes, the solution security policy must allow the
following interactions for the execution_manager.ExecMgrEntity process class:

b. To enable a client to call the ExecutionManager program, the solution security policy must allow the following
interactions for the client process class:

4. Use of the ExecutionManager program API in the client code.

Use the header �le component/package_manager/kos_ipc/package_manager_proxy.h for this. For more
details, refer to "ExecutionManager component".

Use of the Env system program is an outdated way of setting startup parameters and environment variables of
programs. Instead, you must set the startup parameters and environment variables of programs via the
init.yaml.in or init.yaml �le.
If the value of a startup parameter or environment variable of a program is de�ned through the Env program
and via the init.yaml.in or init.yaml �le, the value de�ned through the Env program will be applied.

1. Develop the code of the Env program using the macros and functions from the header �le sysroot-*-
kos/include/env/env.h from the KasperskyOS SDK.

2. Build the executable �le of the Env program by linking it to the env_server library from the KasperskyOS SDK.

Security events of the execute type for all classes of processes that will be run.

Access to all endpoints of the VFS program.

Access to all endpoints of the BlobContainer program.

Access to the core endpoints Sync , Task , VMM , Thread , HAL , Handle , FS , Notice , CM and Profiler
(their descriptions are located in the directory sysroot-*-kos/include/kl/core from the SDK).

Access to the appropriate endpoints of the ExecutionManager program (their descriptions are located in
the directory sysroot-*-kos/include/kl/execution_manager from the SDK).

Overview: Env program

The system program Env is intended for setting startup parameters and environment variables of programs. If the
Env program is included in a solution, the processes connected via IPC channel to the Env process will
automatically send IPC requests to this program and receive startup parameters and environment variables when
these processes are started.

To use the Env program in a solution, you need to do the following:

47

3. In the init description, indicate that the Env process must be started and connected to other processes (Env
acts as a server in this case). The name of the IPC channel is assigned by the ENV_SERVICE_NAME macro
de�ned in the header �le env.h .

4. Include the Env executable �le in the solution image.

Source code of the Env program

Use of the Env system program is an outdated way of setting startup parameters and environment variables of
programs. Instead, you must set the startup parameters and environment variables of programs via the
init.yaml.in or init.yaml �le.
If the value of a startup parameter or environment variable of a program is de�ned through the Env program
and via the init.yaml.in or init.yaml �le, the value de�ned through the Env program will be applied.

Example of setting startup parameters of a program

env.c

#include <env/env.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
 const char* NetVfsArgs[] = {
 "-l", "devfs /dev devfs 0",
 "-l", "romfs /etc romfs ro"
 };
 ENV_REGISTER_ARGS("NetVfs", NetVfsArgs);

 envServerRun();

The source code of the Env program utilizes the following macros and functions from the header �le env.h :

ENV_REGISTER_ARGS(name,argarr) sets the argarr startup parameters for the program that will run in the
context of the name process.

ENV_REGISTER_VARS(name,envarr) sets the envarr environment variables for the program that will run in
the context of the name process.

ENV_REGISTER_PROGRAM_ENVIRONMENT(name,argarr,envarr) sets the argarr startup parameters and
envarr environment variables for the program that will run in the context of the name process.

envServerRun() initializes the server part of the Env program so that it can respond to IPC requests.

Env program usage examples

Examples of using Env to set the startup parameters and environment
variables of programs

Source code of the Env program is presented below. When the process named NetVfs starts, the program
passes the following two program startup parameters to this process: -l devfs /dev devfs 0 and -l romfs
/etc romfs ro :

48

 return EXIT_SUCCESS;
}

Example of setting environment variables of a program

env.c

#include <env/env.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
 const char* Vfs3Envs[] = {
 "ROOTFS=ramdisk0,0 / ext2 0",
 "UNMAP_ROMFS=1"
 };

 ENV_REGISTER_VARS("Vfs3", Vfs3Envs);

 envServerRun();
 return EXIT_SUCCESS;
}

1. An application connects via IPC channel to the VFS system program and then links to the client library of the
VFS component during the build.

2. In the application code, POSIX calls for working with �le systems and the network are converted into client
library function calls.

Input and output to �le handles for standard I/O streams (stdin, stdout and stderr) are also converted into
queries to the VFS. If the application is not linked to the client library of the VFS component, printing to
stdout is not possible. If this is the case, you can only print to the standard error stream (stderr), which in this
case is performed via special methods of the KasperskyOS kernel without using VFS.

3. The client library makes IPC requests to the VFS system program.

Source code of the Env program is presented below. When the process named Vfs3 starts, the program passes
the following two program environment variables to this process: ROOTFS=ramdisk0,0 / ext2 0 and
UNMAP_ROMFS=1 :

File systems and network

In KasperskyOS, operations with �le systems and the network are executed via a separate system program that
implements a virtual �le system (VFS).

In the SDK, the VFS component consists of a set of executable �les, libraries, formal speci�cation �les, and header
�les. For more details, see the Contents of the VFS component section.

The main scenario of interaction with the VFS system program includes the following:

49

4. The VFS system program receives an IPC requests and calls the corresponding �le system implementations
(which, in turn, may make IPC requests to device drivers) or network drivers.

5. After the request is handled, the VFS system program responds to the IPC requests of the application.

Using multiple VFS programs

Adding VFS functionality to an application

VFS libraries

Multiple copies of the VFS system program can be added to a solution for the purpose of separating the data
streams of di�erent system programs and applications. You can also separate the data streams within one
application. For more details, refer to Using VFS backends to separate data streams.

The complete functionality of the VFS component can be included in an application, thereby avoiding the need to
pass each request via IPC. For more details, refer to Including VFS functionality in a program.

However, use of VFS functionality via IPC enables the solution developer to do the following:

Use a solution security policy to control method calls for working with the network and �le systems.

Connect multiple client programs to one VFS program.

Connect one client program to two VFS programs to separately work with the network and �le systems.

Contents of the VFS component

The VFS component implements the virtual �le system. In the KasperskyOS SDK, the VFS component consists of
a set of executable �les, libraries, formal speci�cation �les and header �les that enable the use of �le systems
and/or a network stack.

The vfs CMake package contains the following libraries:

vfs_fs contains implementations of the devfs, ramfs and ROMFS �le systems, and adds implementations of
other �le systems to VFS.

vfs_net contains the implementation of the devfs �le system and the network stack.

vfs_imp contains the vfs_fs and vfs_net libraries.

vfs_remote is the client transport library that converts local calls into IPC requests to VFS and receives IPC
responses.

vfs_server is the VFS server transport library that receives IPC requests, converts them into local calls, and
sends IPC responses.

vfs_local is used to include VFS functionality in a program.

50

VFS executable �les

Formal speci�cation �les and header �les of VFS

Libc library API supported by VFS

Functions implemented by the vfs_fs library

mount() unlink() ftruncate() lsetxattr()*

umount() rmdir() chdir() fsetxattr()*

open() mkdir() fchdir() getxattr()*

openat() mkdirat() chmod() lgetxattr()*

read() fcntl() fchmod() fgetxattr()*

readv() statvfs() fchmodat() listxattr()*

write() fstatvfs() chroot() llistxattr()*

writev() getvfsstat() fsync() flistxattr()*

stat() pipe() fdatasync() removexattr()*

lstat() futimens() pread() lremovexattr()*

fstat() utimensat() pwrite() fremovexattr()*

The precompiled_vfs CMake package contains the following executable �les:

VfsRamFs

VfsSdCardFs

VfsNet

The VfsRamFs and VfsSdCardFs executable �les include the vfs_server , vfs_fs , vfat and lwext4 libraries.
The VfsNet executable �le includes the vfs_server , vfs_imp libraries.

Each of these executable �les has its own default values for startup parameters and environment variables.

The sysroot-*-kos/include/kl directory from the KasperskyOS SDK contains the following VFS �les:

Formal speci�cation �les VfsRamFs.edl , VfsSdCardFs.edl , VfsNet.edl and VfsEntity.edl , and the
header �les generated from them.

Formal speci�cation �le Vfs.cdl and the header �le Vfs.cdl.h generated from it.

Formal speci�cation �les Vfs*.idl and the header �les generated from them.

VFS functionality is available to programs through the API provided by the libc library.

The functions implemented by the vfs_fs and vfs_net libraries are presented in the table below. The *
character denotes the functions that are optionally included in the vfs_fs library (depending on the library build
parameters).

51

fstatat() link() sendfile() acl_set_file()*

lseek() linkat() getdents() acl_get_file()*

close() symlink() sync() acl_delete_def_file()*

rename() symlinkat() ioctl()

renameat() unlinkat() setxattr()*

Functions implemented by the vfs_net library

read() bind() getsockname() recvfrom()

readv() listen() gethostbyname() recvmsg()

write() connect() getnetbyaddr() send()

writev() accept() getnetbyname() sendto()

fstat() poll() getnetent() sendmsg()

close() shutdown() setnetent() ioctl()

fcntl() getnameinfo() endnetent() sysctl()

fstatvfs() getaddrinfo() getprotobyname()

pipe() freeaddrinfo() getprotobynumber()

futimens() getifaddrs() getsockopt()

socket() freeifaddrs() setsockopt()

socketpair() getpeername() recv()

If there is no implementation of a called function in VFS, the EIO error code is returned.

init.yaml

- name: Client
 connections:
 - target: VfsFsnet
 id: {var: _VFS_CONNECTION_ID, include: vfs/defs.h}

- name: VfsFsnet

Creating an IPC channel to VFS

In this example, the Client process uses the �le systems and network stack, and the VfsFsnet process handles
the IPC requests of the Client process related to the use of �le systems and the network stack. This approach is
utilized when there is no need to separate data streams related to �le systems and the network stack.

The IPC channel name must be assigned by the _VFS_CONNECTION_ID macro de�ned in the header �le sysroot-
*-kos/include/vfs/defs.h from the KasperskyOS SDK.

Init description of the example:

52

VFS component libraries in a program

CMakeLists.txt

project (client)

include (platform/nk)

Set compile flags
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

Generates the Client.edl.h file
nk_build_edl_files (client_edl_files NK_MODULE "client" EDL
"${CMAKE_SOURCE_DIR}/resources/edl/Client.edl")

add_executable (Client "src/client.c")
add_dependencies (Client client_edl_files)

Linking with VFS libraries
target_link_libraries (Client ${vfs_LOCAL_LIB} ${vfs_IMPLEMENTATION_LIB}
${dnet_IMPLEMENTATION_LIB}

VFS program startup parameters

Including VFS functionality in a program

In this example, the Client program includes the VFS program functionality for working with the network stack
(see the �gure below).

The client.c implementation �le is compiled and the vfs_local , vfs_implementation and
dnet_implementation libraries are linked:

In case the Client program uses �le systems, you must link the vfs_local and vfs_fs libraries, and the libraries
for implementing these �le systems. In this case, you must also add a block device driver to the solution.

Overview: startup parameters and environment variables of VFS

-l <entry in fstab format>

The startup parameter -l mounts the de�ned �le system.

53

Environment variables of the VFS program

Default values for startup parameters and environment variables of VFS

ROOTFS = ramdisk0,0 / ext4 0
VFS_FILESYSTEM_BACKEND = server:kl.VfsRamFs

-f <path to fstab file>

The parameter -f mounts the �le systems speci�ed in the fstab �le. If the UNMAP_ROMFS environment
variable is not de�ned, the fstab �le will be sought in the ROMFS image. If the UNMAP_ROMFS environment
variable is de�ned, the fstab �le will be sought in the �le system de�ned through the ROOTFS environment
variable.

Examples of using VFS program startup parameters

UNMAP_ROMFS

If the UNMAP_ROMFS environment variable is de�ned, the ROMFS image will be deleted from memory. This helps
conserve memory. When using the startup parameter -f , it also provides the capability to search for the
fstab �le in the �le system de�ned through the ROOTFS environment variable instead of searching the ROMFS
image.

Example of using the UNMAP_ROMFS environment variable

ROOTFS = <entry in fstab format>

The ROOTFS environment variable mounts the de�ned �le system to the root directory. When using the startup
parameter -f , a combination of the ROOTFS and UNMAP_ROMFS environment variables provides the capability
to search for the fstab �le in the �le system de�ned through the ROOTFS environment variable instead of
searching the ROMFS image.

Example of using the ROOTFS environment variable

VFS_CLIENT_MAX_THREADS

The VFS_CLIENT_MAX_THREADS environment variable rede�nes the SDK con�guration parameter
VFS_CLIENT_MAX_THREADS .

_VFS_NETWORK_BACKEND=<VFS backend name>:<name of the IPC channel to the VFS process>

The _VFS_NETWORK_BACKEND environment variable de�nes the VFS backend for working with the network
stack. You can specify the name of the standard VFS backend: client (for a program that runs in the context
of a client process), server (for a VFS program that runs in the context of a server process) or local , and the
name of a custom VFS backend. If the local VFS backend is used, the name of the IPC channel is not
speci�ed (_VFS_NETWORK_BACKEND=local:). You can specify more than one IPC channel by separating them
with a comma.

_VFS_FILESYSTEM_BACKEND=<VFS backend name>:<name of the IPC channel to the VFS
process>

The _VFS_FILESYSTEM_BACKEND environment variable de�nes the VFS backend for working with �le systems.
The name of the VFS backend and the name of the IPC channel to the VFS process are de�ned the same way
as they are de�ned in the _VFS_NETWORK_BACKEND environment variable.

For the VfsRamFs executable �le:

For the VfsSdCardFs executable �le:

54

ROOTFS = mmc0,0 / fat32 0
VFS_FILESYSTEM_BACKEND = server:kl.VfsSdCardFs
-l nodev /tmp ramfs 0
-l nodev /var ramfs 0

VFS_NETWORK_BACKEND = server:kl.VfsNet
VFS_FILESYSTEM_BACKEND = server:kl.VfsNet
-l devfs /dev devfs 0

The ROMFS and squashfs �le systems are intended for read-only operations. For this reason, you must specify
the ro parameter to mount these �le systems.

Using the startup parameter -l

init.yaml.(in)

...
- name: VfsFirst
 args:
 - -l
 - devfs /dev devfs 0
 - -l
 - romfs /etc romfs ro
...

CMakeLists.txt

...
set_target_properties (${vfs_ENTITY} PROPERTIES
EXTRA_ARGS
" - -l
 - devfs /dev devfs 0
 - -l
 - romfs /etc romfs ro")
...

For the VfsNet executable �le:

Mounting �le systems when VFS starts

When the VFS program starts, only the RAMFS �le system is mounted to the root directory by default. If you need
to mount other �le systems, this can be done not only by calling the mount() function but also by setting the
startup parameters and environment variables of the VFS program.

One way to mount a �le system is to set the startup parameter -l <entry in fstab format> for the VFS
program.

In these examples, the devfs and ROMFS �le systems will be mounted when the VFS program is started:

55

Using the fstab �le from the ROMFS image

init.yaml.(in)

...
- name: VfsSecond
 args:
 - -f
 - fstab
...

CMakeLists.txt

...
set_target_properties (${vfs_ENTITY} PROPERTIES
EXTRA_ARGS
" - -f
 - fstab")
...

Using an "external" fstab �le

1. ROOTFS . This environment variable mounts the �le system containing the fstab �le to the root directory.

2. UNMAP_ROMFS . If this environment variable is de�ned, the fstab �le will be sought in the �le system de�ned
through the ROOTFS environment variable.

3. -f . This startup parameter is used to mount the �le systems speci�ed in the fstab �le.

init.yaml.(in)

...
- name: VfsThird
 args:
 - -f
 - /etc/fstab
 env:
 ROOTFS: ramdisk0,0 / ext2 0
 UNMAP_ROMFS: 1
...

CMakeLists.txt

When building a solution, you can add the fstab �le to the ROMFS image. This �le can be used to mount �le
systems by setting the startup parameter -f <path to the fstab file> for the VFS program.

In these examples, the �le systems de�ned via the fstab �le that was added to the ROMFS image during the
solution build will be mounted when the VFS program is started:

If the fstab �le resides in another �le system instead of in the ROMFS image, you must set the following startup
parameters and environment variables for the VFS program to enable use of this �le:

In these examples, the ext2 �le system that should contain the fstab �le at the path /etc/fstab will be mounted
to the root directory when the VFS program starts:

56

...
set_target_properties (${vfs_ENTITY} PROPERTIES
EXTRA_ARGS
" - -f
 - /etc/fstab"
EXTRA_ENV
" ROOTFS: ramdisk0,0 / ext2 0
 UNMAP_ROMFS: 1")
...

Process interaction scenario

init.yaml

entities:

- name: Client
 connections:
 - target: VfsFirst
 id: VFS1
 - target: VfsSecond
 id: VFS2
 env:
 _VFS_FILESYSTEM_BACKEND: client:VFS1
 _VFS_NETWORK_BACKEND: client:VFS2

- name: VfsFirst
 env:
 _VFS_FILESYSTEM_BACKEND: server:VFS1

Using VFS backends to separate data streams

This example employs a secure development pattern that separates data streams related to �le system use from
data streams related to the use of a network stack.

The Client process uses �le systems and the network stack. The VfsFirst process works with �le systems, and
the VfsSecond process provides the capability to work with the network stack. The environment variables of
programs that run in the contexts of the Client , VfsFirst and VfsSecond processes are used to de�ne the
VFS backends that ensure the segregated use of �le systems and the network stack. As a result, IPC requests of
the Client process that are related to the use of �le systems are handled by the VfsFirst process, and IPC
requests of the Client process that are related to network stack use are handled by the VfsSecond process
(see the �gure below).

Init description of the example:

57

- name: VfsSecond
 env:
 _VFS_NETWORK_BACKEND: server:VFS2

Process interaction scenario

Source code of the VFS backend

backend.c

#include <vfs/vfs.h>

#include <stdio.h>
#include <stdlib.h>

#include <platform/compiler.h>
#include <pthread.h>

Creating a VFS backend

This example demonstrates how to create and use a custom VFS backend.

The Client process uses the fat32 and ext4 �le systems. The VfsFirst process works with the fat32 �le
system, and the VfsSecond process provides the capability to work with the ext4 �le system. The environment
variables of programs that run in the contexts of the Client , VfsFirst and VfsSecond processes are used to
de�ne the VFS backends ensuring that IPC requests of the Client process are handled by the VfsFirst or
VfsSecond process depending on the speci�c �le system being used by the Client process. As a result, IPC
requests of the Client process related to use of the fat32 �le system are handled by the VfsFirst process, and
IPC requests of the Client process related to use of the ext4 �le system are handled by the VfsSecond process
(see the �gure below).

On the VfsFirst process side, the fat32 �le system is mounted to the directory /mnt1 . On the VfsSecond
process side, the ext4 �le system is mounted to the directory /mnt2 . The custom VFS backend custom_client
used on the Client process side sends IPC requests over the IPC channel VFS1 or VFS2 depending on whether
or not the �le path begins with /mnt1 . The custom VFS backend uses the standard VFS backend client as an
intermediary.

This implementation �le contains the source code of the VFS backend custom_client , which uses the standard
client VFS backends:

58

#include <errno.h>
#include <string.h>
#include <getopt.h>
#include <assert.h>

/* Code for managing file handles */
#define MAX_FDS 50

struct entry
{
 Handle handle;
 bool is_vfat;
};

struct fd_array
{
 struct entry entries[MAX_FDS];
 int pos;
 pthread_rwlock_t lock;
};

struct fd_array fds = { .pos = 0, .lock = PTHREAD_RWLOCK_INITIALIZER };

int insert_entry(Handle fd, bool is_vfat)
{
 pthread_rwlock_wrlock(&fds.lock);
 if (fds.pos == MAX_FDS)
 {
 pthread_rwlock_unlock(&fds.lock);
 return -1;
 }

 fds.entries[fds.pos].handle = fd;
 fds.entries[fds.pos].is_vfat = is_vfat;
 fds.pos++;

 pthread_rwlock_unlock(&fds.lock);
 return 0;
}

struct entry *find_entry(Handle fd)
{
 pthread_rwlock_rdlock(&fds.lock);
 for (int i = 0; i < fds.pos; i++)
 {
 if (fds.entries[i].handle == fd)
 {
 pthread_rwlock_unlock(&fds.lock);
 return &fds.entries[i];
 }
 }

 pthread_rwlock_unlock(&fds.lock);
 return NULL;
}

/* Custom VFS backend structure */
struct context
{
 struct vfs wrapper;
 pthread_rwlock_t lock;

59

 struct vfs *vfs_vfat;
 struct vfs *vfs_ext4;
};

struct context ctx =
{
 .wrapper =
 {
 .dtor = _vfs_backend_dtor,

 .disconnect_all_clients = _disconnect_all_clients,
 .getstdin = _getstdin,
 .getstdout = _getstdout,
 .getstderr = _getstderr,

 .open = _open,
 .read = _read,
 .write = _write,
 .close = _close,
 }
};

/* Implementation of custom VFS backend methods */
static bool is_vfs_vfat_path(const char *path)
{
 char vfat_path[5] = "/mnt1";
 if (memcmp(vfat_path, path, sizeof(vfat_path)) != 0)
 return false;

 return true;
}

static void _vfs_backend_dtor(struct vfs *vfs)
{
 ctx.vfs_vfat->dtor(ctx.vfs_vfat);
 ctx.vfs_ext4->dtor(ctx.vfs_ext4);
}

static void _disconnect_all_clients(struct vfs *self, int *error)
{
 (void)self;
 (void)error;

 ctx.vfs_vfat->disconnect_all_clients(ctx.vfs_vfat, error);
 ctx.vfs_ext4->disconnect_all_clients(ctx.vfs_ext4, error);
}

static Handle _getstdin(struct vfs *self, int *error)
{
 (void)self;

 Handle handle = ctx.vfs_vfat->getstdin(ctx.vfs_vfat, error);
 if (handle != INVALID_HANDLE)
 {
 if (insert_entry(handle, true))
 {
 *error = ENOMEM;
 return INVALID_HANDLE;
 }
 }

 return handle;

60

}

static Handle _getstdout(struct vfs *self, int *error)
{
 (void)self;

 Handle handle = ctx.vfs_vfat->getstdout(ctx.vfs_vfat, error);
 if (handle != INVALID_HANDLE)
 {
 if (insert_entry(handle, true))
 {
 *error = ENOMEM;
 return INVALID_HANDLE;
 }
 }

 return handle;
}

static Handle _getstderr(struct vfs *self, int *error)
{
 (void)self;

 Handle handle = ctx.vfs_vfat->getstderr(ctx.vfs_vfat, error);
 if (handle != INVALID_HANDLE)
 {
 if (insert_entry(handle, true))
 {
 *error = ENOMEM;
 return INVALID_HANDLE;
 }
 }

 return handle;
}

static Handle _open(struct vfs *self, const char *path, int oflag, mode_t mode, int
*error)
{
 (void)self;

 Handle handle;
 bool is_vfat = false;

 if (is_vfs_vfat_path(path))
 {
 handle = ctx.vfs_vfat->open(ctx.vfs_vfat, path, oflag, mode, error);
 is_vfat = true;
 }
 else
 handle = ctx.vfs_ext4->open(ctx.vfs_ext4, path, oflag, mode, error);

 if (handle == INVALID_HANDLE)
 return INVALID_HANDLE;

 if (insert_entry(handle, is_vfat))
 {
 if (is_vfat)
 ctx.vfs_vfat->close(ctx.vfs_vfat, handle, error);
 *error = ENOMEM;
 return INVALID_HANDLE;
 }

61

 return handle;
}

static ssize_t _read(struct vfs *self, Handle fd, void *buf, size_t count, bool
*nodata, int *error)
{
 (void)self;

 struct entry *found_entry = find_entry(fd);

 if (found_entry != NULL && found_entry->is_vfat)
 return ctx.vfs_vfat->read(ctx.vfs_vfat, fd, buf, count, nodata, error);

 return ctx.vfs_ext4->read(ctx.vfs_ext4, fd, buf, count, nodata, error);
}

static ssize_t _write(struct vfs *self, Handle fd, const void *buf, size_t count, int
*error)
{
 (void)self;

 struct entry *found_entry = find_entry(fd);

 if (found_entry != NULL && found_entry->is_vfat)
 return ctx.vfs_vfat->write(ctx.vfs_vfat, fd, buf, count, error);

 return ctx.vfs_ext4->write(ctx.vfs_ext4, fd, buf, count, error);
}

static int _close(struct vfs *self, Handle fd, int *error)
{
 (void)self;

 struct entry *found_entry = find_entry(fd);

 if (found_entry != NULL && found_entry->is_vfat)
 return ctx.vfs_vfat->close(ctx.vfs_vfat, fd, error);

 return ctx.vfs_ext4->close(ctx.vfs_ext4, fd, error);
}

/* Custom VFS backend builder. ctx.vfs_vfat and ctx.vfs_ext4 are initialized
 * as standard backends named "client". */
static struct vfs *_vfs_backend_create(Handle client_id, const char *config, int
*error)
{
 (void)config;

 ctx.vfs_vfat = _vfs_init("client", client_id, "VFS1", error);
 assert(ctx.vfs_vfat != NULL && "Can't initialize client backend!");
 assert(ctx.vfs_vfat->dtor != NULL && "VFS FS backend has not set the
destructor!");

 ctx.vfs_ext4 = _vfs_init("client", client_id, "VFS2", error);
 assert(ctx.vfs_ext4 != NULL && "Can't initialize client backend!");
 assert(ctx.vfs_ext4->dtor != NULL && "VFS FS backend has not set the
destructor!");

 return &ctx.wrapper;
}

62

/* Registration of the custom VFS backend under the name custom_client */
static void _vfs_backend(create_vfs_backend_t *ctor, const char **name)
{
 *ctor = &_vfs_backend_create;
 *name = "custom_client";
}

REGISTER_VFS_BACKEND(_vfs_backend)

Linking the Client program

CMakeLists.txt

...
add_library (backend_client STATIC "src/backend.c")
...

CMakeLists.txt

...
add_dependencies (Client vfs_backend_client backend_client)

target_link_libraries (Client
 pthread
 ${vfs_CLIENT_LIB}
 "-Wl,--whole-archive" backend_client "-Wl,--no-whole-archive" backend_client
)
...

Setting the startup parameters and environment variables of programs

init.yaml

entities:

- name: vfs_backend.Client
 connections:
 - target: vfs_backend.VfsFirst
 id: VFS1
 - target: vfs_backend.VfsSecond
 id: VFS2
 env:
 _VFS_FILESYSTEM_BACKEND: custom_client:VFS1,VFS2

- name: vfs_backend.VfsFirst
 args:
 - -l
 - ahci0 /mnt1 fat32 0

Creating a static VFS backend library:

Linking the Client program to the static VFS backend library:

Init description of the example:

63

 env:
 _VFS_FILESYSTEM_BACKEND: server:VFS1

- name: vfs_backend.VfsSecond
 - -l
 - ahci1 /mnt2 ext4 0
 env:
 _VFS_FILESYSTEM_BACKEND: server:VFS2

Con�gurable network stack parameters

Parameter name Parameter description

net.inet.ip.ttl

net.inet.ip.mtudisc

net.inet.tcp.minmss

net.inet.tcp.mss_ifmtu

net.inet.tcp.keepcnt

net.inet.tcp.keepidle

net.inet.tcp.keepintvl

net.inet.tcp.recvspace

net.inet.tcp.sendspace

Dynamically con�guring the network stack

To change the default network stack parameters, use the sysctl() function or sysctlbyname() function that
are declared in the header �le sysroot-*-kos/include/sys/sysctl.h from the KasperskyOS SDK. The
parameters that can be changed are presented in the table below.

Maximum time to live (TTL) of sent IP packets. It does not a�ect the ICMP
protocol.

If its value is set to 1 , "Path MTU Discovery" (RFC 1191) mode is enabled. This
mode a�ects the maximum size of a TCP segment (Maximum Segment Size,
or MSS). In this mode, the MSS value is determined by the limitations of
network nodes. If "Path MTU Discovery" mode is not enabled, the MSS value
does not exceed the value de�ned by the net.inet.tcp.mssdflt
parameter.

net.inet.tcp.mssdflt

MSS value (in bytes) that is applied if only the communicating side failed to
provide this value when opening the TCP connection, or if "Path MTU
Discovery" mode (RFC 1191) is not enabled. This MSS value is also forwarded
to the communicating side when opening a TCP connection.

Minimum MSS value, in bytes.

If its value is set to 1 , the MSS value is calculated for an opened TCP
connection based on the maximum size of a transmitted data block
(Maximum Transmission Unit, or MTU) of the employed network interface. If
its value is set to 0 , the MSS value for an opened TCP connection is
calculated based on the MTU of the network interface that has the highest
value for this parameter among all available network interfaces (except the
loopback interface).

Number of times to send test messages (Keep-Alive Probes, or KA) without
receiving a response before the TCP connection will be considered closed. If
its value is set to 0 , the number of sent keep-alive probes is unlimited.

TCP connection idle period, after which keep-alive probes begin. This is
de�ned in conditional units, which can be converted into seconds via division
by the net.inet.tcp.slowhz parameter value.

Time interval between recurring keep-alive probes when no response is
received. This is de�ned in conditional units, which can be converted into
seconds via division by the net.inet.tcp.slowhz parameter value.

Size of the bu�er (in bytes) for data received over the TCP protocol.

Size of the bu�er (in bytes) for data sent over the TCP protocol.

64

net.inet.udp.recvspace

net.inet.udp.sendspace

static const int mss_max = 1460;
static const int mss_min = 100;
static const char* mss_max_opt_name = "net.inet.tcp.mssdflt";
static const char* mss_min_opt_name = "net.inet.tcp.minmss";
int main(void)
{
...
 if ((sysctlbyname(mss_max_opt_name, NULL, NULL, &mss_max, sizeof(mss_max)) != 0)
||
 (sysctlbyname(mss_min_opt_name, NULL, NULL, &mss_min, sizeof(mss_min)) != 0))
 {
 ERROR(START, "Can't set tcp default maximum/minimum MSS value.");
 return EXIT_FAILURE;
 }
}

Statically creating an IPC channel

Size of the bu�er (in bytes) for data received over the UDP protocol.

Size of the bu�er (in bytes) for data sent over the UDP protocol.

MSS con�guration example:

IPC and transport

Creating IPC channels

There are two methods for creating IPC channels: static and dynamic.

Static creation of IPC channels is simpler to implement because you can use the init description for this purpose.

Dynamic creation of IPC channels lets you change the topology of interaction between processes on the �y. This is
necessary if it is unknown which speci�c server provides the endpoint required by the client. For example, you may
not know which speci�c drive you will need to write data to.

Static creation of IPC channels has the following characteristics:

The client and server are not yet running when the IPC channel is created.

Creation of an IPC channel is performed by the parent process that starts the client and server (this is normally
Einit).

A deleted IPC channel cannot be restored.

To get the IPC handle and the endpoint ID (riid) after an IPC channel is created, the client and server must use
the API de�ned in the header �le sysroot-*-kos/include/coresrv/sl/sl_api.h from the
KasperskyOS SDK.

The IPC channels de�ned in the init description are statically created.

65

Dynamically creating an IPC channel

1. In KasperskyOS Community Edition, �nd the executable �le (we'll call it Server) that implements the necessary
functionality. (The term "functionality" used here refers to one or more endpoints that have their own IPC
interfaces.)

2. Include the CMake package containing the Server �le and its client library.

3. Add the Server executable �le to the solution image.

4. Edit the init description so that when the solution starts, the Einit program starts a new server process from
the Server executable �le and connects it, using an IPC channel, to the process started from the Client �le.

You must indicate the correct name of the IPC channel so that the transport libraries can identify this
channel and �nd its IPC handles. The correct name of the IPC channel normally matches the name of the
server process class. VFS is an exception in this case.

5. Edit the PSL description to allow startup of the server process and IPC interaction between the client and the
server.

6. In the source code of the Client program, include the server methods header �le.

7. Link the Client program with the client library.

Example of adding a GPIO driver to a solution

.\CMakeLists.txt

...
find_package (gpio REQUIRED COMPONENTS CLIENT_LIB ENTITY)

Dynamic creation of IPC channels has the following characteristics:

The client and server are already running when the IPC channel is created.

The IPC channel is jointly created by the client and server.

A new IPC channel may be created in place of a deleted one.

The client and server get the IPC handle and endpoint ID (riid) immediately after the IPC channel is successfully
created.

Adding an endpoint from KasperskyOS Community Edition to a solution

To ensure that a Client program can use some speci�c functionality via the IPC mechanism, the following is
required:

KasperskyOS Community Edition includes a gpio_hw �le that implements GPIO driver functionality.

The following commands connect the gpio CMake package:

66

include_directories (${gpio_INCLUDE})
...

einit\CMakeLists.txt

...
set (ENTITIES Client ${gpio_HW_ENTITY})
...

init.yaml.in

...
- name: client.Client
 connections:
 - target: kl.drivers.GPIO
 id: kl.drivers.GPIO

- name: kl.drivers.GPIO
 path: gpio_hw

security.psl.in

...
execute src=Einit, dst=kl.drivers.GPIO
{
 grant()
}

request src=client.Client, dst=kl.drivers.GPIO
{
 grant()
}

response src=kl.drivers.GPIO, dst=client.Client
{
 grant()
}
...

client.c

...
#include <gpio/gpio.h>
...

The gpio_hw executable �le is added to a solution image by using the gpio_HW_ENTITY variable, whose name can
be found in the con�guration �le of the package at /opt/KasperskyOS-Community-Edition-
<version>/sysroot-aarch64-kos/lib/cmake/gpio/gpio-config.cmake:

The following strings need to be added to the init description:

The following strings need to be added to the PSL description:

In the code of the Client program, you need to include the header �le in which the GPIO driver methods are
declared:

67

client\CMakeLists.txt

...
target_link_libraries (Client ${gpio_CLIENT_LIB})
...

To ensure correct operation of the GPIO driver, you may need to add the BSP component to the solution. To
avoid overcomplicating this example, BSP is not examined here. For more details, see the gpio_output example:
/opt/KasperskyOS-Community-Edition-<version>/examples/gpio_output

Constant part of an IPC message

IPC message arena

Finally, you need to link the Client program with the GPIO client library:

Creating and using your own endpoints

Overview: IPC message structure

In KasperskyOS, all interactions between processes have statically de�ned types. The permissible structures of an
IPC message are de�ned by the IDL descriptions of servers.

An IPC message (request and response) contains a constant part and an (optional) arena.

The constant part of an IPC message contains the RIID, MID, and (optionally) �xed-size parameters of interface
methods.

Fixed-size parameters are parameters that have IDL types of a �xed size.

The RIID and MID identify the interface and method being called:

The RIID (Runtime Implementation ID) is the sequence number of the utilized endpoint within the set of server
endpoints (starting at zero).

The MID (Method ID) is the sequence number of the called method within the set of methods of the utilized
endpoint (starting at zero).

The type of the constant part of the IPC message is generated by the NK compiler based on the IDL description of
the interface. A separate structure is generated for each interface method. Union types are also generated for
storing any request to a process, component or interface. For more details, refer to Example generation of
transport methods and types.

An IPC message arena (hereinafter also referred to as an arena) contains variable-size parameters of interface
methods (and/or elements of these parameters).

68

Maximum IPC message size

IPC message structure veri�cation by the security module

Implementation of IPC interaction

You do not need to get an IPC handle to utilize endpoints that are implemented in executable �les provided in
KasperskyOS Community Edition. The provided transport libraries are used to perform all transport operations,
including obtaining IPC handles.
See the gpio_*, net_*, net2_* and multi_vfs_* examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/).

Getting an IPC handle when statically creating a channel

Variable-size parameters are parameters that have IDL types of a variable size.

For more details, refer to "Working with an IPC message arena".

The maximum size of an IPC message is determined by the KasperskyOS kernel parameters. On most hardware
platforms supported by KasperskyOS, the cumulative size of the constant part and arena of an IPC message
cannot exceed 4, 8, or 16 MB.

Prior to querying IPC message-related rules, the Kaspersky Security Module veri�es that the sent IPC message is
correct. Requests and responses are both validated. If the IPC message has an incorrect structure, it will be
rejected without calling the security model methods associated with it.

To make it easier for a developer to implement IPC interaction, KasperskyOS Community Edition provides the
following:

NK compiler that generates transport methods and types.

Libkos library that provides the API for working with IPC transport.

Implementation of simple IPC interaction is demonstrated in the echo and ping examples (/opt/KasperskyOS-
Community-Edition-<version>/examples/).

Getting an IPC handle

The client and server IPC handles must be obtained if there are no ready-to-use transport libraries for the utilized
endpoint (for example, if you wrote your own endpoint). To independently work with IPC transport, you need to �rst
initialize it by using the NkKosTransport_Init() method and pass the IPC handle of the utilized channel as the
second argument.

For more details, see the echo and ping examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/).

When statically creating an IPC channel, both the client and server can obtain their IPC handles immediately after
startup by using the ServiceLocatorRegister() and ServiceLocatorConnect() methods and specifying
the name of the created IPC channel.

69

#include <coresrv/sl/sl_api.h>
…
Handle handle = ServiceLocatorConnect("server_connection");

#include <coresrv/sl/sl_api.h>
…
ServiceId id;
Handle handle = ServiceLocatorRegister("server_connection", NULL, 0, &id);

Closing an obtained IPC handle will cause the IPC channel to become unavailable. After an IPC handle is closed,
it is impossible to obtain it again or restore access to the IPC channel.

Getting an IPC handle when dynamically creating a channel

Filesystem_proxy_init(&proxy, &transport.base, riid);

You do not need to get the endpoint ID to utilize endpoints that are implemented in executable �les provided in
KasperskyOS Community Edition. The provided transport libraries are used to perform all transport operations.
See the gpio_*, net_*, net2_* and multi_vfs_* examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/).

For example, if the IPC channel is named server_connection , the following must be called on the client side:

The following must be called on the server side:

For more details, see the echo and ping examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/), and the header �le /opt/KasperskyOS-Community-Edition-<version>/sysroot-
aarch64-kos/include/coresrv/sl/sl_api.h .

Both the client and server receive their own IPC handles immediately after dynamic creation of an IPC channel is
successful.

The client IPC handle is one of the output (out) arguments of the KnCmConnect() method. The server IPC handle
is an output argument of the KnCmAccept() method. For more details, see the header �le /opt/KasperskyOS-
Community-Edition-<version>/sysroot-aarch64-kos/include/coresrv/cm/cm_api.h .

If the dynamically created IPC channel is no longer required, its client and server handles should be closed. The IPC
channel can be created again if necessary.

Getting an endpoint ID (riid)

The endpoint ID (riid) must be obtained on the client side if there are no ready-to-use transport libraries for the
utilized endpoint (for example, if you wrote your own endpoint). To call methods of the server, you must �rst call
the proxy object initialization method on the client side and pass the endpoint ID as the third parameter. For
example, for the Filesystem interface:

For more details, see the echo and ping examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/).

70

Getting an endpoint ID when statically creating a channel

#include <coresrv/sl/sl_api.h>
…
nk_iid_t riid = ServiceLocatorGetRiid(handle, "OpsComp.FS");

Getting an endpoint ID when dynamically creating a channel

Server.edl

entity Server

/* OpsComp is the named instance of the Operations component */
components {
 OpsComp: Operations
}

Operations.cdl

component Operations

/* FS is the local name of the endpoint implementing the Filesystem interface */
endpoints {
 FS: Filesystem
}

Filesystem.idl

When statically creating an IPC channel, the client can obtain the ID of the necessary endpoint by using the
ServiceLocatorGetRiid() method and specifying the IPC channel handle and the quali�ed name of the
endpoint. For example, if the OpsComp component instance provides the FS endpoint, the following must be called
on the client side:

For more details, see the echo and ping examples (/opt/KasperskyOS-Community-Edition-
<version>/examples/), and the header �le /opt/KasperskyOS-Community-Edition-<version>/sysroot-
aarch64-kos/include/coresrv/sl/sl_api.h .

The client receives the endpoint ID immediately after dynamic creation of an IPC channel is successful. The client
IPC handle is one of the output (out) arguments of the KnCmConnect() method. For more details, see the header
�le /opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-
kos/include/coresrv/cm/cm_api.h .

Example generation of transport methods and types

When building a solution, the NK compiler uses the EDL, CDL and IDL descriptions to generate a set of special
methods and types that simplify the creation, forwarding, receipt and processing of IPC messages.

As an example, we will examine the Server process class that provides the FS endpoint, which contains a single
Open() method:

71

package Filesystem

interface {
 Open(in string<256> name, out UInt32 h);
}

Methods and types that are common to the client and server

Methods and types used only on the client

These descriptions will be used to generate the �les named Server.edl.h , Operations.cdl.h , and
Filesystem.idl.h , which contain the following methods and types:

In our example, one abstract interface (Filesystem) will be generated:

typedef struct Filesystem {
 const struct Filesystem_ops *ops;
 } Filesystem;

typedef nk_err_t
Filesystem_Open_fn(struct Filesystem *, const
 struct Filesystem_Open_req *,
 const struct nk_arena *,
 struct Filesystem_Open_res *,
 struct nk_arena *);

typedef struct Filesystem_ops {
 Filesystem_Open_fn *Open;
 } Filesystem_ops;

When calling an interface method, the corresponding values of the RIID and MID are automatically inserted into
the request.

In our example, a single Filesystem_Open interface method will be generated:

nk_err_t Filesystem_Open(struct Filesystem *self,
 struct Filesystem_Open_req *req,
 const
 struct nk_arena *req_arena,
 struct Filesystem_Open_res *res,
 struct nk_arena *res_arena)

Abstract interfaces containing the pointers to the implementations of the methods included in them.

Set of interface methods.

A proxy object is used as an argument in an interface method. In our example, a single Filesystem_proxy
proxy object type will be generated:

typedef struct Filesystem_proxy {
 struct Filesystem base;

Types of proxy objects.

72

Methods and types used only on the server

 struct nk_transport *transport;
 nk_iid_t iid;
 } Filesystem_proxy;

In our example, the single initializing function Filesystem_proxy_init will be generated:

void Filesystem_proxy_init(struct Filesystem_proxy *self,
 struct nk_transport *transport,
 nk_iid_t iid)

In our example, two such types will be generated: Filesystem_Open_req (for a request) and
Filesystem_Open_res (for a response).

typedef struct __nk_packed Filesystem_Open_req {
 __nk_alignas(8)
 struct nk_message base_;
 __nk_alignas(4) nk_ptr_t name;
 } Filesystem_Open_req;

typedef struct Filesystem_Open_res {
 union {
 struct {
 __nk_alignas(8)
 struct nk_message base_;
 __nk_alignas(4) nk_uint32_t h;
 };
 struct {
 __nk_alignas(8)
 struct nk_message base_;
 __nk_alignas(4) nk_uint32_t h;
 } res_;
 struct Filesystem_Open_err err_;
 };
 } Filesystem_Open_res;

Functions for initializing proxy objects.

Types that de�ne the structure of the constant part of a message for each speci�c method.

If there are embedded components, this type also contains their instances, and the initializing function takes
their corresponding initialized structures. Therefore, if embedded components are present, their initialization
must begin with the most deeply embedded component.

In our example, the Operations_component structure and Operations_component_init function will be
generated:

typedef struct Operations_component {
 struct Filesystem *FS;
};

Type containing all endpoints of a component, and the initializing function. (For each server component.)

73

void Operations_component_init(struct Operations_component *self,
 struct Filesystem *FS)

In our example, the Server_entity structure and Server_entity_init function will be generated:

#define Server_entity Server_component

typedef struct Server_component {
 struct : Operations_component *OpsComp;
 } Server_component;

void Server_entity_init(struct Server_entity *self,
 struct Operations_component *OpsComp)

In our example, two such types will be generated: Filesystem_req (for a request) and Filesystem_res (for a
response).

typedef union Filesystem_req {
 struct nk_message base_;
 struct Filesystem_Open_req Open;
};

typedef union Filesystem_res {
 struct nk_message base_;
 struct Filesystem_Open_res Open;
};

If embedded components are present, these types also contain structures of the constant part of a
message for any method of any endpoint included in all embedded components.

In our example, two such types will be generated: Operations_component_req (for a request) and
Operations_component_res (for a response).

typedef union Operations_component_req {
 struct nk_message base_;
 Filesystem_req FS;
 } Operations_component_req;

typedef union Operations_component_res {
 struct nk_message base_;
 Filesystem_res FS;
 } Operations_component_res;

Type containing all endpoints provided directly by the server; all instances of components included in the
server; and the initializing function.

Types that de�ne the structure of the constant part of a message for any method of a speci�c interface.

Types that de�ne the structure of the constant part of a message for any method of any endpoint of a
speci�c component.

Types that de�ne the structure of the constant part of a message for any method of any endpoint of a
speci�c component whose instance is included in the server.

74

If embedded components are present, these types also contain structures of the constant part of a
message for any method of any endpoint included in all embedded components.

In our example, two such types will be generated: Server_entity_req (for a request) and
Server_entity_res (for a response).

#define Server_entity_req Server_component_req

typedef union Server_component_req {
 struct nk_message base_;
 Filesystem_req OpsComp_FS;
 } Server_component_req;

#define Server_entity_res Server_component_res

typedef union Server_component_res {
 struct nk_message base_;
 Filesystem_res OpsComp_FS;
 } Server_component_res;

Dispatchers analyze the received query (the RIID and MID values), call the implementation of the corresponding
method, and then save the response in the bu�er. In our example, three dispatchers will be generated:
Filesystem_interface_dispatch , Operations_component_dispatch , and Server_entity_dispatch .

The process class dispatcher handles the request and calls the methods implemented by this class. If the
request contains an incorrect RIID (for example, an RIID for a di�erent endpoint that this process class does not
have) or an incorrect MID, the dispatcher returns NK_EOK or NK_ENOENT .

nk_err_t Server_entity_dispatch(struct Server_entity *self,
 const
 struct nk_message *req,
 const
 struct nk_arena *req_arena,
 struct nk_message *res,
 struct nk_arena *res_arena)

In special cases, you can use dispatchers of the interface and the component. They take an additional
argument: interface implementation ID (nk_iid_t). The request will be handled only if the passed argument
and RIID from the request match, and if the MID is correct. Otherwise, the dispatchers return NK_EOK or
NK_ENOENT .

nk_err_t Operations_component_dispatch(struct Operations_component *self,
 nk_iid_t iidOffset,
 const
 struct nk_message *req,
 const
 struct nk_arena *req_arena,
 struct nk_message *res,
 struct nk_arena *res_arena)

nk_err_t Filesystem_interface_dispatch(struct Filesystem *impl,
 nk_iid_t iid,
 const
 struct nk_message *req,

Dispatch methods (dispatchers) for a separate interface, component, or process class.

75

Arena overview

API for working with an arena

 const
 struct nk_arena *req_arena,
 struct nk_message *res,
 struct nk_arena *res_arena)

Working with an IPC message arena

From the perspective of a developer of KasperskyOS-based solutions, an IPC message arena is a byte bu�er in
the memory of a process intended for storing variable-size data transmitted over IPC. This variable-size data
includes input parameters, output parameters, and error parameters of interface methods (and/or elements of
these parameters) that have variable-size IDL types. An arena is also used when querying the Kaspersky Security
Module to store input parameters of security interface methods (and/or elements of these parameters) that have
variable-size IDL types. (Parameters of �xed-size interface methods are stored in the constant part of an IPC
message.) Arenas are used on the client side and on the server side. One arena is intended either for transmitting
or for receiving variable-size data through IPC, but not for both transmitting and receiving this data at the same
time. In other words, arenas can be divided into IPC request arenas (containing input parameters of interface
methods) and IPC response arenas (containing output parameters and error parameters of interface methods).

Only the utilized part of an arena that is occupied by data is transmitted over IPC. (If it has no data, the arena is not
transmitted.) The utilized part of an arena includes one or more segments. One segment of an arena stores an
array of same-type objects, such as an array of single-byte objects or an array of structures. Arrays of di�erent
types of objects may be stored in di�erent segments of an arena. The starting address of an arena must be equal
to the boundary of a 2^N-byte sequence, where 2^N is a value that is greater than or equal to the size of the
largest primitive type in the arena (for example, the largest �eld of a primitive type in a structure). The address of
an arena chunk must also be equal to the boundary of a 2^N-byte sequence, where 2^N is a value that is greater
than or equal to the size of the largest primitive type in the arena chunk.

An arena must have multiple segments if the interface method has multiple variable-size input, output, or error
parameters, or if multiple elements of input, output, or error parameters of the interface method have a variable
size. For example, if an interface method has an input parameter of the sequence IDL type and an input parameter
of the bytes IDL type, the IPC request arena will have at least two segments. In this case, it may even require
additional segments if a parameter of the sequence IDL type consists of elements of a variable-size IDL type (for
example, if elements of a sequence are string bu�ers). As another example, if an interface method has one
output parameter of the struct IDL type that contains two �elds of the bytes and string type, the IPC
response arena will have two segments.

Due to the alignment of arena chunk addresses, there may be unused intervals between these chunks. Therefore,
the size of the utilized part of an arena may exceed the size of the data it contains.

The set of functions and macros for working with an arena is de�ned in the header �le sysroot-*-
kos/include/nk/arena.h from the KasperskyOS SDK. In addition, the function for copying a string to an arena
is declared in the header �le sysroot-*-kos/include/coresrv/nk/transport-kos.h from the
KasperskyOS SDK.

76

Creating an arena

Information on the functions and macros de�ned in the header �le sysroot-*-kos/include/nk/arena.h is
provided in the table below. In these functions and macros, an arena and arena chunk are identi�ed by an arena
descriptor (the nk_arena type) and an arena chunk descriptor (the nk_ptr_t type), respectively. An arena
descriptor is a structure containing three pointers: one pointer to the start of the arena, one pointer to the start of
the unused part of the arena, and one pointer to the end of the arena. An arena chunk descriptor is a structure
containing the o�set of the arena chunk in bytes (relative to the start of the arena) and the size of the arena chunk
in bytes. (The arena chunk descriptor type is de�ned in the header �le sysroot-*-kos/include/nk/types.h
from the KasperskyOS SDK.)

To pass variable-size parameters of interface methods over IPC, you must create arenas on the client side and on
the server side. (When IPC requests are handled on the server side using the NkKosDoDispatch() function
de�ned in the header �le sysroot-*-kos/include/coresrv/nk/transport-kos-dispatch.h from the
KasperskyOS SDK, the IPC request arena and IPC response arena are created automatically.)

To create an arena, you must create a bu�er (in the stack or heap) and initialize the arena descriptor.

The address of the bu�er must be aligned to comply with the maximum size of a primitive type that can be put into
this bu�er. The address of a dynamically created bu�er usually has adequate alignment to hold the maximum
amount of data of the primitive type. To ensure the required alignment of the address of a statically created bu�er,
you can use the alignas speci�er.

To initialize an arena descriptor using the pointer to an already created bu�er, you must use an API function or
macro:

NK_ARENA_INITIALIZER() macro

nk_arena_init() function

nk_arena_create() function

NK_ARENA_FINAL() macro

nk_arena_init_final() macro

The type of pointer makes no di�erence because this pointer is converted into a pointer to a single-byte object in
the code of API functions and macros.

The NK_ARENA_INITIALIZER() macro and the nk_arena_init() and nk_arena_create() functions initialize
arena descriptor that may contain one or more segments. The NK_ARENA_FINAL() and
nk_arena_init_final() macros initialize arena descriptor that contains only one segment spanning the entire
arena throughout its entire life cycle.

To create a bu�er in the stack and initialize the handle in one step, use the NK_ARENA_AUTO() macro. This macro
creates an arena that may contain one or more segments, and the address of the bu�er created by this macro has
adequate alignment to hold the maximum amount of data of the primitive type.

The size of an arena must be su�icient to hold variable-size parameters for IPC requests or IPC responses of one
interface method or a set of interface methods corresponding to one interface, component, or process class
while accounting for the alignment of segment addresses. Automatically generated transport code (the header
�les *.idl.h , *.cdl.h , and *.edl.h) contain *_arena_size constants whose values are guaranteed to
comply with su�icient sizes of arenas in bytes.

The header �les *.idl.h , *.cdl.h , and *.edl.h contain the following *_arena_size constants:

77

/* Example 1 */
alignas(8) char reqBuffer[Write_WriteInLog_req_arena_size];
struct nk_arena reqArena = NK_ARENA_INITIALIZER(
 reqBuffer, reqBuffer + sizeof(reqBuffer));

/* Example 2 */
struct nk_arena res_arena;
char res_buf[kl_rump_DhcpcdConfig_GetOptionNtpServers_res_arena_size];
nk_arena_init(&res_arena, res_buf, res_buf + sizeof(res_buf));

/* Example 3 */
char req_buffer[kl_CliApplication_Run_req_arena_size];
struct nk_arena req_arena = nk_arena_create(req_buffer, sizeof(req_buffer));

/* Example 4 */
nk_ptr_t ptr;
const char *cstr = "example";
nk_arena arena = NK_ARENA_FINAL(&ptr, cstr, strlen(cstr));

/* Example 5 */
const char *path = "path_to_file";
size_t len = strlen(path);
/* Structure for saving the constant part of an IPC request */

<interface name>_<interface method name>_req_arena_size – size of an IPC request arena for the
speci�ed interface method of the speci�ed interface

<interface name>_<interface method name>_res_arena_size – size of an IPC response arena for the
speci�ed interface method of the speci�ed interface

<interface name>_req_arena_size – size of an IPC request arena for any interface method of the
speci�ed interface

<interface name>_res_arena_size – size of an IPC response arena for any interface method of the
speci�ed interface

The header �les *.cdl.h and *.edl.h also contain the following *_arena_size constants:

<component name>_component_req_arena_size – size of an IPC request arena for any interface method
of the speci�ed component

<component name>_component_res_arena_size – size of an IPC response arena for any interface method
of the speci�ed component

The *.edl.h header �les also contain the following *_arena_size constants:

<process class name>_entity_req_arena_size – size of an IPC request arena for any interface method
of the speci�ed process class

<process class name>_entity_res_arena_size – size of an IPC response arena for any interface
method of the speci�ed process class

Constants containing the size of an IPC request arena or IPC response arena for one interface method
(<interface name>_<interface method name>_req_arena_size and
<interface name>_<interface method name>_res_arena_size) are intended for use on the client side. All
other constants can be used on the client side and on the server side.

Examples of creating an arena:

78

struct kl_VfsFilesystem_Rmdir_req req;
struct nk_arena req_arena;
nk_arena_init_final(&req_arena, &req.path, path, len);

/* Example 6 */
struct nk_arena res_arena = NK_ARENA_AUTO(kl_Klog_component_res_arena_size);

Adding data to an arena before transmission over IPC

/* Example 1 */
char req_buffer[kl_rump_NpfctlFilter_TableAdd_req_arena_size];

Before transmitting an IPC request on the client side or an IPC response on the server side, data must be added to
the arena. If the NK_ARENA_FINAL() macro or the nk_arena_init_final() macro is used to create an arena,
you do not need to reserve an arena chunk. Instead, you only need to add data to this chunk. If the
NK_ARENA_INITIALIZER() or NK_ARENA_AUTO() macro, or the nk_arena_init() or nk_arena_create()
function is used to create an arena, one or multiple segments in the arena must be reserved to hold data. To
reserve an arena chunk, you must use an API function or macro:

__nk_arena_alloc() function

nk_arena_store() macro

__nk_arena_store() function

nk_arena_alloc() macro

NkKosCopyStringToArena() function

The arena chunk descriptor, which is passed through the output parameter of these functions and macros and
through the output parameter of the NK_ARENA_FINAL() and nk_arena_init_final() macros, must be put
into the constant part or into the arena of an IPC message. If an interface method has a variable-size parameter,
the constant part of IPC messages contains arena chunk descriptor containing the parameter instead of the
actual parameter. If an interface method has a �xed-size parameter with variable-size elements, the constant part
of IPC messages contains arena chunk descriptors containing the parameter elements instead of the actual
parameter elements. If an interface method has a variable-size parameter containing variable-size elements, the
constant part of IPC messages contains arena chunk descriptor containing the descriptors of other arena chunks
that contain these parameter elements.

The nk_arena_store() macro and the __nk_arena_store() and NkKosCopyStringToArena() functions not
only reserve an arena chunk, but also copy data to this chunk.

The nk_arena_alloc() macro gets the address of a reserved arena chunk. An arena chunk address can also be
received by using the __nk_arena_get() function or the nk_arena_get() macro, which additionally pass the
arena size through the output parameter.

A reserved arena chunk can be reduced. To do so, use the nk_arena_shrink() macro or the
_nk_arena_shrink() function.

To undo a current reservation of arena chunks so that new chunks can be reserved for other data (after sending an
IPC message), call the nk_arena_reset() function. If the NK_ARENA_FINAL() macro or
nk_arena_init_final() macro is used to create an arena, you do not need to undo a segment reservation
because the arena contains one segment spanning the entire arena throughout its entire life cycle.

Examples of adding data to an arena:

79

struct nk_arena req_arena = NK_ARENA_INITIALIZER(req_buffer, req_buffer +
sizeof(req_buffer));
/* Structure for saving the constant part of an IPC request */
struct kl_rump_NpfctlFilter_TableAdd_req req;
if (nk_arena_store(char, &req_arena, &req.tid, tid, tidlen))
 return ENOMEM;
if (nk_arena_store(char, &req_arena, &req.cidrAddr, cidr_addr, cidr_addrlen))
 return ENOMEM;

/* Example 2 */
char req_arena_buf[StringMaxSize];
struct nk_arena req_arena = NK_ARENA_INITIALIZER(req_arena_buf,
 req_arena_buf + sizeof(req_arena_buf));
/* Structure for saving the constant part of an IPC request */
kl_drivers_FBConsole_SetFont_req req;
size_t buf_size = strlen(fileName) + 1;
char *buf = nk_arena_alloc(char, &req_arena, &req.fileName, buf_size);
memcpy(buf, fileName, buf_size);

/* Example 3 */
char reqArenaBuf[kl_core_DCM_req_arena_size];
struct nk_arena reqArena
 = NK_ARENA_INITIALIZER(reqArenaBuf,
 reqArenaBuf + sizeof(reqArenaBuf));
/* Structure for saving the constant part of an IPC request */
kl_core_DCM_Subscribe_req req;
rc = NkKosCopyStringToArena(&reqArena, &req.endpointType, endpointType);
if (rc != rcOk)
 return rc;
rc = NkKosCopyStringToArena(&reqArena, &req.endpointName, endpointName);
if (rc != rcOk)
 return rc;
rc = NkKosCopyStringToArena(&reqArena, &req.serverName, serverName);
if (rc != rcOk)
 return rc;

/* Example 4 */
unsigned counter = 0;
nk_ptr_t *paths;
/* Reserve an arena chunk for descriptors of other arena chunks */
paths = nk_arena_alloc(nk_ptr_t, resArena, &res->logRes, msgCount);
while(...)
{
 ...
 /* Reserve arena chunks and save their descriptors in
 * a previously reserved arena chunk with the paths address */
 char *str = nk_arena_alloc(
 char,
 resArena,
 &paths[counter],
 stringLength + 1);
 if (str == NK_NULL)
 return NK_ENOMEM;
 snprintf(str, (stringLength + 1), "%s", buffer);
 ...
 counter++;
}

Retrieving data from an arena after receipt over IPC

80

struct nk_arena res_arena;
char res_buf[kl_rump_DhcpcdConfig_Version_res_ver_size];
nk_arena_init(&res_arena, res_buf, res_buf + sizeof(res_buf));
/* Structure for saving an IPC request */
struct kl_rump_DhcpcdConfig_Version_req req;
req.buflen = buflen;
/* Structure for saving an IPC response */
struct kl_rump_DhcpcdConfig_Version_res res;
/* Call the interface method */
if (kl_rump_DhcpcdConfig_Version(dhcpcd.proxy, &req, NULL, &res, &res_arena) !=
NK_EOK)
 return -1;
size_t ptrlen;
char *ptr = nk_arena_get(char, &res_arena, &res.ver, &ptrlen);
memcpy(buf, ptr, ptrlen);

Additional capabilities of the API

Information about API functions and macros

Functions and macros of arena.h

Function/Macro Information about the function/macro

NK_ARENA_INITIALIZER()

Prior to receiving an IPC request on the server side or an IPC response on the client side for an arena that will store
the data received over IPC, you must undo the current reservation of segments by calling the nk_arena_reset()
function. This must be done even if the NK_ARENA_FINAL() macro or the nk_arena_init_final() macro is
used to create the arena. (The NK_ARENA_INITIALIZER() and NK_ARENA_AUTO() macros, and the
nk_arena_init() and nk_arena_create() functions create an arena without reserved segments. You do not
need to call the nk_arena_reset() function if this arena will only be used once to save data received over IPC.)

To receive pointers to arena chunks and the sizes of these chunks, you must use the __nk_arena_get() function
or the nk_arena_get() macro while using the input parameter to pass the corresponding arena chunk
descriptors received from the constant part and arena of the IPC message.

Example of receiving data from an arena:

To get the arena size, call the nk_arena_capacity() function.

To get the size of the utilized part of the arena, call the nk_arena_allocated_size() function.

To verify that the arena chunk descriptor is correct, use the nk_arena_validate() macro or the
__nk_arena_validate() function.

Purpose

Initializes the arena descriptor.

Parameters

[in] _start – pointer to the start of the arena.

[in] _end – pointer to the end of the arena.

Macro values

81

nk_arena_init()

nk_arena_create()

NK_ARENA_AUTO()

NK_ARENA_FINAL()

Arena descriptor initialization code.

Purpose

Initializes the arena descriptor.

Parameters

[out] self – pointer to the arena descriptor.

[in] start – pointer to the start of the arena.

[in] end – pointer to the end of the arena.

Returned values

N/A

Purpose

Creates and initializes the arena descriptor.

Parameters

[in] start – pointer to the start of the arena.

[in] size – arena size in bytes.

Returned values

Arena descriptor.

Purpose

Creates a bu�er in the stack, and creates and initializes the arena
descriptor.

Parameters

[in] size – arena size in bytes. It must be de�ned as a constant.

Macro values

Arena descriptor.

Purpose

Initializes the arena descriptor containing only one segment.

Parameters

[out] ptr – pointer to the arena chunk descriptor.

[in] start – pointer to the start of the arena.

[in] count – number of objects in the arena chunk.

82

nk_arena_reset()

__nk_arena_alloc()

nk_arena_capacity()

nk_arena_validate()

Macro values

Arena descriptor.

Purpose

Resets the reservation of arena chunks.

Parameters

[in,out] self – pointer to the arena descriptor.

Returned values

N/A

Purpose

Reserves an arena chunk with a speci�c size and a speci�c alignment.

Parameters

[in,out] self – pointer to the arena descriptor.

[out] ptr – pointer to the arena chunk descriptor.

[in] size – arena chunk size in bytes.

[in] align – value de�ning the arena chunk alignment. The arena
chunk address can be unaligned (align=1) or aligned (align=2,4,...,2^N) to
the boundary of a 2^N-byte sequence (for example, two-byte or four-
byte).

Returned values

If successful, the function returns NK_EOK , otherwise it returns an error
code.

Purpose

Gets the size of an arena.

Parameters

[in] self – pointer to the arena descriptor.

Returned values

Size of the arena in bytes.

Additional information

If the parameter has the NK_NULL value, it returns 0 .

Purpose

Veri�es that the arena chunk descriptor is correct.

83

1. The o�set speci�ed in the arena chunk descriptor does not exceed
the arena size.

2. The size speci�ed in the arena chunk descriptor does not exceed the
arena size reduced by the o�set speci�ed in the arena chunk
descriptor.

3. The size speci�ed in the arena chunk descriptor is a multiple of the
size of the type of objects for which this arena chunk is intended.

1. The o�set speci�ed in the arena chunk descriptor is equal to zero.

2. The size speci�ed in the arena chunk descriptor is equal to zero.

__nk_arena_validate()

1. The o�set speci�ed in the arena chunk descriptor does not exceed
the arena size.

2. The size speci�ed in the arena chunk descriptor does not exceed the
arena size reduced by the o�set speci�ed in the arena chunk
descriptor.

Parameters

[in] type – type of objects for which the arena chunk is intended.

[in] arena – pointer to the arena descriptor.

[in] ptr – pointer to the arena chunk descriptor.

Macro values

It has a value of 0 when the arena size is not zero if all of the following
conditions are ful�lled:

It has a value of 0 when the arena size is zero if all of the following
conditions are ful�lled:

It has a value of -1 if even one of the conditions is not ful�lled
(regardless of whether the arena size is zero or non-zero), or if the ptr
parameter has the NK_NULL value.

Purpose

Veri�es that the arena chunk descriptor is correct.

Parameters

[in] self – pointer to the arena descriptor.

[in] ptr – pointer to the arena chunk descriptor.

Returned values

Returns 0 when the arena size is not zero if all of the following conditions
are ful�lled:

84

1. The o�set speci�ed in the arena chunk descriptor is equal to zero.

2. The size speci�ed in the arena chunk descriptor is equal to zero.

__nk_arena_get()

nk_arena_allocated_size()

nk_arena_store()

Returns 0 when the arena size is zero if all of the following conditions are
ful�lled:

Returns -1 if even one of the conditions is not ful�lled (regardless of
whether the arena size is zero or non-zero), or if the ptr parameter has
the NK_NULL value.

Purpose

Gets the pointer to the arena chunk and the size of this chunk.

Parameters

[in] self – pointer to the arena descriptor.

[in] ptr – pointer to the arena chunk descriptor.

[out] size – arena chunk size in bytes.

Returned values

Pointer to the arena chunk or NK_NULL if even one parameter has the
NK_NULL value.

Purpose

Gets the size of the utilized part of the arena.

Parameters

[in] self – pointer to the arena descriptor.

Returned values

Size of the utilized part of the arena, in bytes.

Additional information

If the parameter has the NK_NULL value, it returns 0 .

Purpose

Reserves an arena chunk for the speci�ed number of objects of the
de�ned type and copies these objects to the reserved chunk.

Parameters

[in] type – type of objects that need to be copied to the arena
chunk.

[in,out] arena – pointer to the arena descriptor.

[out] ptr – pointer to the arena chunk descriptor.

85

__nk_arena_store()

nk_arena_init_final()

nk_arena_alloc()

[in] src – pointer to the bu�er containing the objects that need to
be copied to the arena chunk.

[in] count – number of objects that need to be copied to the arena
chunk.

Macro values

It has a value of 0 if successful, otherwise it has a value of -1 .

Purpose

Reserves an arena chunk with a de�ned alignment for data of a speci�c
size and copies this data to the reserved segment.

Parameters

[in,out] self – pointer to the arena descriptor.

[out] ptr – pointer to the arena chunk descriptor.

[in] src – pointer to the bu�er containing the data that needs to be
copied to the arena chunk.

[in] size – size of the data that needs to be copied to the arena
chunk, in bytes.

[in] align – value de�ning the arena chunk alignment. The arena
chunk address can be unaligned (align=1) or aligned (align=2,4,...,2^N) to
the boundary of a 2^N-byte sequence (for example, two-byte or four-
byte).

Returned values

Returns 0 if successful, otherwise returns -1 .

Purpose

Initializes the arena descriptor containing only one segment.

Parameters

[out] arena – pointer to the arena descriptor.

[out] ptr – pointer to the arena chunk descriptor.

[in] start – pointer to the start of the arena.

[in] count – number of objects for which the arena chunk is intended.

Macro values

N/A

Purpose

86

nk_arena_get()

nk_arena_shrink()

Reserves an arena chunk for the de�ned number of objects of the
speci�ed type.

Parameters

[in] type – type of objects for which the arena chunk is intended.

[in,out] arena – pointer to the arena descriptor.

[out] ptr – pointer to the arena chunk descriptor.

[in] count – number of objects for which the arena chunk is intended.

Macro values

It has the address of the reserved arena chunk if successful, otherwise
NK_NULL .

Purpose

Gets the address of an arena chunk and the number of objects of the
speci�ed type that can be put into this chunk.

Parameters

[in] type – type of objects for which the arena chunk is intended.

[in] arena – pointer to the arena descriptor.

[in] ptr – pointer to the arena chunk descriptor.

[out] count – pointer to the number of objects that can be put into
the arena chunk.

Macro values

It has the address of the arena chunk if successful, otherwise NK_NULL .

Additional information

If the size of the arena chunk is not a multiple of the size of the type of
objects for which this chunk is intended, it has the NK_NULL value.

Purpose

Reduces the size of an arena chunk.

Parameters

[in] type – type of objects for which the reduced arena chunk is
intended.

[in,out] arena – pointer to the arena descriptor.

[in,out] ptr – pointer to the arena chunk descriptor.

87

_nk_arena_shrink()

[in] count – number of objects for which the reduced arena chunk is
intended.

Macro values

It has the address of the reduced arena chunk if successful, otherwise
NK_NULL .

Additional information

If the required size of the arena chunk exceeds the current size, it has the
NK_NULL value.

If the alignment of the arena chunk that needs to be reduced does not
match the type of objects for which the reduced chunk is intended, it has
the NK_NULL value.

If the arena chunk that needs to be reduced is the last chunk in the
arena, the freed part of this chunk will become available for reservation
of subsequent chunks.

Purpose

Reduces the size of an arena chunk.

Parameters

[in,out] self – pointer to the arena descriptor.

[in,out] ptr – pointer to the arena chunk descriptor.

[in] size – size of the reduced arena chunk, in bytes.

[in] align – value used by the function to verify alignment of the
arena chunk that needs to be reduced. The arena chunk address can
be unaligned (align=1) or aligned (align=2,4,...,2^N) to the boundary of a
2^N-byte sequence (for example, two-byte or four-byte).

Returned values

Returns the address of the reduced arena chunk if successful, otherwise
returns NK_NULL .

Additional information

If the required size of the arena chunk exceeds the current size, it returns
NK_NULL .

If the alignment of the arena chunk that needs to be reduced does not
match the speci�ed alignment, it returns NK_NULL .

If the arena chunk that needs to be reduced is the last chunk in the
arena, the freed part of this chunk will become available for reservation
of subsequent chunks.

88

Before reading this section, you should review the information on the IPC mechanism in KasperskyOS and the
IDL, CDL, and EDL descriptions.

Transport code

Generating transport code for development in C++

С++ types in the *.idl.cpp.h �le

Mapping IDL types to C++ types

IDL type C++ type

SInt8 int8_t

Transport code in C++

Implementation of interprocess interaction requires transport code, which is responsible for generating, sending,
receiving, and processing IPC messages.

However, a developer of a KasperskyOS-based solution does not have to write their own transport code. Instead,
you can use the special tools and libraries included in the KasperskyOS SDK. These libraries enable a solution
component developer to generate transport code based on IDL, CDL and EDL descriptions related to this
component.

The KasperskyOS SDK includes the nkppmeta compiler for generating transport code in C++.

The nkppmeta compiler lets you generate transport C++ proxy objects and stubs for use by both a client and a
server.

Proxy objects are used by the client to pack the parameters of the called method into an IPC request, execute the
IPC request, and unpack the IPC response.

Stubs are used by the server to unpack the parameters from the IPC request, dispatch the call to the appropriate
method implementation, and pack the IPC response.

The CMake commands add_nk_idl(), add_nk_cdl() and add_nk_edl() are used to generate transport proxy objects
and stubs using the nkppmeta compiler when building a solution.

Each interface is de�ned in an IDL description. This description de�nes the interface name, signatures of interface
methods, and data types for the parameters of interface methods.

The CMake command add_nk_idl() is used to generate transport code when building a solution. This command
creates a CMake target for generating header �les for the de�ned IDL �le when using the nkppmeta compiler.

The generated header �les contain a C++ representation for the interface and data types described in the IDL �le,
and the methods required for use of proxy objects and stubs.

The mapping of data types declared in an IDL �le to C++ types are presented in the table below.

89

SInt16 int16_t

SInt32 int32_t

SInt64 int64_t

UInt8 uint8_t

UInt16 uint16_t

UInt32 uint32_t

UInt64 uint64_t

Handle Handle (de�ned in coresrv/handle/handletype.h)

string std::string

union std::variant

struct struct

array std::array

sequence std::vector

bytes std::vector<std::byte>

Working with transport code in C++

Statically creating IPC channels for C++ development

1. Include the generated header �le (*.edl.cpp.h) of the client program description.

2. Include the generated header �les of the descriptions of the utilized interfaces (*.idl.cpp.h).

3. Include the header �les:

4. Initialize the application object by calling the kosipc::MakeApplicationAutodetect() function. (You can
also use the kosipc::MakeApplication() and kosipc::MakeApplicationPureClient() functions.)

5. Get the client IPC handle of the channel and the endpoint ID (riid) by calling the
kosipc::ConnectStaticChannel() function.

This function gets the name of the IPC channel (from the init.yaml �le) and the quali�ed name of the endpoint
(from the CDL and EDL descriptions of the solution component).

The scenarios for developing a client and server that exchange IPC messages are presented in the sections titled
Statically creating IPC channels for C++ development and Dynamically creating IPC channels for C++ development.

To implement a client program that calls a method of an endpoint provided by a server program:

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/application.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-kos/include/kosipc/api.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/connect_static_channel.h

90

6. Initialize the proxy object for the utilized endpoint by calling the MakeProxy() function.

// Create and initialize the application object
kosipc::Application app = kosipc::MakeApplicationAutodetect();

// Create and initialize the proxy object
auto proxy = app.MakeProxy<IDLInterface>(
 kosipc::ConnectStaticChannel(channelName, endpointName))

// Call the method of the required endpoint
proxy->DoSomeWork();

1. Include the generated header �le *.edl.cpp.h containing a description of the component structure of the
program, including all provided endpoints.

2. Include the header �les:

3. Create classes containing the implementations of interfaces that this program and its components provide as
endpoints.

4. Initialize the application object by calling the kosipc::MakeApplicationAutodetect() function.

5. Initialize the kosipc::components::Root structure, which describes the component structure of the
program and describes the interfaces of all endpoints provided by the program.

6. Bind �elds of the kosipc::components::Root structure to the objects that implement the corresponding
endpoints.

Fields of the Root structure replicate the hierarchy of components and endpoints that are collectively de�ned
by the CDL and EDL �les.

7. Get the server IPC handle of the channel by calling the ServeStaticChannel() function.

This function gets the name of the IPC channel (from the init.yaml �le) and the structure created at step 5.

8. Create the kosipc::EventLoop object by calling the MakeEventLoop() function.

9. Start the loop for dispatching incoming IPC messages by calling the Run() method of the
kosipc::EventLoop object.

// Create class objects that implement interfaces
// provided by the server as endpoints

Example

To implement a server program that provides endpoints to other programs:

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/event_loop.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-kos/include/kosipc/api.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/serve_static_channel.h

Example

91

MyIDLInterfaceImp_1 impl_1;
MyIDLInterfaceImp_2 impl_2;

// Create and initialize the application object
kosipc::Application app = kosipc::MakeApplicationAutodetect();

// Create and initialize the root object that describes
// the components and endpoints of the server
kosipc::components::Root root;

// Bind the root object to the class objects that implement the server endpoints
root.component1.endpoint1 = &impl_1;
root.component2.endpoint2 = &impl_2;

// Create and initialize the object that implements the
// loop for dispatching incoming IPC messages
kosipc::EventLoop loop = app.MakeEventLoop(ServeStaticChannel(channelName, root));

// Start the loop in the current thread
loop.Run();

Dynamically creating IPC channels for C++ development

1. Include the generated description header �le (*.edl.cpp.h) in the client program.

2. Include the generated header �les of the descriptions of the utilized interfaces (*.idl.cpp.h).

3. Include the header �les:

4. Get the pointers to the server name and the quali�ed name of the endpoint by using a name server, which is a
special kernel service provided by the NameServer program. To do so, you must connect to the name server by
calling the NsCreate() function and �nd the server that provides the required endpoint by using the
NsEnumServices() function. For more details, refer to Dynamically creating IPC channels (cm_api.h, ns_api.h).

5. Create an application object by calling the kosipc::MakeApplicationAutodetect() function. (You can also
use the kosipc::MakeApplication() and kosipc::MakeApplicationPureClient() functions.)

6. Create a proxy object for the required endpoint by calling the MakeProxy() function. Use the
kosipc::ConnectDynamicChannel() function call as the input parameter of the MakeProxy() function.
Pass the pointers for the server name and quali�ed name of the endpoint obtained at step 4 to the
kosipc::ConnectDynamicChannel() function.

Dynamic creation of an IPC channel on the client side includes the following steps:

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/application.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/make_application.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/connect_dynamic_channel.h

After successful initialization of the proxy object, the client can call methods of the required endpoint.

92

NsHandle ns;

// Connect to a name server
Retcode rc = NsCreate(RTL_NULL, INFINITE_TIMEOUT, &ns);

char serverName[kl_core_Types_UCoreStringSize];
char endpointName[kl_core_Types_UCoreStringSize];

// Get pointers to the server name and qualified name of the endpoint
rc = NsEnumServices(
 ns, interfaceName, 0,
 serverName, kl_core_Types_UCoreStringSize,
 endpointName, kl_core_Types_UCoreStringSize);

// Create and initialize the application object
kosipc::Application app = kosipc::MakeApplicationAutodetect();

// Create and initialize the proxy object
auto proxy = app.MakeProxy<IDLInterface>(
 kosipc::ConnectDynamicChannel(serverName, endpointName))

// Call the method of the required endpoint
proxy->DoSomeWork();

1. Include the generated header �le (*.edl.cpp.h) containing a description of the component structure of the
server, including all provided endpoints, in the server program.

2. Include the header �les:

3. Create classes containing the implementations of interfaces that the server provides as endpoints. Create and
initialize the objects of these classes.

4. Create an application object by calling the kosipc::MakeApplicationAutodetect() function.

Example

Dynamic creation of an IPC channel on the server side includes the following steps:

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/application.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/event_loop.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/make_application.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/root_component.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/serve_dynamic_channel.h

/opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/simple_connection_acceptor.h

93

5. Create and initialize the kosipc::components::Root class object that describes the structure of
components and endpoints of the server. This structure is generated from the descriptions in the CDL and EDL
�les.

6. Bind the kosipc::components::Root class object to the class objects created at step 3.

7. Create and initialize the kosipc::EventLoop class object that implements a loop for dispatching incoming
IPC messages by calling the MakeEventLoop() function. Use the ServeDynamicChannel() function call as
an input parameter of the MakeEventLoop() function. Pass the kosipc::components::Root class object
created at step 5 to the ServeDynamicChannel() function.

8. Start the loop for dispatching incoming IPC messages in a separate thread by calling the Run() method of the
kosipc::EventLoop object.

9. Create and initialize the object that implements the handler for receiving incoming requests to dynamically
create an IPC channel.

When creating an object, you can use the kosipc::SimpleConnectionAcceptor class, which is the standard
implementation of the kosipc::IConnectionAcceptor interface. (The kosipc::IConnectionAcceptor
interface is de�ned in the �le named /opt/KasperskyOS-Community-Edition-<version>/sysroot-*-
kos/include/kosipc/connection_acceptor.h .) In this case, the handler will implement the following logic:
if the endpoint requested by the client was published on the server, the request from the client will be
accepted. Otherwise, it will be rejected.

If you need to create your own handler, you should implement your own request handling logic in the
OnConnectionRequest() method inherited from the kosipc::IConnectionAcceptor interface. This
method will be called by the server when it receives a request for dynamic IPC channel creation from the client.

10. Create a kosipc::EventLoop class object that implements a loop for receiving incoming requests to
dynamically create an IPC channel by calling the MakeEventLoop() function. Use the
ServeConnectionRequests() function call as an input parameter of the MakeEventLoop() function. Pass
the object created at step 9 to the ServeConnectionRequests() function.

There can only be one loop for receiving incoming requests to dynamically create an IPC channel. The loop
must work in one thread. The loop for receiving incoming requests to dynamically create an IPC channel
must be created after the loop for dispatching incoming IPC channels is created (see step 7).

11. Start the loop for receiving incoming requests for a dynamic connection in the current thread by calling the
Run() method of the kosipc::EventLoop object.

// Create class objects that implement interfaces
// provided by the server as endpoints
MyIDLInterfaceImp_1 impl_1;
MyIDLInterfaceImp_2 impl_2;

// Create and initialize the application object
kosipc::Application app = kosipc::MakeApplicationAutodetect();

// Create and initialize the root object that describes
// the components and endpoints of the server
kosipc::components::Root root;

// Bind the root object to the class objects that implement the server endpoints.
// The fields of the root object repeat the description of components and endpoints
// defined collectively by the CDL and EDL files.

Example

94

root.component1.endpoint1 = &impl_1;
root.component2.endpoint2 = &impl_2;

// Create and initialize the object that implements the
// loop for dispatching incoming IPC messages
kosipc::EventLoop loopDynamicChannel = app.MakeEventLoop(ServeDynamicChannel(root));

// Start the loop for dispatching incoming IPC messages in a separate thread
std::thread dynChannelThread(
 [&loopDynamicChannel]() {
 loopDynamicChannel.Run();
 }
);

// Create an object that implements a standard handler for receiving incoming requests
// to dynamically create an IPC channel
kosipc::SimpleConnectionAcceptor acceptor(root);

// Create an object that implements a loop for receiving incoming requests
// to dynamically create an IPC channel
kosipc::EventLoop loopDynamicChannel =
app.MakeEventLoop(ServeConnectionRequests(&acceptor));

// Start the loop for receiving incoming requests to dynamically create an IPC channel
in the current thread
loopConnectionReq.Run();

// Create and initialize the group_1 object
kosipc::components::Root group_1;

group_1.component1.endpoint1 = &impl_1;
group_1.component2.endpoint2 = &impl_2;

// Create and initialize the group_2 object
kosipc::components::Root group_2;

group_2.component1.endpoint1 = &impl_3;
group_2.component2.endpoint2 = &impl_4;

// Create and initialize the group_3 object
kosipc::components::Root group_3;

group_3.component1.endoint1 = &impl_5;

// Create a list of objects
ServiceList endpoints;
endpoints.AddServices(group_1);
endpoints.AddServices(group_2);
endpoints.AddServices(group_3.component1.endpoint1, "SomeCustomEndpointName");

// Create an object that implements the handler for receiving incoming requests
// to dynamically create an IPC channel
kosipc::SimpleConnectionAcceptor acceptor(std::move(endpoints));

If necessary, you can create and initialize multiple kosipc::components::Root class objects combined into a list
of objects of the ServiceList type using the AddServices() method. For example, use of multiple objects
enables you to separate components and endpoints of the server into groups or publish endpoints under di�erent
names.

Example

95

// Create an object that implements a loop for receiving incoming requests
// to dynamically create an IPC channel
kosipc::EventLoop loopDynamicChannel =
app.MakeEventLoop(ServeConnectionRequests(&acceptor));

96

Overview

typedef __INT32_TYPE__ Retcode;

KasperskyOS API

Return codes

In a KasperskyOS-based solution, the return codes of functions of various APIs (for example, APIs of the libkos
and kdf libraries, drivers, transport code, and application software) are 32-bit signed integers. This type is de�ned
in the sysroot-*-kos/include/rtl/retcode.h header �le from the KasperskyOS SDK as follows:

The set of return codes consists of a success code with a value of 0 and error codes. An error code is interpreted
as a data structure whose format is described in the sysroot-*-kos/include/rtl/retcode.h header �le from
the KasperskyOS SDK. This format provides for multiple �elds that contain not only information about the results
of a function call, but also the following additional information:

Flag in the Customer �eld indicating that the error code was de�ned by the developers of the KasperskyOS-
based solution and not by the developers of software from the KasperskyOS SDK.

Thanks to the �ag in the Customer �eld, developers of a KasperskyOS-based solution and developers of
software from the KasperskyOS SDK can de�ne error codes from non-overlapping sets.

Global ID of the error code in the Space �eld.

Global IDs let you de�ne non-overlapping sets of error codes. Error codes can be generic or speci�c. Generic
error codes can be used in the APIs of any solution components and in the APIs of any constituent parts of
solution components (for example, a driver or VFS may be a constituent part of a solution component).
Speci�c error codes are used in the APIs of one or more solution components or in the APIs of one or more
constituent parts of solution components.

For example, the RC_SPACE_GENERAL ID corresponds to generic errors, the RC_SPACE_KERNEL ID corresponds
to error codes of the kernel, and the RC_SPACE_DRIVERS ID corresponds to error codes of drivers.

Local ID of the error code in the Facility �eld.

Local IDs let you de�ne non-overlapping subsets of error codes within the set of error codes corresponding to
one global ID. For example, the set of error codes with the global ID RC_SPACE_DRIVERS includes non-
overlapping subsets of error codes with the local IDs RC_FACILITY_I2C , RC_FACILITY_USB , and
RC_FACILITY_BLKDEV .

The global and local IDs of speci�c error codes are assigned by the developers of a KasperskyOS-based solution
and by the developers of software from the KasperskyOS SDK independently of each other. In other words, two
sets of global IDs are generated. Each global ID has a unique meaning within one set. Each local ID has a unique
meaning within a set of local IDs related to one global ID. Generic error codes can be used in any API.

This type of centralized approach helps avoid situations in which the same error codes have various meanings
within a KasperskyOS-based solution. This is necessary to eliminate a potential problem transmitting error codes
through di�erent APIs. For example, this problem occurs when drivers call kdf library functions, receive error
codes, and return these codes through their own APIs. If error codes are generated without a centralized
approach, the same error code can have di�erent meanings for the kdf library and for the driver. Under these
conditions, drivers return correct error codes only if the error codes of the kdf library are converted into error
codes of each driver. In other words, error codes in a KasperskyOS-based solution are assigned in such way that
does not require conversion of these codes during their transit through various APIs.

97

The information about return codes provided here does not apply to functions of a POSIX interface or the APIs
of third-party software used in KasperskyOS-based solutions.

Generic return codes

Generic return codes

Return code Description

rcOk (corresponds to
the 0 value)

The function completed successfully.

rcInvalidArgument Invalid function parameter.

rcNotConnected
No connection between the client and server sides of interaction.

For example, there is no server IPC handle.

rcOutOfMemory Insu�icient memory to perform the operation.

rcBufferTooSmall Insu�icient bu�er size.

rcInternalError
The function ended with an internal error related to incorrect logic.

Some examples of internal errors include values outside of the permissible
limits, and null indicators and values where they are not permitted.

rcTransferError Error sending an IPC message.

rcReceiveError Error receiving an IPC message.

rcSourceFault IPC message was not transmitted due to the IPC message source.

rcTargetFault IPC message was not transmitted due to the IPC message recipient.

rcIpcInterrupt IPC was interrupted by another process thread.

rcRestart Indicates that the function needs to be called again.

rcFail The function ended with an error.

rcNoCapability The operation cannot be performed on the resource.

rcNotReady Initialization failed.

rcUnimplemented The function was not implemented.

rcBufferTooLarge Large bu�er size.

rcBusy Resource temporarily unavailable.

rcResourceNotFound Resource not found.

rcTimeout Timed out.

rcSecurityDisallow The operation was denied by security mechanisms.

rcFutexWouldBlock The operation will result in a block.

rcAbort The operation was aborted.

rcInvalidThreadState Invalid function called in the interrupt handler.

Set of elements already contains the element being added.

Return codes that are generic for APIs of all solution components and their constituent parts are de�ned in the
sysroot-*-kos/include/rtl/retcode.h header �le from the KasperskyOS SDK. Descriptions of generic
return codes are provided in the table below.

98

rcAlreadyExists
rcInvalidOperation Operation cannot be completed.

rcHandleRevoked Resource access rights were revoked.

rcQuotaExceeded Resource quota exceeded.

rcDeviceNotFound Device not found.

rcOverflow An over�ow occurred.

rcAlreadyDone Operation has already been completed.

De�ning error codes

#define LV_EBADREQUEST MAKE_RETCODE(RC_CUSTOMER_TRUE, RC_SPACE_APPS,
RC_FACILITY_LogViewer, 5, "Bad request")

An error description that is passed via the desc parameter is not used by the MAKE_RETCODE() macro. This
description is needed to create a database of error codes when building a KasperskyOS-based solution. At
present, a mechanism for creating and using such a database has not been implemented.

Reading error code structure �elds

To de�ne an error code, the developer of a KasperskyOS-based solution needs to use the MAKE_RETCODE()
macro de�ned in the sysroot-*-kos/include/rtl/retcode.h header �le from the KasperskyOS SDK. The
developer must also use the customer parameter to pass the symbolic constant RC_CUSTOMER_TRUE .

Example:

The RC_GET_CUSTOMER() , RC_GET_SPACE() , RC_GET_FACILITY() and RC_GET_CODE() macros de�ned in the
sysroot-*-kos/include/rtl/retcode.h header �le from the KasperskyOS SDK let you read error code
structure �elds.

The RETCODE_HR_PARAMS() and RETCODE_HR_FMT() macros de�ned in the sysroot-*-
kos/include/rtl/retcode_hr.h header �le from the KasperskyOS SDK are used for formatted display of error
details.

libkos library

The libkos library is the basic KasperskyOS library that provides the set of APIs that allow programs and other
libraries (for example, libc and kdf) to use core endpoints. The APIs provided by the libkos library enable
solution developers to do the following:

Manage processes, threads, and virtual memory.

Control access to resources.

Perform input/output operations.

Create IPC channels.

99

Locality of handles

Manage power.

Obtain statistical data on the system.

Use other capabilities supported by core endpoints.

This section contains detailed descriptions for working with some libkos library interfaces. Descriptions of other
interfaces can be found in corresponding header �les.

The header �les that de�ne the libkos library API are located in the following directories:

sysroot-*-kos/include/coresrv/

sysroot-*-kos/include/kos/

Managing handles (handle_api.h)

The API is de�ned in the sysroot-*-kos/include/coresrv/handle/handle_api.h header �le from the
KasperskyOS SDK.

The API is intended for performing operations with handles. Handles have the Handle type, which is de�ned in the
header �le sysroot-*-kos/include/handle/handletype.h from the KasperskyOS SDK.

Each process receives handles from its own handle space irrespective of other processes. The handle spaces of
di�erent processes are absolutely identical in that they consist of the same set of values. Therefore, a handle is
unique (has a unique value) only within the handle space of the single process that owns the particular handle. In
other words, di�erent processes may have identical handles that identify di�erent resources, or may have
di�erent handles that identify the same resource.

Handle permissions mask

A handle permissions mask has a size of 32 bits and consists of a general part and a specialized part. The general
part describes the general rights that are not speci�c to any particular resource (the �ags of these rights are
de�ned in the header �le sysroot-*-kos/include/services/ocap.h from the KasperskyOS SDK). For
example, the general part contains the OCAP_HANDLE_TRANSFER �ag, which de�nes the permission to transfer the
handle. The specialized part describes the rights that are speci�c to the particular user resource or system
resource. The �ags of the specialized part's permissions for system resources are de�ned in the ocap.h header
�le. The structure of the specialized part for user resources is de�ned by the resource provider by using the
OCAP_HANDLE_SPEC() macro that is de�ned in the ocap.h header �le. The resource provider must export the
public header �les describing the �ags of the specialized part.

When the handle of a system resource is created, the permissions mask is de�ned by the KasperskyOS kernel,
which applies permissions masks from the ocap.h header �le. It applies permissions masks with names such as
OCAP_*_FULL (for example, OCAP_IOPORT_FULL , OCAP_TASK_FULL , OCAP_FILE_FULL) and OCAP_IPC_* (for
example, OCAP_IPC_SERVER , OCAP_IPC_LISTENER , OCAP_IPC_CLIENT).

When the handle of a user resource is created, the permissions mask is de�ned by the user.

100

Creating handles of system resources

Creating handles of user resources

Creating IPC handles

When a handle is transferred, the permissions mask is de�ned by the user but the transferred access rights cannot
be elevated above the access rights of the process.

Creating handles

Handles of system resources are created when these resources are created. For example, handles are created
when an interrupt or MMIO memory region is registered, and when a DMA bu�er, thread, or process is created.

Handles of user resources are created by the providers of these resources by using the
KnHandleCreateUserObject() or KnHandleCreateUserObjectEx() function.

The context of a user resource must be de�ned through the context parameter. The user resource context
consists of data that allows the resource provider to identify the resource and its state when access to the
resource is requested by other processes. This normally consists of a data set with various types of data
(structure). For example, the context of a �le may include the name, path, and cursor position. The user resource
context is used as the resource transfer context or is used together with multiple resource transfer contexts.

You must use the rights parameter to de�ne the handle permissions mask.

An IPC handle is a handle that identi�es an IPC channel. IPC handles are used to execute system calls. A client IPC
handle is necessary for executing a Call() system call. A server IPC handle is necessary for executing the
Recv() and Reply() system calls. A listener handle is a server IPC handle that has extended rights allowing it to
add IPC channels to the set of IPC channels identi�ed by this handle. A callable handle is a client IPC handle that
simultaneously identi�es the IPC channel to a server and an endpoint of this server.

A server creates a callable handle and passes it to a client so that the client can use the server endpoint. The client
initializes IPC transport by using the callable handle that it received. In addition, the client speci�es the
INVALID_RIID value as the endpoint ID (RIID) in the proxy object initialization function. To create a callable handle,
call the KnHandleCreateUserObjectEx() function and specify the server IPC handle and the endpoint ID (RIID)
in the ipcChannel and riid parameters, respectively. Use the context parameter to specify the data to be
associated with the callable handle. The server will be able to receive the pointer to this data when dereferencing
the callable handle. (Even though the callable handle is an IPC handle, the kernel puts it into the base_.self �eld
of the constant part of an IPC request.)

To create the client IPC handle, server IPC handle, and listener IPC handle and associate them with each other, call
the KnHandleConnect() or KnHandleConnectEx() function. These functions are used to statically create IPC
channels. The KnHandleConnect() function creates IPC handles from the handle space of the calling process.
However, the client IPC handle can be transferred to another process. The KnHandleConnectEx() function can
create IPC handles from the handle space of the calling process or from the handle spaces of other processes,
such as the client and server.

101

Information about API functions

handle_api.h functions

Function Information about the function

KnHandleCreateUserObject()

KnHandleCreateUserObjectEx()

When calling the KnHandleConnect() or KnHandleConnectEx() function with the INVALID_HANDLE value in
the parameter that de�nes the listener handle, a new listener handle is created. However, the server IPC handle and
listener IPC handle in the output parameters are the same handle. If a listener handle is speci�ed when calling the
KnHandleConnect() or KnHandleConnectEx() function, the created server IPC handle will provide the
capability to receive IPC requests over all IPC channels associated with this listener handle. In this case, the server
IPC handle and listener IPC handle in the output parameters are di�erent handles. (The �rst IPC channel
associated with the listener handle is created when calling the KnHandleConnect() or KnHandleConnectEx()
function with the INVALID_HANDLE value in the parameter that de�nes the listener handle. The second and
subsequent IPC channels associated with the listener handle are created during the second and subsequent calls
of the KnHandleConnect() or KnHandleConnectEx() function specifying the listener handle that was obtained
during the �rst call.)

To call a listener handle that is not associated with a client IPC handle and server IPC handle, call the
KnHandleCreateListener() function. (The KnHandleConnect() and KnHandleConnectEx() functions
create a listener handle associated with a client IPC handle and server IPC handle.) The
KnHandleCreateListener() function is convenient for creating a listener handle that will be subsequently
bound to callable handles.

To create a client IPC handle for querying the Kaspersky Security Module through the security interface, call the
KnHandleSecurityConnect() function. This function is called by the libkos library when initializing IPC
transport for querying the security module.

Purpose

Creates a handle.

Parameters

[in] type – handle type. Fictitious parameter that must take a
value ranging from the HANDLE_TYPE_USER_FIRST constant to
the HANDLE_TYPE_USER_LAST constant as de�ned in the header
�le sysroot-*-kos/include/handle/handletype.h from the
KasperskyOS SDK.

[in] rights – handle permissions mask.

[in,optional] context – pointer to the data that should be
associated with the handle, or RTL_NULL if this association is not
required.

[out] handle – pointer to the handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Creates a handle.

102

KnHandleConnect()

KnHandleConnectEx()

Parameters

[in] type – handle type. Fictitious parameter that must take a
value ranging from the HANDLE_TYPE_USER_FIRST constant to
the HANDLE_TYPE_USER_LAST constant as de�ned in the header
�le sysroot-*-kos/include/handle/handletype.h from the
KasperskyOS SDK.

[in] rights – handle permissions mask.

[in,optional] context – pointer to the data that should be
associated with the handle, or RTL_NULL if this association is not
required.

[in,optional] ipcChannel – server IPC handle, or
INVALID_HANDLE if you do not need to create a callable handle.

[in,optional] riid – endpoint ID (RIID), or INVALID_RIID if you
do not need to create a callable handle.

[out] handle – pointer to the handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Creates and connects the client, server, and listener IPC handles.

Parameters

[in,optional] ls – listener handle, or INVALID_HANDLE if you need
to create it.

[out,optional] outLs – pointer to the listener handle. You can
specify RTL_NULL if the ls parameter is used to de�ne the
listener handle.

[out,optional] outSr – pointer to the server IPC handle, or
RTL_NULL to not create a server IPC handle if the ls parameter
is used to de�ne the listener handle.

[out] outCl – pointer to the client IPC handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Creates and connects the client, server, and listener IPC handles.

Parameters

103

KnHandleSecurityConnect()

KnHandleCreateListener()

[in] server – handle of the server process.

[in,optional] srListener – listener handle from the handle space
of the server process, or INVALID_HANDLE if you need to create
it.

[in] client – handle of the client process.

[out,optional] outSrListener – pointer to the listener handle
from the handle space of the server process. You can specify
RTL_NULL if the srListener parameter is used to de�ne the
listener handle.

[out,optional] outSrEndpoint – pointer to the server IPC handle
from the handle space of the server process, or RTL_NULL to not
create a server IPC handle if the srListener parameter is used
to de�ne the listener handle.

[out] outClEndpoint – pointer to the client IPC handle from the
handle space of the client process.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Creates a client IPC handle for querying the Kaspersky Security
Module through the security interface.

Parameters

[out] client – pointer to the handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Creates a listener handle that is not associated with a client IPC
handle and server IPC handle.

Parameters

[out] listener – pointer to the listener handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Transferring handles

104

Overview

Conditions for transferring handles

1. An IPC channel is created between the processes.

2. The solution security policy (security.psl) allows interaction between process classes.

3. Interface methods are implemented for transferring handles.

The API task.h enables a parent process to pass handles to a child process that is not yet running.

package IpcTransfer
interface {
 PublishResource1(in Handle handle, out UInt32 result);
 PublishResource7(in Handle handle1, in Handle handle2,
 in Handle handle3, in Handle handle4,
 in Handle handle5, in Handle handle6,
 in Handle handle7, out UInt32 result);
 OpenResource(in UInt32 ID, out Handle handle);
}

Handles are transferred between processes so that resource consumers can gain access to required resources.
Due to the speci�c locality of handles, a handle transfer initiates the creation of a handle from the handle space of
the recipient process. This handle is registered as a descendant of the transferred handle and identi�es the same
resource.

One handle can be transferred multiple times to one or more processes. Each transfer initiates the creation of a
new descendant of the transferred handle on the recipient process side. A process can transfer handles that it
received from other processes or the KasperskyOS kernel. For this reason, a handle may have multiple generations
of descendants. The generation hierarchy of handles for each resource is stored in the KasperskyOS kernel in the
form of a handle inheritance tree.

A process can transfer handles for user resources and system resources if the access rights of these handles
permit such a transfer (the OCAP_HANDLE_TRANSFER �ag is set in the permissions mask). A descendant may have
less access rights than an ancestor. For example, a transferring process with read-and-write permissions for a �le
can transfer read-only permissions. The transferring process can also prohibit the recipient process from further
transferring the handle. Access rights are de�ned in the transferred permissions mask for the handle.

To enable processes to transfer handles to other processes, the following conditions must be met:

In an IDL description, signatures of interface methods for transferring handles have input (in) and/or output (out)
parameters of the Handle type or array type with elements of the Handle type. Up to 255 handles can be
passed through the input parameters of one method. This same number of handles can be received through
output parameters.

Example IDL description that de�nes the signatures of interface methods for transferring handles:

For each parameter of the Handle type, the NK compiler generates a �eld of the nk_handle_desc_t type
(hereinafter also referred to as the transport container of the handle) in the *_req IPC request structure and/or
_res IPC response structure. This type is declared in the header �le sysroot--kos/include/nk/types.h
from the KasperskyOS SDK and comprises a structure consisting of the following three �elds: handle �eld for the
handle, rights �eld for the handle permissions mask, and the badge �eld for the resource transfer context.

105

Resource transfer context

Packaging data into the transport container of a handle

The resource transfer context consists of data that allows the server to identify the resource and its state when
access to the resource is requested via descendants of the transferred handle. This normally consists of a data
set with various types of data (structure). For example, the transfer context of a �le may include the name, path,
and cursor position. The server receives a pointer to the resource transfer context when dereferencing a handle.

Regardless of whether or not the server is the resource provider, the server can associate each handle transfer
with a separate resource transfer context. This resource transfer context is bound only to the handle descendants
(handle inheritance subtree) that were generated as a result of a speci�c transfer of the handle. This lets you
de�ne the state of a resource in relation to a separate transfer of the handle of this resource. For example, for
cases when one �le may be accessed multiple times, the �le transfer context lets you de�ne which speci�c
opening of this �le corresponds to a received IPC request.

If the server is the resource provider, each transfer of the handle of this resource is associated with the user
resource context by default. In other words, the user resource context is used as the resource transfer context for
each handle transfer if the particular transfer is not associated with a separate resource transfer context.

A server that is the resource provider can use both the user resource context and the resource transfer context
together. For example, the name, path and size of a �le is stored in the user resource context while the cursor
position can be stored in multiple resource transfer contexts because each client can work with di�erent parts of
the �le. Technically, joint use of the user resource context and resource transfer contexts is possible because the
resource transfer contexts store a pointer to the user resource context.

If the client uses multiple various-type resources of the server, the resource transfer contexts (or contexts of user
resources if they are used as resource transfer contexts) must be specialized objects of the KosObject type. This
is necessary so that the server can verify that the client using a resource has sent the interface method the
handle of the speci�c resource that corresponds to this method. This veri�cation is required because the client
could mistakenly send the interface method a resource handle that does not correspond to this method. For
example, a client may have received a �le handle and sent it to an interface method for working with volumes.

To associate a handle transfer with a resource transfer context, the server puts the handle of the resource
transfer context object into the badge �eld of the nk_handle_desc_t structure. The resource transfer context
object is the kernel object that stores the pointer to the resource transfer context. To create a resource transfer
context object, call the KnHandleCreateBadge() function. This function is bound to the noti�cation mechanism
because a server needs to know when a resource transfer context object will be closed and deleted. The server
needs this information to free up or re-use memory that was allotted for storing the resource transfer context.

The resource transfer context object will be closed upon the closure or revocation of the handle descendants that
comprise the handle inheritance subtree whose root node was generated by the transfer of this handle in
association with this object. (A transferred handle may be closed intentionally or unintentionally, such as when a
recipient client is unexpectedly terminated.) After receiving a noti�cation regarding the closure of a resource
transfer context object, the server closes the handle of this object. After this, the resource transfer context
object will be deleted. After receiving a noti�cation regarding the deletion of the resource transfer context object,
the server frees up or re-uses the memory that was allotted for storing the resource transfer context.

One resource transfer context object can be associated with only one handle transfer.

To package a handle, handle permissions mask, and resource transfer context object handle into a handle transport
container, use the nk_handle_desc() macro that is de�ned in the header �le sysroot-*-
kos/include/nk/types.h from the KasperskyOS SDK. This macro receives a variable number of parameters.

106

Extracting data from the transport container of a handle

Handle transfer scenarios

1. The client packages the handles and handle permissions masks into �elds of the *_req IPC requests structure
of the nk_handle_desc_t type.

2. The client calls the interface method for transferring handles to the server. The Call() system call is executed
when this method is called.

3. The server receives an IPC request by executing the Recv() system call.

4. The dispatcher on the server side calls the method corresponding to the IPC request. This method extracts the
handles and handle permissions masks from �elds of the *_req IPC request structure of the
nk_handle_desc_t type.

1. The client calls the interface method for receiving handles from the server. The Call() system call is executed
when this method is called.

2. The server receives an IPC request by executing the Recv() system call.

3. The dispatcher on the server side calls the method corresponding to the IPC request. This method packages
the handles, handle permissions masks and resource transfer context object handles into �elds of the *_res
IPC response structure of the nk_handle_desc_t type.

4. The server responds to the IPC request by executing the Reply() system call.

5. On the client side, the interface method returns control. After this, the client extracts the handles and handle
permissions masks from �elds of the *_res IPC response structure of the nk_handle_desc_t type.

Information about API functions

If no parameter is passed to the macro, the NK_INVALID_HANDLE value will be written to the handle �eld of the
nk_handle_desc_t structure. If one parameter is passed to the macro, this parameter is interpreted as the
handle. If two parameters are passed to the macro, the �rst parameter is interpreted as the handle and the second
parameter is interpreted as the handle permissions mask. If three parameters are passed to the macro, the �rst
parameter is interpreted as the handle, the second parameter is interpreted as the handle permissions mask, and
the third parameter is interpreted as the resource transfer context object handle.

To extract the handle, handle permissions mask, and pointer to the resource transfer context from the transport
container of a handle, use the nk_get_handle() , nk_get_rights() and nk_get_badge_op() (or
nk_get_badge()) functions, respectively, which are declared in the header �le sysroot-*-
kos/include/nk/types.h from the KasperskyOS SDK. The nk_get_badge_op() and nk_get_badge()
functions should be used only when dereferencing handles.

The scenario for transferring handles from a client to the server includes the following steps:

The scenario for transferring handles from the server to a client includes the following steps:

If the transferring process de�nes more access rights in the transferred handle permissions mask than the access
rights de�ned for the transferred handle (which it owns), the transfer is not completed. In this case, the Call()
system call executed by the transferring or recipient client or the Reply() system call executed by the
transferring server ends with the rcSecurityDisallow error.

107

handle_api.h functions

Function Information about the function

KnHandleCreateBadge()

handle_api.h functions

Function Information about the function

KnHandleCopy()

Purpose

Creates a resource transfer context object and con�gures a noti�cation
mechanism for monitoring the life cycle of this object.

Parameters

[in] notice – identi�er of the noti�cation receiver.

[in] eventId – identi�er of the "resource–event mask" entry in the
noti�cation receiver.

[in,optional] context – pointer to the data that should be associated with
the handle transfer, or RTL_NULL if this association is not required.

[out] handle – pointer to the handle of the resource transfer context
object.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Additional information

The noti�cation receiver is con�gured to receive noti�cations about events
that match the EVENT_OBJECT_DESTROYED and EVENT_BADGE_CLOSED �ags
of the event mask.

Duplicating handles

Handle duplication is similar to a handle transfer, but duplication is performed within a process. A handle
descendant is created in the same process and from the same handle space. The rights of the handle descendant
may be less than or equal to the rights of the original handle. Handle duplication can be associated with a resource
transfer context object. This lets you use the noti�cation mechanism to track the closure or revocation of all
handle descendants that form the handle inheritance subtree whose root node was generated by the duplication
operation. It also provides the capability to revoke these descendants.

To duplicate a handle, call the KnHandleCopy() function. To do so, the OCAP_HANDLE_COPY �ag must be set in
the handle permissions mask.

Information about API functions is provided in the table below.

Purpose

Duplicates a handle.

As a result of duplication, the calling process receives the handle descendant.

108

1. The client packages the handle into a �eld of the *_req IPC request structure of the nk_handle_desc_t
type.

2. The client calls the interface method for sending the handle to the server for the purpose of performing
operations with the resource. The Call() system call is executed when this method is called.

3. The server receives the IPC request by executing the Recv() system call.

4. The dispatcher on the server side calls the method corresponding to the IPC request. This method veri�es that
the dereferencing operation was speci�cally executed instead of a handle transfer. Then the called method has
the option to verify that the access rights of the dereferenced handle (that was sent by the client) permit the
requested actions with the resource, and extracts the pointer to the resource transfer context from the �eld of
the *_req request structure of the nk_handle_desc_t type.

types.h (fragment)

/**
 * Returns a value different from null if
 * the handle in the transport container of
 * "desc" is received as a result of dereferencing
 * the handle. Returns null if the handle
 * in the transport container of "desc" is received
 * as a result of a handle transfer.
 */

Parameters

[in] inHandle – original handle.

[in] newRightsMask – permissions mask of the handle descendant.

[in,optional] copyBadge – handle of the resource transfer context object, or
INVALID_HANDLE if you do not need to associate handle duplication with this
object.

[out] outHandle – pointer to the handle descendant.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Dereferencing handles

When dereferencing a handle, the client sends the handle to the server, and the server receives a pointer to the
resource transfer context, the permissions mask of the sent handle, and the ancestor of the handle sent by the
client and already owned by the server. Dereferencing occurs when a resource consumer that called methods for
working with a resource (such as read/write or access closure) sends the resource provider the handle that was
received from this resource provider when access to the resource was opened.

Dereferencing handles requires ful�llment of the same conditions and utilizes the same mechanisms and data
types as when transferring handles. A handle dereferencing scenario includes the following steps:

To perform veri�cation, the server uses the nk_is_handle_dereferenced() and nk_get_badge_op()
functions that are declared in the header �le sysroot-*-kos/include/nk/types.h from the
KasperskyOS SDK.

109

static inline
nk_bool_t nk_is_handle_dereferenced(const nk_handle_desc_t *desc)

/**
 * Extracts the pointer to the resource transfer context
 * "badge" from the transport container of "desc"
 * if the permissions mask that was put in the transport
 * container of the desc handle has the operation flags set.
 * If successful, the function returns NK_EOK, otherwise it returns an error code.
 */
static inline
nk_err_t nk_get_badge_op(const nk_handle_desc_t *desc,
 nk_rights_t operation,
 nk_badge_t *badge)

handle_api.h functions

Function Information about the function

KnHandleRevoke()

KnHandleRevokeSubtree()

Generally, the server does not require the handle that was received from dereferencing because the server
normally retains the handles that it owns, for example, within the contexts of user resources. However, the server
can extract this handle from the handle transport container if necessary.

Revoking handles

A process can revoke descendants of a handle that it owns. Handles are revoked according to the handle
inheritance tree.

Revoked handles are not closed. However, you cannot query resources via revoked handles. Any function that
receives the handle will end with the rcHandleRevoked error if the function is called with a revoked handle.

To revoke handle descendants, call the KnHandleRevoke() or KnHandleRevokeSubtree() function. The
KnHandleRevokeSubtree() function uses the resource transfer context object that is created when
transferring handles.

If each handle of a system resource in all processes that own these handles are closed (see "Closing handles") or
revoked, this system resource will be deleted.

Information about API functions is provided in the table below.

Purpose

Closes a handle and revokes its descendants.

Parameters

[in] handle – a handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Revokes the handles that make up the inheritance subtree of the speci�ed
handle.

110

handle_api.h functions

Function Information about the function

KnHandleClose()

Parameters

[in] handle – a handle. The handles forming the inheritance subtree of
this handle are revoked.

[in] badge – handle that identi�es the resource transfer context object,
which de�nes the inheritance subtree of the handles to revoke. The root
node of this subtree is the handle that was generated by the transfer or
duplication of the handle that is de�ned through the handle parameter
and is associated with the resource transfer context object.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Closing handles

A process can close the handles that it owns. Closing a handle terminates the association between an ID and a
resource, thereby releasing the ID. Closing a handle does not invalidate its ancestors and descendants (in contrast
to revoking a handle, which actually invalidates the descendants of the handle). In other words, the ancestors and
descendants of a closed handle can still be used to provide access to the resource that they identify. Also, closing
a handle does not disrupt the handle inheritance tree associated with the resource identi�ed by the particular
handle. The place of a closed handle is occupied by its ancestor. In other words, the ancestor of a closed handle
becomes the direct ancestor of the descendants of the closed handle.

To close the handle, call the KnHandleClose() function.

If each handle of a system resource in all processes that own these handles are revoked (see "Revoking handles") or
closed, this system resource will be deleted.

Information about API functions is provided in the table below.

Purpose

Closes a handle.

Parameters

[in] handle – a handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Getting a security ID (SID)

By getting the SID values for di�erent handles, you can determine whether these handles identify di�erent
resources or the same resource.

111

handle_api.h functions

Function Information about the function

KnHandleGetSidByHandle()

package SimpleOCap
interface {
 OpenResource(in UInt32 ID, out Handle handle);
 UseResource(in Handle handle, in UInt8 param, out UInt8 result);
 CloseResource(in Handle handle);
}

1. The resource provider creates the user resource context and calls the KnHandleCreateUserObject()
function to create the resource handle. The resource provider saves the resource handle in the user resource
context.

2. The resource consumer calls the OpenResource() method to open access to the resource.

To get an SID for a handle, call the KnHandleGetSidByHandle() function. To do so, the OCAP_HANDLE_GET_SID
�ag must be set in the handle permissions mask.

Information about API functions is provided in the table below.

Purpose

Receives a security ID (SID) based on a handle.

Parameters

[in] handle – a handle.

[out] sid – pointer to the security ID (SID).

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

OCap usage example

This example describes an OCap usage scenario in which the resource provider provides the following methods for
accessing its resources:

OpenResource() – opens access to the resource.

UseResource() – uses the resource.

CloseResource() – closes access to the resource.

The resource consumer uses these methods.

IDL description:

The scenario includes the following steps:

112

a. The resource provider creates the resource transfer context and calls the KnHandleCreateBadge()
function to create a resource transfer context object and con�gure the noti�cation receiver to receive
noti�cations regarding the closure and deletion of the resource transfer context object. The resource
provider saves the handle of the resource transfer context object and the pointer to the user resource
context in the resource transfer context.

b. The resource provider uses the nk_handle_desc() macro to package the resource handle, permissions
mask of the handle, and pointer to the resource transfer context object into the handle transport container.

c. The handle is transferred from the resource provider to the resource consumer, which means that the
resource consumer receives a descendant of the handle owned by the resource provider.

d. The OpenResource() method call completes successfully. The resource consumer extracts the handle and
permissions mask of the handle from the handle transport container by using the nk_get_handle() and
nk_get_rights() functions, respectively. The handle permissions mask is not required by the resource
consumer to query the resource, but is transferred so that the resource consumer can �nd out its
permissions for accessing the resource.

3. The resource consumer calls the UseResource() method to utilize the resource.

a. The handle that was received from the resource provider at step 2 is used as a parameter of the
UseResource() method. Before calling this method, the resource consumer uses the nk_handle_desc()
macro to package the handle into the handle transport container.

b. The handle is dereferenced, after which the resource provider receives the pointer to the resource transfer
context.

c. The resource provider uses the nk_is_handle_dereferenced() function to verify that the dereferencing
operation was completed instead of a handle transfer.

d. The resource provider veri�es that the access rights of the dereferenced handle (that was sent by the
resource consumer) allows the requested operation with the resource, and extracts the pointer to the
resource transfer context from the handle transport container. To do so, the resource provider uses the
nk_get_badge_op() function, which extracts the pointer to the resource transfer context from the handle
transport container if the received permissions mask has the corresponding �ags set for the requested
operation.

e. The resource provider uses the resource transfer context and the user resource context to perform the
corresponding operation with the resource as requested by the resource consumer. Then the resource
provider sends the results of this operation to the resource consumer.

f. The UseResource() method call completes successfully. The resource consumer receives the results of
the operation performed with the resource.

4. The resource consumer calls the CloseResource() method to close access to the resource.

a. The handle that was received from the resource provider at step 2 is used as a parameter of the
CloseResource() method. Before calling this method, the resource consumer uses the
nk_handle_desc() macro to package the handle into the handle transport container. After the
CloseResource() method is called, the resource consumer uses the KnHandleClose() function to close
the handle.

b. The handle is dereferenced, after which the resource provider receives the pointer to the resource transfer
context.

c. The resource provider uses the nk_is_handle_dereferenced() function to verify that the dereferencing
operation was completed instead of a handle transfer.

113

d. The resource provider uses the nk_get_badge() function to extract the pointer to the resource transfer
context from the handle transport container.

e. The resource provider uses the KnHandleRevokeSubtree() function to revoke the handle owned by the
resource consumer. The resource handle owned by the resource provider and the handle of the resource
transfer context object are used as parameters of this function. The resource provider obtains access to
these handles through the pointer to the resource transfer context. (Technically, the handle owned by the
resource consumer does not have to be revoked because the resource consumer already closed it.
However, the revoke operation is performed in case the resource provider is not sure if the resource
consumer actually closed the handle).

f. The CloseResource() method call completes successfully.

5. The resource provider frees up the memory that was allocated for the resource transfer context and user
resource context.

a. The resource provider calls the KnNoticeGetEvent() function to receive a noti�cation that the resource
transfer context object was closed, and uses the KnHandleClose() function to close the handle of the
resource transfer context object.

b. The resource provider calls the KnNoticeGetEvent() function to receive a noti�cation that the resource
transfer context object was deleted, and frees up the memory that was allocated for the resource transfer
context.

c. The resource provider uses the KnHandleClose() function to close the resource handle and free up the
memory that was allocated for the user resource context.

alloc.h functions

Function Information about the function

KosMemAllocEx()

Allocating and freeing memory (alloc.h)

The API is de�ned in the header �le sysroot-*-kos/include/kos/alloc.h from the KasperskyOS SDK.

The API is intended for allocating and freeing memory. Allocated memory is a committed virtual memory region
that can be accessed for read-and-write operations.

Information about API functions is provided in the table below.

Purpose

Allocates memory.

Parameters

[in] size – size (in bytes) of the allocated memory.

[in] align – value de�ning the alignment of the allocated memory. It must be
a power of two. The address of allocated memory can be unaligned (align=1) or
aligned (align=2,4,...,2^N) to the boundary of a 2^N-byte sequence (for
example, two-byte or four-byte). When an address is aligned, the size of the
allocated memory may be rounded up to the nearest multiple of 2^N.

114

KosMemAlloc()

KosMemZalloc()

KosMemFree()

KosMemGetSize()

[in] zeroed – value de�ning the initialization of the allocated memory (1 –
 initialize with zeros, 0 – do not initialize).

Returned values

If successful, the function returns the pointer to the allocated memory,
otherwise it returns RTL_NULL .

Purpose

Allocates memory.

Parameters

[in] size – size (in bytes) of the allocated memory.

Returned values

If successful, the function returns the pointer to the allocated memory,
otherwise it returns RTL_NULL .

Purpose

Allocates memory and initializes it with zeros.

Parameters

[in] size – size (in bytes) of the allocated memory.

Returned values

If successful, the function returns the pointer to the allocated memory,
otherwise it returns RTL_NULL .

Purpose

Deallocates memory.

Parameters

[in] ptr – pointer to the freed memory.

Returned values

N/A

Purpose

Gets the actual size of allocated memory.

The actual size of allocated memory exceeds the requested size because it
includes the size of service data and also may be increased due to alignment
when the KosMemAllocEx() function is called.

Parameters

[in] ptr – pointer to the allocated memory.

115

KosMemGetOrigSize()

Using the API

1. Creating a DMA bu�er.

DMA bu�er consists of one or more physical memory regions (blocks) that are used for DMA. A DMA bu�er
consisting of multiple blocks can be used if the device supports "scatter/gather DMA" mode. A DMA bu�er
consisting of one block can be used only if the device supports "scatter/gather DMA" or "continuous DMA"
mode. The likelihood of creating a DMA bu�er consisting of one large block is lower than the likelihood of
creating a DMA bu�er consisting of multiple small blocks. This is especially relevant when physical memory is
highly fragmented.

If the device supports only "continuous DMA" mode, you must use a DMA bu�er consisting of one block even
if IOMMU is enabled.

To complete this step, call the KnIoDmaCreate() or KnIoDmaCreateContinuous() function. The
KnIoDmaCreateContinuous() function creates a DMA bu�er consisting of one block. The
KnIoDmaCreate() function creates a DMA bu�er consisting of one block if the 2^order value is equal to the
memory page size value, or if the 2^order value is the next largest value of the memory page size in the
ascending ordered set {2^(order-1);memory page size;2^order}. If the value of the memory page size is greater
than the 2^order value, the KnIoDmaCreate() function can create a DMA bu�er consisting of multiple blocks.

The DMA bu�er handle can be transferred to another process via IPC.

Returned values

Actual size of allocated memory (in bytes).

Purpose

Gets the size of memory that was requested when it is allocated.

The actual size of allocated memory exceeds the requested size because it
includes the size of service data and also may be increased due to alignment
when the KosMemAllocEx() function is called.

Parameters

[in] ptr – pointer to the allocated memory.

Returned values

Size (in bytes) of memory that was requested when it is allocated.

Using DMA (dma.h)

The API is de�ned in the header �le sysroot-*-kos/include/coresrv/io/dma.h from the KasperskyOS SDK.

The API is designed to set up data exchange between devices and RAM in direct memory access (DMA) mode in
which the processor is not used.

Information about API functions is provided in the table below.

The standard scenario for API usage includes the following steps:

116

2. Mapping the DMA bu�er to the memory of processes.

One DMA bu�er can be mapped to multiple virtual memory regions of one or more processes that own the
handle of this DMA bu�er. Mapping allows processes to receive read-and/or-write access to the DMA bu�er.

To reserve a virtual memory region and map the DMA bu�er to it, call the KnIoDmaMap() function.

A handle received when calling the KnIoDmaMap() function cannot be transferred to another process via IPC.

3. Opening access to the DMA bu�er for a device via the KnIoDmaBegin() function call.

The KnIoDmaBegin() function must be called to create a kernel object containing the addresses and sizes of
blocks comprising the DMA bu�er. A device needs this information to use the DMA bu�er. A device can work
with physical addresses and/or virtual addresses depending on whether IOMMU is enabled. If IOMMU is enabled,
an object contains virtual addresses of blocks. Otherwise, an object contains physical addresses of blocks.

A handle received when calling the KnIoDmaBegin() function cannot be transferred to another process via
IPC.

4. Information about the DMA bu�er is received.

At this step, get the addresses and sizes of blocks from the kernel object that was created by calling the
KnIoDmaBegin() function. The received addresses and sizes will need to be passed to the device by using
MMIO, for example. After receiving this information, the device can write to the DMA bu�er and/or read from it
(if IOMMU is enabled, a device on the PCIe bus must be attached to the IOMMU domain).

To complete this step, you need to call the KnIoDmaGetInfo() or KnIoDmaContinuousGetDmaAddr()
function. The KnIoDmaGetInfo() function gets the memory page number (frame) and the order for each
block. (The memory page number multiplied by the memory page size results in the block address. The 2^order
value is the block size in memory pages.) The KnIoDmaContinuousGetDmaAddr() function can be used if the
DMA bu�er consists of one block. This function gets the block address. (The accepted block size should be the
DMA bu�er size that was de�ned when this bu�er was created.)

Closing access to the DMA bu�er for a device

Deleting a DMA bu�er

1. Free the virtual memory regions that were reserved during KnIoDmaMap() function calls.

To complete this step, use the KnHandleClose() function and specify the handles that were received from
KnIoDmaMap() function calls. (KnHandleClose() function is declared in the header �le sysroot-*-
kos/include/coresrv/handle/handle_api.h from the KasperskyOS SDK.)

This step must be completed for all processes whose memory is mapped to the DMA bu�er.

2. Delete the kernel object that was created by the KnIoDmaBegin() function call.

To complete this step, call the KnHandleClose() function and specify the handle that was received when the
KnIoDmaBegin() function was called.

3. Close or revoke each DMA bu�er handle in all processes that own these handles.

If you delete the kernel object that was created when the KnIoDmaBegin() function was called and IOMMU is
enabled, the device will be denied access to the DMA bu�er. To delete this object, call the KnHandleClose()
function and specify the handle that was received when the KnIoDmaBegin() function was called. (The
KnHandleClose() function is declared in the header �le sysroot-*-
kos/include/coresrv/handle/handle_api.h from the KasperskyOS SDK.)

To delete a DMA bu�er, complete the following steps:

117

To complete this step, use the KnHandleClose() and/or KnHandleRevoke() functions that are declared in
the header �le sysroot-*-kos/include/coresrv/handle/handle_api.h from the KasperskyOS SDK.

Information about API functions

dma.h functions

Function Information about the function

KnIoDmaCreate()

KnIoDmaCreateContinuous()

Purpose

Creates a DMA bu�er.

Parameters

[in] order – parameter de�ning the minimum number of
memory pages (2^order) in a block.

[in] size – size (in bytes) of the DMA bu�er. It must be a
multiple of the memory page size.

[in] flags – �ags de�ning the DMA bu�er parameters. The
parameter type and �ags are de�ned in the header �le
sysroot-*-kos/include/io/io_dma.h from the
KasperskyOS SDK.

[out] outRid – pointer to the DMA bu�er handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Additional information

In the flags parameter, you can specify the following �ags:

DMA_DIR_TO_DEVICE – the device has read-access to the DMA
bu�er.

DMA_DIR_FROM_DEVICE – the device has write-access to the
DMA bu�er.

DMA_DIR_BIDIR – the device has read-and-write access to the
DMA bu�er.

DMA_ZONE_DMA32 – only the �rst four gigabytes of physical
memory can be used to create a DMA bu�er.

DMA_ATTR_WRITE_BACK , DMA_ATTR_WRITE_THROUGH ,
DMA_ATTR_CACHE_DISABLE , DMA_ATTR_WRITE_COMBINE ,
DMA_RULE_CACHE_VOLATILE , DMA_RULE_CACHE_FIXED –
 cache management.

Purpose

118

KnIoDmaMap()

Creates a DMA bu�er consisting of one block.

Parameters

[in] size – size (in bytes) of the DMA bu�er. It must be a
multiple of the memory page size.

[in] flags – �ags de�ning the DMA bu�er parameters. The
parameter type and �ags are de�ned in the header �le
sysroot-*-kos/include/io/io_dma.h from the
KasperskyOS SDK.

[out] outRid – pointer to the DMA bu�er handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Additional information

In the flags parameter, you can specify the following �ags:

DMA_DIR_TO_DEVICE – the device has read-access to the DMA
bu�er.

DMA_DIR_FROM_DEVICE – the device has write-access to the
DMA bu�er.

DMA_DIR_BIDIR – the device has read-and-write access to the
DMA bu�er.

DMA_ZONE_DMA32 – only the �rst four gigabytes of physical
memory can be used to create a DMA bu�er.

DMA_ATTR_WRITE_BACK , DMA_ATTR_WRITE_THROUGH ,
DMA_ATTR_CACHE_DISABLE , DMA_ATTR_WRITE_COMBINE ,
DMA_RULE_CACHE_VOLATILE , DMA_RULE_CACHE_FIXED –
 cache management.

Purpose

Reserves a virtual memory region and maps the DMA bu�er to it.

Parameters

[in] rid – DMA bu�er handle.

[in] offset – o�set (in bytes) in the DMA bu�er where mapping
should start. It must be a multiple of the memory page size.

[in] length – size (in bytes) of the part of the DMA bu�er that
needs to be mapped. It must be a multiple of the memory page
size. The following condition must also be ful�lled:
length<=size of DMA bu�er-o�set.

119

KnIoDmaModify()

1. The DMA_RULE_CACHE_VOLATILE �ag was speci�ed when the
DMA bu�er was created.

2. The DMA bu�er is not mapped to virtual memory.

3. The DMA_RULE_CACHE_VOLATILE �ag was speci�ed during the
previous function call (if completed).

[in,optional] hint – page-aligned, preferred base address of the
virtual memory region, or 0 to select this address automatically.

[in] vmflags – �ags de�ning the access rights to the virtual
memory region. The �ags are de�ned in the header �le
sysroot-*-kos/include/vmm/flags.h from the
KasperskyOS SDK.

[out] addr – base address of the virtual memory region.

[out] handle – pointer to the handle that is used to free the
virtual memory region.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Additional information

In the vmflags parameter, you can specify the following �ags:

VMM_FLAG_READ – read access.

VMM_FLAG_WRITE – write access.

Purpose

Modi�es the DMA bu�er cache settings.

Parameters

[in] rid – DMA bu�er handle.

[in] newAttr – �ags de�ning the DMA bu�er caching
parameters. The �ags are de�ned in the header �le sysroot-*-
kos/include/io/io_dma.h from the KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Additional information

This function can be used if the following conditions are ful�lled:

120

KnIoDmaGetInfo()

KnIoDmaContinuousGetDmaAddr()

KnIoDmaBegin()

In the newAttr parameter, you can specify the following �ags:

DMA_ATTR_WRITE_BACK , DMA_ATTR_WRITE_THROUGH ,
DMA_ATTR_CACHE_DISABLE , DMA_ATTR_WRITE_COMBINE ,
DMA_RULE_CACHE_VOLATILE – cache management.

Purpose

Gets information about a DMA bu�er.

This information includes the addresses and sizes of blocks.

Parameters

[in] rid – DMA bu�er handle.

[out] outInfo – pointer to the address of the object containing
information about the DMA bu�er. The type of object is de�ned
in the header �le sysroot-*-kos/include/io/io_dma.h
from the KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Purpose

Gets the block address for a DMA bu�er consisting of one block.

Parameters

[in] rid – DMA bu�er handle.

[out] addr – block address.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Purpose

Opens access to a DMA bu�er for a device.

Parameters

[in] rid – DMA bu�er handle.

[out] handle – pointer to the handle of the kernel object
containing the addresses and sizes of blocks that were required
for the device to use the DMA bu�er.

Returned values

121

At present, no functions for managing the handling of MSI interrupts have been implemented.

Using the API

1. Registering an interrupt by calling the KnRegisterIrq() function.

One interrupt can be registered multiple times in one or more processes.

The handle of an interrupt can be transferred to another process via IPC.

2. Attaching a thread to an interrupt by calling the KnIoAttachIrq() function.

This step is performed by the thread in whose context the interrupt will be handled.

When using the handle received from the KnRegisterIrq() function call, you can attach only one thread to
an interrupt. To attach multiple threads in one or more processes to an interrupt, use di�erent handles for this
interrupt received from separate KnRegisterIrq() function calls. In this case, the KnIoAttachIrq()
function must be called with the same �ags in the flags parameter.

A handle received when calling the KnIoAttachIrq() function cannot be transferred to another process via
IPC.

If successful, the function returns rcOk , otherwise it returns an
error code.

Managing interrupt processing (irq.h)

The API is de�ned in the header �le sysroot-*-kos/include/coresrv/io/irq.h from the KasperskyOS SDK.

The API manages the handling of hardware interrupts. A hardware interrupt is a signal sent from a device to direct
the processor to immediately pause execution of the current program and instead handle an event related to this
device. For example, pressing a key on the keyboard invokes a hardware interrupt that ensures the required
response to this pressed key (for example, input of a character).

A hardware interrupt occurs when the device queries the interrupt controller. This query can be transmitted
through a hardware interrupt line between the device and the interrupt controller or through MMIO memory. In the
second case, the device writes to MMIO memory by calling the Message Signaled Interrupt (MSI).

Each hardware interrupt line corresponds to one interrupt with a unique number.

Information about API functions is provided in the table below.

To attach an interrupt to its handler, complete the following steps:

To deny (mask) an interrupt, call the KnIoDisableIrq() function. To allow (unmask) an interrupt, call the
KnIoEnableIrq() function. Even though these functions receive an interrupt handle that is used to attach only
one thread to the interrupt, their action is applied to all threads that are attached to this interrupt. These functions
must be called outside of the threads attached to the interrupt. After an interrupt is registered and a thread is
attached to it, this interrupt does not require unmasking.

To initiate detachment of a thread from an interrupt, call the KnIoDetachIrq() function outside of the thread
that is attached to the interrupt. Detachment is performed by the thread attached to the interrupt by calling the
KnThreadDetachIrq() function declared in the header �le sysroot-*-
kos/include/coresrv/thread/thread_api.h from the KasperskyOS SDK.

122

Handling an interrupt

1. Adding information about the failure or success of interrupt processing to an IPC message by calling the
IoSetIrqAnswer() function.

2. Sending the IPC message to the kernel and receiving an IPC message from the kernel.

To complete this step, call the Call() functions. In the handle parameter, you must specify the handle that
was received when the KnIoAttachIrq() function was called. You must use the msgOut parameter to de�ne
the IPC message that will be sent to the kernel, and use the msgIn parameter to de�ne the IPC message that
will be received from the kernel.

3. Extracting a request from the IPC message received from the kernel by calling the IoGetIrqRequest()
function.

4. Processing the interrupt or detaching from the interrupt depending on the request.

If the request requires detachment from the interrupt, exit the interrupt processing loop and call the
KnThreadDetachIrq() function.

Deregistering an interrupt

1. Detach the thread from the interrupt.

To complete this step, call the KnThreadDetachIrq() function.

2. Close the handle that was received when the KnIoAttachIrq() function was called.

To complete this step, call the KnHandleClose() function. (The KnHandleClose() function is declared in the
header �le sysroot-*-kos/include/coresrv/handle/handle_api.h from the KasperskyOS SDK.)

3. Close or revoke each interrupt handle in all processes that own these handles.

To complete this step, use the KnHandleClose() and/or KnHandleRevoke() functions that are declared in
the header �le sysroot-*-kos/include/coresrv/handle/handle_api.h from the KasperskyOS SDK.

After attaching to an interrupt, a thread calls the Call() function declared in the header �le sysroot-*-
kos/include/coresrv/syscalls.h from the KasperskyOS SDK. The thread is locked as a result of this call.
When an interrupt occurs or the KnIoDetachIrq() function is called, the KasperskyOS kernel sends an IPC
message to the process that contains this thread. This IPC message contains a request to handle the interrupt or a
request to detach the thread from the interrupt. When a process receives an IPC message, the Call() function in
the thread attached to the interrupt returns control and provides the contents of the IPC message to the thread.
The thread extracts the request from the IPC message and either processes the interrupt or detaches from the
interrupt. If the interrupt is processed, information about its failure or success upon completion is added to the
response IPC message that is sent to the kernel by the next Call() function call in the loop.

When processing an interrupt, use the IoGetIrqRequest() and IoSetIrqAnswer() functions that are declared
in the header �le sysroot-*-kos/include/io/io_irq.h from the KasperskyOS SDK. These functions let you
extract data from IPC messages and add data to IPC messages for data exchange between the kernel and the
thread attached to the interrupt.

The standard interrupt processing loop includes the following steps:

To deregister an interrupt, complete the following steps:

One interrupt can be registered multiple times, but completion of these steps cancels only one registration. The
other registrations will remain active. Each registration of one interrupt must be canceled separately.

123

Information about API functions

irq.h functions

Function Information about the function

KnRegisterIrq()

KnIoAttachIrq()

Purpose

Registers an interrupt.

Parameters

[in] irq – interrupt number.

[out] outRid – pointer to the interrupt handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Attaches the calling thread to an interrupt.

Parameters

[in] rid – interrupt handle.

[in] flags – �ags de�ning the interrupt parameters. Flags are de�ned in the
header �les sysroot-*-kos/include/io/io_irq.h and sysroot-*-
kos/include/hal/irqmode.h from the KasperskyOS SDK.

[out] handle – pointer to the client IPC handle that is used by the interrupt
handler.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Additional information

In the flags parameter, you can specify the following �ags:

IRQ_LEVEL_LOW – the interrupt occurs when the signal level is low.

IRQ_LEVEL_HIGH – the interrupt occurs when the signal level is high.

IRQ_EDGE_RAISE – the interrupt occurs when the signal level increases.

IRQ_EDGE_FALL – the interrupt occurs when the signal level decreases.

IRQ_PRIO_LOW – the interrupt has low priority.

IRQ_PRIO_NORMAL – the interrupt has medium priority.

IRQ_PRIO_HIGH – the interrupt has high priority.

124

KnIoEnableIrq()

KnIoDisableIrq()

IRQ_PRIO_RT – the interrupt has the highest priority.

KnIoDetachIrq()

Purpose

Sends a request to a thread. When this request is ful�lled, the thread must detach
from the interrupt.

Parameters

[in] rid – interrupt handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Allows (unmasks) an interrupt.

Parameters

[in] rid – interrupt handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Denies (masks) an interrupt.

Parameters

[in] rid – interrupt handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Initializing IPC transport for interprocess communication and managing IPC
request processing (transport-kos.h, transport-kos-dispatch.h)

APIs are de�ned in the header �les transport-kos.h and transport-kos-dispatch.h from the
KasperskyOS SDK that are located at the path sysroot-*-kos/include/coresrv/nk .

API capabilities:

Initialize IPC transport on the client side and on the server side.

IPC transport is an add-on that works on top of system calls for sending and receiving IPC messages and works
separately with the constant part and arena of IPC messages. Transport code works on top of this add-on.

Start the loop for processing IPC requests on the server side.

125

FsDriver.edl

entity FsDriver
components {
 operationsComp : Operations
}

Operations.cdl

component Operations
endpoints {
 fileOperations : FileIface
}

FileIface.idl

package FileIface
interface {
 Open(in array<UInt8, 1024> path);
 Read(out sequence<UInt8, 2048> content);
}

Initializing IPC transport for interprocess communication

int main(int argc, const char *argv[])
{
 /* Declare the structure containing the IPC transport parameters */
 NkKosTransport driver_transport;
 /* Declare the proxy object. (The type of proxy object is automatically
 * generated transport code.) */
 struct FileIface_proxy file_operations_proxy;
 /* Declare the structures for saving the constant part of an IPC request and
 * IPC response for the endpoint method. (The types of structures are
automatically
 * generated transport code.) */
 struct FileIface_Open_req req;
 struct FileIface_Open_res res;
 /* Get the client IPC handle and endpoint ID */
 Handle driver_handle;
 rtl_uint32_t file_operations_riid;
 if (KnCmConnect("FsDriver", "operationsComp.fileOperations", INFINITE_TIMEOUT,
 &driver_handle, &file_operations_riid) == rcOk) {
 /* Initialize the structure containing the IPC transport parameters */

Copy data to the IPC message arena.

Information about API functions is provided in the tables below.

This section contains API usage examples. In these examples, programs acting as servers have the following formal
speci�cation:

To initialize IPC transport for interaction with other processes, call the NkKosTransport_Init() or
NkKosTransportSync_Init() function declared in the header �le transport-kos.h .

Example use of the NkKosTransport_Init() function on the client side:

126

 NkKosTransport_Init(&driver_transport, driver_handle, NK_NULL, 0);
 /* Initialize the proxy object. (The proxy object initialization method is
 * is automatically generated transport code.) */
 FileIface_proxy_init(&file_operations_proxy, &driver_transport.base,
 (nk_iid_t) file_operations_riid);
 }
...
 /* Call the endpoint method. (The method is automatically
 * generated transport code.) */
 strncpy(req.path, "/example/file/path", sizeof(req.path));
 if (FileIface_Open(file_operations_proxy.base, &req, NULL,
 &res, NULL) != NK_EOK) {
...
 }
...
}

int main(int argc, const char *argv[])
{
...
 /* Declare the structure containing the IPC transport parameters */
 NkKosTransport transport;
 /* Get the listener handle. (Endpoint ID
 * FsDriver_operationsComp_fileOperations_iid is
 * automatically generated transport code.) */
 Handle handle;
 char client[32];
 char endpoint[32];
 Retcode rc = KnCmListen(RTL_NULL, INFINITE_TIMEOUT, client, endpoint);
 if (rc == rcOk)
 rc = KnCmAccept(client, endpoint,
 FsDriver_operationsComp_fileOperations_iid,
 INVALID_HANDLE, &handle);
...
 /* Initialize the structure containing the IPC transport parameters */
 NkKosTransport_Init(&transport, handle, NK_NULL, 0);
...
 /* IPC request processing loop */
 do
 {
...
 /* Get the IPC request */
 rc = nk_transport_recv(&transport.base, ...);
 if (rc == NK_EOK) {
 /* Process the IPC request by calling the dispatcher. (The dispatcher
 * is automatically generated transport
 * code.) */
 rc = FsDriver_entity_dispatch(...);
 if (rc == NK_EOK) {
 /* Send an IPC response */
 rc = nk_transport_reply(&transport.base, ...);
 }
 }

If a client needs to use several endpoints, the same number of proxy objects must be initialized. When initializing
each proxy object, you need to specify the IPC transport that is associated through the client IPC handle with the
relevant server. When initializing multiple proxy objects pertaining to the endpoints of one server, you can specify
the same IPC transport that is associated with this server.

Example use of the NkKosTransport_Init() function on the server side:

127

 }
 while (rc == NK_EOK)
 return EXIT_SUCCESS;
}

Starting the IPC request processing loop

1. Receive an IPC request.

2. Process the IPC request.

3. Send an IPC response.

/* This function implements the endpoint method. */
static nk_err_t Open_impl(...)
{
...

If a server processes IPC requests received through multiple IPC channels, the following special considerations
should be taken into account:

If a listener handle is associated with all IPC channels, IPC interaction with all clients can use the same IPC
transport associated with this listener handle.

If IPC channels are associated with di�erent listener handles, IPC interaction with each group of clients
corresponding to the same listener handle must use a separate IPC transport associated with this listener
handle. In this case, IPC requests can be processed in parallel threads if you are using a thread-safe
implementation of endpoint methods.

The NkKosTransportSync_Init() function initializes IPC transport with support for interrupting the Call()
and Recv() locking system calls. (For example, an interrupt of these calls may be required for correct termination
of the process that is executing them.) To interrupt the Call() and Recv() system calls, use the API ipc_api.h.

The NkKosSetTransportTimeouts() function declared in the header �le transport-kos.h de�nes the
maximum lockout duration for Call() and Recv() system calls used for IPC transport.

The IPC request processing loop on a server includes the following steps:

Each step of this loop can be completed separately by sequentially calling the nk_transport_recv() ,
dispatcher, and nk_transport_reply() functions. (The nk_transport_recv() and nk_transport_reply()
functions are declared in the header �le sysroot-*-kos/include/nk/transport.h from the
KasperskyOS SDK.) You can also call the NkKosTransport_Dispatch() or NkKosDoDispatch() function in
which this loop is completed in its entirety. (The NkKosTransport_Dispatch() and NkKosDoDispatch()
functions are declared in the header �les transport-kos.h and transport-kos-dispatch.h , respectively.) It
is more convenient to use the NkKosDoDispatch() function because it requires fewer preparatory operations
(for example, you do not need to initialize IPC transport).

You can initialize the structure passed to the NkKosDoDispatch() function through the info parameter by using
the macros de�ned in the header �le transport-kos-dispatch.h .

The NkKosTransport_Dispatch() and NkKosDoDispatch() functions can be called from parallel threads if you
are using a thread-safe implementation of endpoint methods.

Example use of the NkKosDoDispatch() function:

128

}

/* This function implements the endpoint method. */
static nk_err_t Read_impl(...)
{
...
}

/* This function initializes the pointers to functions implementing the endpoint
methods.
 * (These pointers are used by the dispatcher to call functions implementing the
 * endpoint methods. The types of structures are automatically generated
 * transport code.) */
static struct FileIface *CreateFileOperations()
{
 static const struct FileIface_ops ops = {
 .Open = Open_impl,
 .Read = Read_impl
 };
 static struct FileIface impl = {
 .ops = &ops
 };
 return &impl;
}

int main(int argc, const char *argv[])
{
...
 /* Declare the structure that is required for the
 * NkKosDoDispatch() function to use transport code. */
 NkKosDispatchInfo info;
 /* Declare the stubs. (The types of stubs are automatically generated
 * transport code. */
 struct Operations_component component;
 struct FsDriver_entity entity;
 /* Get the listener handle */
 Handle handle = ServiceLocatorRegister("driver_connection", NULL, 0, &iid);
 assert(handle != INVALID_HANDLE);
 /* Initialize the stubs. (Methods for initializing stubs are
 * automatically generated transport code. Function
 * CreateFileOperations() is implemented by the developer of the
 * KasperskyOS-based solution to initialize
 * pointers to functions implementing the endpoint methods.) */
 Operations_component_init(&component, CreateFileOperations());
 FsDriver_entity_init(&entity, &component);
 /* Initialize the structure that is required for the
 * NkKosDoDispatch() function to use transport code. */
 info = NK_TASK_DISPATCH_INFO_INITIALIZER(FsDriver, entity);
 /* Start the IPC request processing loop */
 NkKosDoDispatch(handle, info);
 return EXIT_SUCCESS;
}

/* This function implements the endpoint method. */
static nk_err_t Open_impl(...)
{
...
}

Example use of the NkKosTransport_Dispatch() function:

129

/* This function implements the endpoint method. */
static nk_err_t Read_impl(...)
{
...
}

/* This function initializes the pointers to functions implementing the endpoint
methods.
 * (These pointers are used by the dispatcher to call functions implementing the
 * endpoint methods. The types of structures are automatically generated
 * transport code.) */
static struct FileIface *CreateFileOperations()
{
 static const struct FileIface_ops ops = {
 .Open = Open_impl,
 .Read = Read_impl
 };
 static struct FileIface impl = {
 .ops = &ops
 };
 return &impl;
}

int main(int argc, const char *argv[])
{
...
 /* Declare the structure containing the IPC transport parameters */
 NkKosTransport transport;
 /* Declare the stubs. (The types of stubs are automatically generated
 * transport code. */
 struct Operations_component component;
 struct FsDriver_entity entity;
 /* Declare the unions of the constant part of IPC requests and
 * IPC responses. (Types of unions are automatically generated
 * transport code.) */
 union FsDriver_entity_req req;
 union FsDriver_entity_res res;
 /* Declare the array for the IPC response arena. (The array size is
 * automatically generated transport code.) */
 char res_buffer[FsDriver_entity_res_arena_size];
 /* Declare and initialize the arena descriptor of the IPC response.
 * (The type of handle and its initialization macro are defined in the header file
 * sysroot-*-kos/include/nk/arena.h from the KasperskyOS SDK.) */
 struct nk_arena res_arena = NK_ARENA_INITIALIZER(res_buffer,
 res_buffer + sizeof(res_buffer));
 /* Get the listener handle */
 Handle handle = ServiceLocatorRegister("driver_connection", NULL, 0, &iid);
 assert(handle != INVALID_HANDLE);
 /* Initialize the structure containing the IPC transport parameters */
 NkKosTransport_Init(&transport, handle, NK_NULL, 0);
 /* Initialize the stubs. (Methods for initializing stubs are
 * automatically generated transport code. Function
 * CreateFileOperations() is implemented by the developer of the
 * KasperskyOS-based solution to initialize
 * pointers to functions implementing the endpoint methods.) */
 Operations_component_init(&component, CreateFileOperations());
 FsDriver_entity_init(&entity, &component);
 /* Start the IPC request processing loop. (The dispatcher FsDriver_entity_dispatch
 * is automatically generated transport code.) */
 NkKosTransport_Dispatch(&transport.base, FsDriver_entity_dispatch,
 &entity, &req, sizeof(FsDriver_entity_req),

130

 RTL_NULL, &res, &res_arena);
 return EXIT_SUCCESS;
}

Copying data to the IPC message arena

static nk_err_t Read_impl(struct FileIface *self,
 const struct FileIface_Read_req *req,
 const struct nk_arena* req_arena,
 struct FileIface_Read_res* res,
 struct nk_arena* res_arena)
{
 /* Copy the string to the IPC response arena */
 if (NkKosCopyStringToArena(&res_arena, &res.content,
 "CONTENT OF THE FILE") != rcOk) {
...
 }
 return NK_EOK;
}

Information about API functions

transport-kos.h functions

Function Information about the function

NkKosTransport_Init()

NkKosTransportSync_Init()

To copy a string to the IPC message arena, call the NkKosCopyStringToArena() function declared in the header
�le transport-kos.h . This function reserves a segment of the arena and copies a string to this segment.

Example use of the NkKosCopyStringToArena() function:

Purpose

Initializes IPC transport.

Parameters

[out] transport – pointer to the structure containing the IPC
transport parameters.

[in] handle – client or server IPC handle.

[in] view – parameter that must have the value NK_NULL .

[in] size – parameter that must have the value 0 .

Returned values

N/A

Purpose

Initializes IPC transport with support for interrupting the Call()
and/or Recv() system calls.

131

NkKosTransport_Dispatch()

Parameters

[out] transport – pointer to the structure containing the IPC
transport parameters.

[in] handle – client or server IPC handle.

[in,optional] callSyncHandle – handle of the IPC synchronization
object for Call() system calls, or INVALID_HANDLE if an interrupt
of Call() system calls is not required.

[in,optional] recvSyncHandle – handle of the IPC synchronization
object for Recv() system calls, or INVALID_HANDLE if an interrupt
of Recv() system calls is not required.

Returned values

N/A

NkKosSetTransportTimeouts()

Purpose

De�nes the maximum lockout duration for Call() and Recv()
system calls used for IPC transport.

Parameters

[out] transport – pointer to the structure containing the IPC
transport parameters.

[in] recvTimeout – maximum lockout duration for Recv() system
calls in milliseconds, or INFINITE_TIMEOUT to de�ne an unlimited
lockout duration.

[in] callTimeout – maximum lockout duration for Call() system
calls in milliseconds, or INFINITE_TIMEOUT to de�ne an unlimited
lockout duration.

Returned values

N/A

Purpose

Starts the IPC request processing loop.

Parameters

[in] transport – pointer to the base �eld of the structure
containing the IPC transport parameters.

[in] dispatch – pointer to the dispatcher (dispatch method) from
the transport code. The dispatcher is named
<process class name>_entity_dispatch .

[in] impl – pointer to the stub, which consists of a structure with
the type <process class name>_entity from the transport

132

NkKosCopyStringToArena()

transport-kos-dispatch.h functions

Function Information about the function

code. The dispatcher uses this structure to get the pointers to
functions implementing endpoint methods.

[out] req – pointer to the union with the type
<process class name>_entity_req from the transport code.
This union is intended for storing the constant part of IPC requests
for any methods of endpoints provided by the server.

[in] req_size – maximum size (in bytes) of the constant part of
IPC requests. It is de�ned as
sizeof(<process class name>_entity_req) , where
<process class name>_entity_req is the type from the
transport code.

[in,out,optional] req_arena – pointer to the IPC request arena
descriptor, or RTL_NULL if an IPC request arena is not in use. The
type of handle is de�ned in the header �le sysroot-*-
kos/include/nk/arena.h from the KasperskyOS SDK.

[out] res – pointer to the union with the type
<process class name>_entity_res from the transport code.
This union is intended for storing the constant part of IPC
responses for any methods of endpoints provided by the server.

[in,out,optional] res_arena – pointer to the IPC response arena
descriptor, or RTL_NULL if an IPC response arena is not in use. The
type of handle is de�ned in the header �le sysroot-*-
kos/include/nk/arena.h from the KasperskyOS SDK.

Returned values

If unsuccessful, it returns an error code.

Purpose

Reserves a segment of the arena and copies a string to this segment.

Parameters

[in,out] arena – pointer to the arena descriptor. The type of
handle is de�ned in the header �le sysroot-*-
kos/include/nk/arena.h from the KasperskyOS SDK.

[out] field – pointer to the arena chunk descriptor where the
string is copied. The type of handle is de�ned in the header �le
sysroot-*-kos/include/nk/types.h .

[in] src – pointer to the string to be copied to the IPC message
arena.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

133

NkKosDoDispatch()

Verifier.edl

entity Verifier
security Approve

Approve.idl

package Approve
interface {
 Check(in UInt32 port);
}

security.psl

...
security src=Verifier, method=Check { assert (message.port > 80) }
...

Purpose

Starts the IPC request processing loop.

Parameters

[in] h – server IPC handle.

[in] info – pointer to the structure containing the data required by the
function to use transport code (including the names of types, sizes of the
constant part and IPC message arena).

Returned values

N/A

Initializing IPC transport for querying the security module (transport-kos-
security.h)

The API is de�ned in the header �le sysroot-*-kos/include/coresrv/nk/transport-kos-security.h from
the KasperskyOS SDK.

The API initializes IPC transport for querying the Kaspersky Security Module via the security interface. Transport
code works on top of IPC transport.

Information about API functions is provided in the table below.

This section contains an API usage example. In this example, the program that queries the security module has the
following formal speci�cation:

Fragment of the policy description in the example:

134

Using the API

int main(void)
{
 /* Declare the structure containing the IPC transport parameters for querying the
 * security module */
 NkKosSecurityTransport security_transport;
 /* Declare the proxy object. (The type of proxy object is automatically
 * generated transport code.) */
 struct Approve_proxy security_proxy;
 /* Declare the structures for saving the constant part of an IPC request and IPC
response for the
 * security interface method. (The types of structures are automatically generated
 * transport code.) */
 struct Approve_Check_req security_req;
 struct Approve_Check_res security_res;
 /* Initialize the structure containing the IPC transport parameters for querying
the
 * security module */
 if (NkKosSecurityTransport_Init(&security_transport, NK_NULL, 0) == NK_EOK) {
 /* Initialize the proxy object. (The proxy object initialization method and
the
 * security interface ID Verifier_securityIid are
 * automatically generated transport code.) */
 Approve_proxy_init(&security_proxy, &security_transport.base,
Verifier_securityIid);
 }
...
 /* Call the security interface method. (The method is automatically generated
 * transport code. The method does not pass any data through the security_res
parameter.
 * This parameter should be specified only if required by the method
implementation.) */
 security_req.port = 80;
 nk_err_t result = Approve_Check(&security_proxy.base, &security_req,
 NULL, &security_res, NULL);
 if (result == NK_EOK)
 fprintf(stderr, "Granted");
 if (result == NK_EPERM)
 fprintf(stderr, "Denied");
 else
 fprintf(stderr, "Error");
 return EXIT_SUCCESS;
}

Information about API functions

transport-kos-security.h functions

Function Information about the function

To initialize IPC transport for querying the security module, call the NkKosSecurityTransport_Init() function.

Example use of the NkKosSecurityTransport_Init() function:

If a process needs to use several security interfaces, the same number of proxy objects must be initialized by
specifying the same IPC transport and the unique IDs of the security interfaces.

135

NkKosSecurityTransport_Init()

Using the API

size_t random_number;
if (KosRandomGenerate(sizeof random_number, &random_number) == rcOk) {
...
}

Purpose

Initializes IPC transport for querying the Kaspersky Security Module
through the security interface.

Parameters

[out] transport – pointer to the structure containing the IPC
transport parameters for querying the security module.

[in] view – parameter that must have the value NK_NULL .

[in] size – parameter that must have the value 0 .

Returned values

If successful, the function returns NK_EOK , otherwise it returns an
error code.

Generating random numbers (random_api.h)

The API is de�ned in the header �le sysroot-*-kos/include/kos/random/random_api.h from the
KasperskyOS SDK.

The API generates random numbers and includes functions that can be used to ensure high entropy (high level of
unpredictability) of the seed value of the random number generator. The start number of the random number
generator (seed) determines the sequence of the generated random numbers. In other words, if the same seed
value is set, the generator creates identical sequences of random numbers. (The entropy of these numbers is fully
determined by the entropy of the seed value, which means that these numbers are not entirely random, but
pseudorandom.)

The random number generator of one process does not depend on the random number generators of other
processes.

Information about API functions is provided in the table below.

To generate a sequence of random byte values, call the KosRandomGenerate() or KosRandomGenerateEx()
function.

Example use of the KosRandomGenerate() function:

The KosRandomGenerateEx() function gets the quality level of the generated random values through the output
parameter quality . The quality level can be high or low. High-quality random values are random values that are
generated while ful�lling all of the following conditions:

136

1. When the seed value is changed, at least one entropy source is registered and data is successfully received
from all registered entropy sources.

To register the entropy source, call the KosRandomRegisterSrc() function. This function uses the callback
parameter to receive the pointer to a callback function of the following type:

typedef Retcode (*KosRandomSeedMethod)(void *context,
 rtl_size_t size,
 void *output);

Using the context parameters, this callback function receives data with the speci�ed size of bytes from the
entropy source and writes this data to the output bu�er. If the function returns rcOk , it is assumed that data
was successfully received from the entropy source. An entropy source can be a digitalized signal of a sensor or
a hardware-based random number generator, for example.

To deregister an entropy source, call the KosRandomUnregisterSrc() function.

2. The random number generator is initialized if the quality level was low before changing the seed value while
ful�lling condition 1.

If the quality level is low, it cannot be changed to high without initializing the random number generator.

To initialize a random number generator, call the KosRandomInitSeed() function. The entropy of data passed
through the seed parameter must be guaranteed by the calling process.

3. The counter of random byte values that were generated after changing the seed value while ful�lling condition 1
does not exceed the system-de�ned limit.

4. The counter of time that has elapsed since changing the seed value while ful�lling condition 1 does not exceed
the system-de�ned limit.

If at least one of these conditions is not ful�lled, the generated random values are deemed low-quality values.

When a process is started, the seed value is automatically de�ned by the system. Then the seed value is modi�ed
when doing the following:

Generating a sequence of random values.

Each successful call of the KosRandomGenerateEx() function with the size parameter greater than zero and
each successful call of the KosRandomGenerate() function results in a change of the seed value of the
random number generator, but not each seed change results in the receipt of data from registered entropy
sources. The registered entropy sources are used only when condition 3 or 4 is not ful�lled. If at least one
entropy source is registered, the time counter for the change in the seed value is reset. If data from at least one
entropy source is successfully received, the counter of generated random byte values is also reset.

The quality level may change from high to low.

Initializing a random number generator.

Each successful call of the KosRandomInitSeed() function changes the seed value by using the data that is
passed through the seed parameter and received from registered entropy sources. If at least one registered
entropy source is available, the counters for generated byte values and the time of a change in the seed value
are reset. Otherwise, only the counter of generated random byte values is reset.

The quality level may change from high to low, and vice versa.

Registering an entropy source.

Each successful call of the KosRandomRegisterSrc() function changes the seed value by using the data only
from the registered entropy source. The counter of the generated random byte values is also reset.

The quality level may not change.

137

1. Register at least one source of entropy by calling the KosRandomRegisterSrc() function.

2. Generate a sequence of random values by calling the KosRandomGenerateEx() function.

3. Check the quality level of the random values.

If the quality level is low, initialize the random number generator by calling the KosRandomInitSeed() function,
and proceed to step 2.

If the quality level is high, proceed to step 4.

4. Use random values.

Information about API functions

random_api.h functions

Function Information about the function

KosRandomInitSeed()

KosRandomGenerate()

A possible scenario for generating high-quality random values includes the following steps:

To get the quality level without generating random values, call the KosRandomGenerateEx() function with the
values 0 and RTL_NULL in the size and output parameters, respectively.

Purpose

Initializes the random number generator.

Parameters

[in] seed – pointer to the byte array that is used to change the seed
value. The array must have a size of 32 bytes.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Generates a sequence of random byte values.

Parameters

[in] size – size (in bytes) of the bu�er used to store the sequence.

[out] output – pointer to the bu�er used to store the sequence.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

KosRandomGenerateEx() Purpose

Generates a sequence of random byte values.

Parameters

138

KosRandomRegisterSrc()

KosRandomUnregisterSrc()

[in] size – size (in bytes) of the bu�er used to store the sequence.

[out] output – pointer to the bu�er used to store the sequence.

[out] quality – pointer to the boolean value that is true if the
generated random values have high quality, and false if the generated
random values have low quality.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Registers an entropy source.

Parameters

[in] callback – pointer to the function that receives data from the
entropy source to change the seed value.

[in,optional] context – pointer to the parameters passed to the
function de�ned through the callback parameter, or RTL_NULL if
there are no parameters.

[in] size – size (in bytes) of the data that should be received from the
entropy source when calling the function de�ned through the
callback parameter. The size must be at least 32 bytes.

[out] handle – address of the pointer used to deregister the entropy
source.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Deregisters the source of entropy.

Parameters

[in] handle – pointer that is received when registering the source of
entropy.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Getting and changing time values (time_api.h)

139

time_api.h functions

Function Information about the function

KnGetSystemTimeRes()

KnSetSystemTime()

KnGetSystemTime()

The API is de�ned in the header �le sysroot-*-kos/include/coresrv/time/time_api.h from the
KasperskyOS SDK.

Main capabilities of the API:

Get and modify the system time

Get the monotonic time that has elapsed since the moment the KasperskyOS kernel was started

Get the resolution of the sources of system time and monotonic time

Information about API functions is provided in the table below.

Purpose

Gets the resolution of the system time source.

Parameters

[out] res – pointer to the structure containing the resolution of the
system time source (in nanoseconds) in the nsec �eld. The type of
structure is de�ned in the header �le sysroot-*-
kos/include/rtl/rtc.h from the KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Sets the system time.

Parameters

[in] time – pointer to the structure containing the sec �eld, which
indicates the number of seconds that have elapsed since January 1, 1970,
and the nsec �eld, which indicates the number of nanoseconds that have
elapsed since the time de�ned in the sec �eld. The type of structure is
de�ned in the header �le sysroot-*-kos/include/rtl/rtc.h from the
KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Gets the system time.

Parameters

[out] time – pointer to the structure containing the sec �eld, which
indicates the number of seconds that have elapsed since January 1, 1970,
and the nsec �eld, which indicates the number of nanoseconds that have

140

KnGetUpTimeRes()

KnGetUpTime()

KnGetRtcTime()

elapsed since the time de�ned in the sec �eld. The type of structure is
de�ned in the header �le sysroot-*-kos/include/rtl/rtc.h from the
KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Gets the resolution of the source of monotonic time that has elapsed since
the KasperskyOS kernel was started.

Parameters

[out] res – pointer to the structure containing the nsec �eld, which
indicates the resolution of the source of monotonic time (in nanoseconds)
that has elapsed since the KasperskyOS kernel was started. The type of
structure is de�ned in the header �le sysroot-*-
kos/include/rtl/rtc.h from the KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Gets the monotonic time that has elapsed since the moment the
KasperskyOS kernel was started.

Parameters

[out] time – pointer to the structure containing the sec �eld, which
indicates the number of seconds that have elapsed since the
KasperskyOS kernel started, and the nsec �eld, which indicates the
number of nanoseconds that have elapsed since the time de�ned in the
sec �eld. The type of structure is de�ned in the header �le sysroot-*-
kos/include/rtl/rtc.h from the KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Gets the system time.

Parameters

[out] rt – pointer to the structure containing the following time data: year,
month, day, hours, minutes, seconds, and milliseconds. The type of
structure is de�ned in the header �le sysroot-*-
kos/include/rtl/rtc.h from the KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

141

KnGetMSecSinceStart()

KnAdjSystemTime()

Purpose

Gets the monotonic time that has elapsed since the moment the
KasperskyOS kernel was started.

Parameters

N/A

Returned values

Monotonic time (in milliseconds) that has elapsed since the KasperskyOS
kernel was started.

Purpose

Starts gradual adjustment of the system time.

Parameters

[in] adj – pointer to the structure containing the amount of time by which
the system time must be adjusted (sec*10^9+nsec nanoseconds), or
RTL_NULL if you do not need to start an adjustment but instead only need
information about a previously run adjustment (through the prev
parameter). The type of structure is de�ned in the header �le sysroot-*-
kos/include/rtl/rtc.h from the KasperskyOS SDK.

[in] slew – rate of system time adjustment (microseconds per second).

[out] prev – pointer to the structure containing the amount of time
correction that remained (or remains if RTL_NULL was indicated in the adj
parameter) for the already running gradual adjustment to fully complete
(sec*10^9+nsec nanoseconds). The type of structure is de�ned in the
header �le sysroot-*-kos/include/rtl/rtc.h from the
KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Additional information

If a new adjustment is started before a previously running adjustment is
�nished, the previously running adjustment is interrupted.

Using noti�cations (notice_api.h)

The API is de�ned in the sysroot-*-kos/include/coresrv/handle/notice_api.h header �le from the
KasperskyOS SDK.

The API can track events that occur to (both system and user) resources, and inform other processes and threads
about events involving user resources.

Information about API functions is provided in the table below.

142

Using the API

1. Creating a noti�cation receiver (KasperskyOS kernel object that collects noti�cations) by calling the
KnNoticeCreate() function.

2. Adding "resource—event mask" entries to the noti�cation receiver to con�gure it to get noti�cations about
events that occur to relevant resources.

To add a "resource—event mask" entry to the noti�cation receiver, you need to call the
KnNoticeSubscribeToObject() function. (The OCAP_HANDLE_GET_EVENT �ag should be set in the handle
permissions mask of the resource stated in the object parameter.) Several "resource—event mask" entries can
be added for one resource, and the entry identi�ers do not need to be unique. Tracked events for each
"resource—event mask" entry should be de�ned with an event mask that may match one or several events.

"Resource—event mask" entries added to the noti�cation receiver can be fully or partially removed to prevent
the receiver from getting noti�cations that match these entries. To remove all "resource—event mask" entries
from the receiver, you need to call the KnNoticeDropAndWake() function. To remove from the receiver
"resource—event mask" entries that refer to the same resource, you need to call the
KnNoticeUnsubscribeFromObject() function. To remove from the receiver a "resource—event mask" entry
with a speci�c identi�er, you need to call the KnNoticeUnsubscribeFromEvent() function.

"Resource—event mask" entries can be added to, or removed from, the noti�cation receiver throughout its life
cycle.

3. Extracting noti�cations from the receiver with the KnNoticeGetEvent() function.

You can set the time-out for noti�cations to appear in the receiver when calling the KnNoticeGetEvent()
function. Threads that are locked while waiting for noti�cations to appear in the receiver will resume when
noti�cations appear, even if these noti�cations match "resource—event mask" entries added after wait start.

Threads that are locked while waiting for noti�cations to appear in the receiver will resume if all "resource—
event mask" entries are removed from the receiver by calling the KnNoticeDropAndWake() function. If you
add at least one "resource—event mask" entry to the noti�cation receiver after calling the
KnNoticeDropAndWake() function, threads that get noti�cations from that receiver will be locked again when
calling the KnNoticeGetEvent() function for the speci�ed time-out duration as long as there are no
noti�cations. If all "resource—event mask" entries are removed from the noti�cation receiver with the
KnNoticeUnsubscribeFromObject() and/or KnNoticeUnsubscribeFromEvent() functions, threads
waiting for noti�cations to appear in the receiver will not resume until the time-out elapses.

4. Removing a noti�cation receiver by calling the KnNoticeRelease() function.

Threads that are locked while waiting for noti�cations to appear in the receiver will resume when the receiver is
removed by calling the KnNoticeRelease() function.

The noti�cation mechanism uses an event mask. An event mask is a value whose bits are interpreted as events that
should be tracked or that have already occurred. An event mask has a size of 32 bits and consists of a general part
and a specialized part. The common part describes events that are not speci�c to any resources. The specialized
part describes events that are speci�c to certain resources. Specialized part �ags for system resources and
common part �ags are de�ned in the sysroot-*-kos/include/handle/event_descr.h header �le from
KasperskyOS SDK. (For example, the common part �ag EVENT_OBJECT_DESTROYED signi�es resource termination,
and the specialized part �ag EVENT_TASK_COMPLETED signi�es process termination.) Specialized part �ags for a
user resource are de�ned by the resource provider with the help of the OBJECT_EVENT_SPEC() and
OBJECT_EVENT_USER() macros, which are de�ned in the sysroot-*-kos/include/handle/event_descr.h
header �le from the KasperskyOS SDK. The resource provider must export the public header �les describing the
�ags of the specialized part.

The standard scenario for receiving noti�cations about events occurring to resources consists of the following
steps:

143

Information about API functions

notice_api.h functions

Function Information about the function

KnNoticeCreate()

KnNoticeSubscribeToObject()

KnNoticeGetEvent()

To notify other processes and/or threads about events that occurred to the user resource, you need to call the
KnNoticeSetObjectEvent() function. Calling the function results in noti�cations appearing in receivers
con�gured to get events de�ned with the evMask parameter that occur to the user resource de�ned with the
object parameter. You cannot set �ags of the general part of an event mask in the evMask parameter, because
only the kernel can signal about events that match the general part of an event mask. If the process calling the
KnNoticeSetObjectEvent() function created the user resource handle stated in the object parameter, you
can set �ags de�ned by the OBJECT_EVENT_SPEC() and OBJECT_EVENT_USER() macros in the evMask
parameter. If the process calling the KnNoticeSetObjectEvent() function received the user resource handle
stated in the object parameter from another process, you can set only those �ags de�ned by the
OBJECT_EVENT_USER() macro in the evMask parameter, while the permissions mask of the resulting handle must
have a OCAP_HANDLE_SET_EVENT �ag set.

Purpose

Creates a noti�cation receiver.

Parameters

[out] notice – pointer to the identi�er of the noti�cation
receiver.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Purpose

Adds a "resource–event mask" entry to the noti�cation receiver
so that it can receive noti�cations about events that occur with
the de�ned resource and match the de�ned event mask.

Parameters

[in] notice – identi�er of the noti�cation receiver.

[in] object – resource handle.

[in] evMask – event mask.

[in] evId – ID of the "resource–event mask" entry.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Purpose

Extracts noti�cations from the receiver.

144

KnNoticeUnsubscribeFromObject()

KnNoticeUnsubscribeFromEvent()

Parameters

[in] notice – identi�er of the noti�cation receiver.

[in] msec – time-out before noti�cations appearing in the
receiver, in milliseconds, or INFINITE_TIMEOUT to set an
unlimited time-out.

[in] countMax – maximum number of noti�cations extracted
with one function call.

[out] events – pointer to a set of noti�cations that
represent structures containing the identi�er of a "resource—
event mask" entry and the mask of the events that occurred
to the resource.

[out] count – number of noti�cations extracted.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

If the time-out for noti�cations to appear in the receiver has
elapsed, returns rcTimeout .

If the time-out for noti�cations appear in the receiver is
interrupted by a call to the KnNoticeRelease() or
KnNoticeDropAndWake() functions, returns
rcResourceNotFound .

Purpose

Removes from the noti�cation receiver "resource—event mask"
entries that match the speci�ed resource to prevent the receiver
from getting noti�cations about events that match these entries.

Parameters

[in] notice – identi�er of the noti�cation receiver.

[in] object – resource handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Additional information

Noti�cations that correspond to the removed "resource—event
mask" entries will be removed from the receiver.

Purpose

145

KnNoticeDropAndWake()

KnNoticeRelease()

KnNoticeSetObjectEvent()

Removes from the noti�cation receiver "resource—event mask"
entries with the speci�ed identi�er to prevent the receiver from
getting noti�cations about events that match these entries.

Parameters

[in] notice – identi�er of the noti�cation receiver.

[in] evId – ID of the "resource–event mask" entry.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Additional information

Noti�cations that correspond to the removed "resource—event
mask" entries will be removed from the receiver.

Purpose

Removes all "resource—event mask" entries from the speci�ed
noti�cation receiver and resumes all threads that are waiting for
noti�cations to appear in the speci�ed receiver.

Parameters

[in] notice – identi�er of the noti�cation receiver.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Purpose

Removes the speci�ed noti�cation receiver and resumes all
threads that are waiting for noti�cations to appear in the
speci�ed receiver.

Parameters

[in] notice – identi�er of the noti�cation receiver.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Purpose

Signals that events matching the speci�ed event mask occurred
to the speci�ed user resource.

Parameters

[in] object – user resource handle.

146

Using the API

1. Connect to the name server by calling the NsCreate() function.

2. Publish the provided endpoints on the name server by using the NsPublishService() function.

To unpublish an endpoint, call the NsUnPublishService() function.

3. Receive a client request to create an IPC channel by calling the KnCmListen() function.

The KnCmListen() function gets the �rst request in the queue without deleting this request but instead
putting it at the end of the queue. If there is only one request in the queue, multiple consecutive calls of the
KnCmListen() function will provide the same result. A request is deleted from the queue when the
KnCmAccept() or KnCmDrop() function is called.

4. You can accept a client request to create an IPC channel by calling the KnCmAccept() function.

To decline a client request, call the KnCmDrop() function.

[in] evMask – mask of events to be signaled.

Returned values

If successful, the function returns rcOk , otherwise it returns an
error code.

Dynamically creating IPC channels (cm_api.h, ns_api.h)

APIs are de�ned in the header �les from the KasperskyOS SDK:

sysroot-*-kos/include/coresrv/cm/cm_api.h

sysroot-*-kos/include/coresrv/ns/ns_api.h

The API dynamically creates IPC channels.

Information about API functions is provided in the tables below.

To ensure that servers can notify clients about the endpoints that they provide, the solution should include a name
server, which is provided by the NameServer system program (executable �le sysroot-*-kos/bin/ns from the
KasperskyOS SDK). IPC channels from clients and servers to a name server can be statically created (these IPC
channels must be named kl.core.NameServer). If this is not done, attempts will be made to dynamically create
these IPC channels whenever clients and servers call the NsCreate() function. A name server does not have to
be included in a solution if the clients initially already have information about the names of servers and the
endpoints provided by these servers.

The names of endpoints and interfaces should be de�ned according to the formal speci�cations of solution
components. (For information about the quali�ed name of an endpoint, see "Binding methods of security models
to security events") Instead of the quali�ed name of an endpoint, you can use any conditional name of this
endpoint. The names of clients and servers are de�ned in the init description. You can also get a process name by
calling the KnTaskGetName() function from the API task_api.h.

Dynamic creation of an IPC channel on the server side includes the following steps:

147

A listener handle is created when the KnCmAccept() function is called with the INVALID_HANDLE value in the
listener parameter. If a listener handle is speci�ed, the created server IPC handle will provide the capability
to receive IPC requests over all IPC channels associated with this listener handle. (The �rst IPC channel
associated with the listener handle is created when the KnCmAccept() function is called with the
INVALID_HANDLE value in the listener parameter. The second and subsequent IPC channels associated with
the listener handle are created during the second and subsequent calls of the KnCmAccept() function
specifying the handle that was obtained during the �rst call.) In the listener parameter of the
KnCmAccept() function, you can specify the listener handle received using the KnHandleConnect() ,
KnHandleConnectEx() and KnHandleCreateListener() functions from the API handle_api.h, and the
ServiceLocatorRegister() function declared in the header �le sysroot-*-
kos/include/coresrv/sl/sl_api.h from the KasperskyOS SDK.

1. Connect to the name server by calling the NsCreate() function.

2. Find the server providing the required endpoint by using the NsEnumServices() function.

To get a full list of endpoints with a de�ned interface, call the function several times while incrementing the
index until you receive the rcResourceNotFound error.

3. Ful�ll the request to create an IPC channel with the necessary server by calling the KnCmConnect() function.

Deleting dynamically created IPC channels

Information about API functions

ns_api.h functions

Function Information about the function

NsCreate()

NsPublishService()

Dynamic creation of an IPC channel on the client side includes the following steps:

You can connect multiple clients and servers to the name server. Each client and server can create multiple
connections to the name server. A server can unpublish an endpoint that was published by another server.

A dynamically created IPC channel will be deleted when its client IPC handle and server IPC handle are closed.

Purpose

Creates a connection to a name server.

Parameters

[in,optional] name – pointer to the name of the name server process, or
RTL_NULL to assign the default name (corresponds to the
NS_SERVER_NAME macro value).

[in] msecs – timeout (in milliseconds) for creating a connection to the name
server, or INFINITE_TIMEOUT to de�ne an unlimited timeout.

[out] ns – pointer to the ID of the connection to the name server.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

148

NsUnPublishService()

NsEnumServices()

Publishes an endpoint on a name server.

Parameters

[in] ns – ID of the connection to the name server.

[in] type – pointer to the name of the endpoint interface.

[in,optional] server – pointer to the name of the server providing the
endpoint, or RTL_NULL to use the name of the calling process.

[in] service – pointer to the quali�ed name of the endpoint.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Unpublishes an endpoint on a name server.

Parameters

[in] ns – ID of the connection to the name server.

[in] type – pointer to the name of the endpoint interface.

[in,optional] server – pointer to the name of the server providing the
endpoint, or RTL_NULL to use the name of the calling process.

[in] service – pointer to the quali�ed name of the endpoint.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Enumerates the endpoints published on a name server.

Parameters

[in] ns – ID of the connection to the name server.

[in] type – pointer to the name of the interface of endpoints.

[in] index – index for enumerating endpoints. Enumeration starts with zero.

[out] server – pointer to the bu�er for the name of the server providing
the endpoint.

[in] serverSize – bu�er size (in bytes) for the name of the server
providing the endpoint.

[out] service – pointer to the bu�er for the quali�ed name of the
endpoint.

149

cm_api.h functions

Function Information about the function

KnCmConnect()

KnCmListen()

KnCmDrop()

[in] serviceSize – bu�er size (in bytes) for the quali�ed name of the
endpoint.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Requests to create an IPC channel with a server for use of the de�ned endpoint.

Parameters

[in] server – pointer to the server name.

[in] service – pointer to the quali�ed name of the endpoint.

[in] msecs – timeout (in milliseconds) for ful�lling a request, or INFINITE_TIMEOUT
to de�ne an unlimited timeout.

[out] handle – pointer to the client IPC handle.

[out] rsid – pointer to the endpoint ID (RIID).

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Receives a client request to create an IPC channel for use of an endpoint.

Parameters

[in] filter – �ctitious parameter that must have the value RTL_NULL .

[in] msecs – timeout (in milliseconds) for the appearance of a client request, or
INFINITE_TIMEOUT to de�ne an unlimited timeout.

[out] client – pointer to the client name.

[out] service – pointer to the quali�ed name of the endpoint.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Rejects a client request to create an IPC channel for use of the de�ned endpoint.

Parameters

[in] client – pointer to the client name.

150

KnCmAccept()

Events

[in] service – pointer to the quali�ed name of the endpoint.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Accepts a client request to create an IPC channel for use of the de�ned endpoint.

Parameters

[in] client – pointer to the client name.

[in] service – pointer to the quali�ed name of the endpoint.

[in] rsid – endpoint ID (RIID).

[in,optional] listener – listener handle, or INVALID_HANDLE if you need to create
it.

[out] handle – pointer to the server IPC handle.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Using synchronization primitives (event.h, mutex.h, rwlock.h, semaphore.h,
condvar.h)

The libkos library provides APIs that enable use of the following synchronization primitives:

Events (event.h)

Mutexes (mutex.h)

Read-write locks (rwlock.h)

Semaphores (semaphore.h)

Conditional variables (condvar.h)

The header �les are located in the KasperskyOS SDK at sysroot-*-kos/include/kos .

The APIs are intended for synchronizing threads that belong to the same process.

An event is a synchronization primitive that is used to notify one or more threads about the ful�llment of a
condition required by these threads. The noti�ed thread waits for the event to switch from a non-signaling state to
a signaling state, and the notifying thread changes the state of this event.

151

1. An event is initialized via the KosEventInit() function call.

2. The event is used by threads:

event.h functions

Function Information about the function

KosEventInit()

KosEventSet()

KosEventReset()

The standard API usage scenario for working with events includes the following steps:

The noti�ed threads wait for the event to switch from non-signaling state to signaling state via the
KosEventWait() or KosEventWaitTimeout() function call.

The notifying threads change the state of the event via the KosEventSet() and KosEventReset()
function calls.

Information about the API event functions is provided in the table below.

Purpose

Initializes an event.

The event is in a non-signaling state after it is initialized.

Parameters

[out] event – pointer to the event. The event type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

N/A

Purpose

Sets the event state to signaling.

Parameters

[out] event – pointer to the event. The event type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

N/A

Purpose

Sets the event state to non-signaling.

Parameters

[out] event – pointer to the event. The event type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

152

KosEventWait()

KosEventWaitTimeout()

Mutexes

Returned values

N/A

Purpose

Waits for the event to change its state from non-signaling to signaling.

Parameters

[in,out] event – pointer to the event. The event type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

[in] reset – value that de�nes whether the event state should be
changed set to non-signaling after the time-out has elapsed (rtl_true –
 yes, rtl_false – no). The parameter type is de�ned in the sysroot-*-
kos/include/rtl/stdbool.h header �le from the KasperskyOS SDK.

Returned values

N/A

Purpose

Waits on the event to change its state from non-signaling to signaling for a
period that does not exceed the speci�ed time.

Parameters

[in,out] event – pointer to the event. The event type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

[in] reset – value that de�nes whether the event state should be
changed set to non-signaling after the time-out has elapsed (rtl_true –
 yes, rtl_false – no). The parameter type is de�ned in the sysroot-*-
kos/include/rtl/stdbool.h header �le from the KasperskyOS SDK.

[in] mdelay – time-out (in milliseconds) or INFINITE_TIMEOUT to set an
unlimited time-out.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Returns rcTimeout if the time-out has elapsed.

A mutex is a synchronization primitive that ensures mutually exclusive execution of critical sections (areas of code
where resources shared between threads are queried). One thread captures the mutex and executes a critical
section. Meanwhile, other threads wait for the mutex to be freed and attempt to capture this mutex to execute
other critical sections. A mutex can be freed only by the speci�c thread that captured it. You can use a recursive
mutex, which can be captured by the same thread multiple times.

153

1. A mutex is initialized via the KosMutexInit() or KosMutexInitEx() function call.

2. The mutex is used by threads:

a. The mutex is captured via the KosMutexTryLock() , KosMutexLock() or KosMutexLockTimeout()
function call.

b. The mutex is freed via the KosMutexUnlock() function call.

mutex.h functions

Function Information about the function

KosMutexInit()

KosMutexInitEx()

KosMutexTryLock()

The standard API usage scenario for working with mutexes includes the following steps:

Information about the API mutex functions is provided in the table below.

Purpose

Initializes a non-recursive mutex.

Parameters

[out] mutex – pointer to the mutex. The mutex type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

N/A

Purpose

Initializes a mutex.

Parameters

[out] mutex – pointer to the mutex. The mutex type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

[in] recursive – value that de�nes whether the mutex should be
recursive (1 – yes, 0 – no).

Returned values

N/A

Purpose

Acquires the mutex.

If the mutex is already acquired, returns control rather than waits for the
mutex to be released.

Parameters

154

KosMutexLock()

KosMutexUnlock()

KosMutexLockTimeout()

[in,out] mutex – pointer to the mutex. The mutex type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

If the mutex is already acquired, returns rcBusy .

Purpose

Acquires the mutex.

If the mutex is already acquired, waits inde�nitely for it to be released.

Parameters

[in,out] mutex – pointer to the mutex. The mutex type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

N/A

Purpose

Releases the mutex.

Parameters

[in,out] mutex – pointer to the mutex. The mutex type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

N/A

Purpose

Acquires the mutex.

If the mutex is already acquired, waits for it to be released for a period that
does not exceed the speci�ed time.

Parameters

[in,out] mutex – pointer to the mutex. The mutex type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

[in] mdelay – time-out (in milliseconds) or INFINITE_TIMEOUT to set an
unlimited time-out.

Returned values

155

Read-write locks

1. A read-write lock is initialized by the KosRWLockInit() function call.

2. The read-write lock is used by threads:

a. The read-write lock is captured for write operations (via the KosRWLockWrite() or
KosRWLockTryWrite() function call) or for read operations (via the KosRWLockRead() or
KosRWLockTryRead() function call).

b. The read-write lock is freed via the KosRWLockUnlock() function call.

rwlock.h functions

Function Information about the function

KosRWLockInit()

KosRWLockRead()

If successful, the function returns rcOk , otherwise it returns an error code.

Returns rcTimeout if the time-out has elapsed.

A read-write lock is a synchronization primitive used to allow access to resources shared between threads: write
access for one thread or read access for multiple threads at the same time.

The standard API usage scenario for working with read-write locks includes the following steps:

Information about the API read-write lock functions is provided in the table below.

Purpose

Initializes a read-write lock.

Parameters

[out] rwlock – pointer to a read-write lock. The read-write lock type is
de�ned in the sysroot-*-kos/include/kos/sync_types.h header �le
from the KasperskyOS SDK.

Returned values

N/A

Purpose

Acquires a read-write lock for reading.

If the read-write lock is already acquired for writing, or if there are threads
waiting on the lock to be acquired for writing, waits inde�nitely for the lock to be
released.

Parameters

[in,out] rwlock – pointer to the read-write lock. The read-write lock type is
de�ned in the sysroot-*-kos/include/kos/sync_types.h header �le
from the KasperskyOS SDK.

Returned values

156

KosRWLockTryRead()

KosRWLockWrite()

KosRWLockTryWrite()

KosRWLockUnlock()

N/A

Purpose

Acquires the read-write lock for reading.

If the read-write lock is already acquired for writing, or if there are threads
waiting on the lock to be acquired for writing, returns control, rather than waits
for the lock to be released.

Parameters

[in,out] rwlock – pointer to the read-write lock. The read-write lock type is
de�ned in the sysroot-*-kos/include/kos/sync_types.h header �le
from the KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Acquires the read-write lock for writing.

If the read-write lock is already acquired for writing or reading, waits inde�nitely
for the lock to be released.

Parameters

[in,out] rwlock – pointer to the read-write lock. The read-write lock type is
de�ned in the sysroot-*-kos/include/kos/sync_types.h header �le
from the KasperskyOS SDK.

Returned values

N/A

Purpose

Acquires the read-write lock for writing.

If the read-write lock is already acquired for writing or reading, returns control,
rather than waits for the lock to be released.

Parameters

[in,out] rwlock – pointer to the read-write lock. The read-write lock type is
de�ned in the sysroot-*-kos/include/kos/sync_types.h header �le
from the KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Releases the read-write lock.

157

Semaphores

1. A semaphore is initialized via the KosSemaphoreInit() function call.

2. The semaphore is used by threads:

a. They wait for the semaphore via the KosSemaphoreWait() , KosSemaphoreWaitTimeout() or
KosSemaphoreTryWait() function call.

b. The semaphore is signaled via the KosSemaphoreSignal() or KosSemaphoreSignalN() function call.

3. Deallocating semaphore resources by calling the KosSemaphoreDeinit() function.

semaphore.h functions

Function Information about the function

KosSemaphoreInit()

Parameters

[in,out] rwlock – pointer to the read-write lock. The read-write lock type is
de�ned in the sysroot-*-kos/include/kos/sync_types.h header �le
from the KasperskyOS SDK.

Returned values

N/A

Additional information

If the read-write lock is acquired for reading, it remains acquired for reading until
released by every reading thread.

A semaphore is a synchronization primitive that is based on a counter whose value can be atomically modi�ed. The
value of the counter normally re�ects the number of available resources shared between threads. To execute a
critical section, the thread waits until the counter value becomes greater than zero. If the counter value is greater
than zero, it is decremented by one and the thread executes the critical section. After the critical section is
executed, the thread signals the semaphore and the counter value is increased.

The standard API usage scenario for working with semaphores includes the following steps:

Information about the API semaphore functions is provided in the table below.

Purpose

Initializes a semaphore.

Parameters

[out] semaphore – pointer to the semaphore. The semaphore type is
de�ned in the sysroot-*-kos/include/kos/sync_types.h
header �le from the KasperskyOS SDK.

[in] count – counter value.

Returned values

158

KosSemaphoreDeinit()

KosSemaphoreSignal()

KosSemaphoreSignalN()

If successful, the function returns rcOk , otherwise it returns an error
code.

If the value of the count parameter exceeds the
KOS_SEMAPHORE_VALUE_MAX constant, returns rcInvalidArgument .
(The KOS_SEMAPHORE_VALUE_MAX constant is de�ned in the sysroot-
*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.)

Purpose

Deallocates semaphore resources.

Parameters

[in] semaphore – pointer to the semaphore. The semaphore type is
de�ned in the sysroot-*-kos/include/kos/sync_types.h
header �le from the KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

If there are threads waiting on the semaphore, returns rcBusy .

Purpose

Signals the semaphore and increases the counter by one.

Parameters

[in, out] semaphore – pointer to the semaphore. The semaphore
type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Signals the semaphore and increases the counter by the speci�ed
number.

Parameters

[in, out] semaphore – pointer to the semaphore. The semaphore
type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

[in] n – natural number by which to increase the counter.

Returned values

159

KosSemaphoreWaitTimeout()

KosSemaphoreWait()

KosSemaphoreTryWait()

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Waits on the semaphore for a period that does not exceed the speci�ed
time.

Parameters

[in, out] semaphore – pointer to the semaphore. The semaphore
type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

[in] mdelay – semaphore time-out in milliseconds or
INFINITE_TIMEOUT to set an unlimited time-out.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Returns rcTimeout if the time-out has elapsed.

Purpose

Waits on the semaphore inde�nitely.

Parameters

[in, out] semaphore – pointer to the semaphore. The semaphore
type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error
code.

Purpose

Waits on the semaphore.

If the semaphore counter has a zero value, returns control, rather than
waits for the semaphore counter to increase.

Parameters

[in, out] semaphore – pointer to the semaphore. The semaphore
type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

160

Conditional variables

1. The conditional variable and mutex are initialized.

To initialize a conditional variable, you need to call the KosCondvarInit() function.

2. The conditional variable and mutex are used by threads.

1. The mutex is captured.

2. Condition ful�llment is veri�ed.

3. The KosCondvarWait() or KosCondvarWaitTimeout() function is called to wait for condition ful�llment.

After the KosCondvarWait() or KosCondvarWaitTimeout() function is returned, you normally need to re-
verify that the condition is ful�lled because another noti�ed thread also received the signal and may have
voided this condition again. (For example, another thread could have extracted the data prepared by the
notifying thread). To do so, you need to use the following construct:

while(<condition>)
<call of KosCondvarWait() or KosCondvarWaitTimeout()>

4. The mutex is freed.

1. The mutex is captured.

2. Condition ful�llment is veri�ed.

3. Ful�llment of the condition is signaled via the KosCondvarSignal() or KosCondvarBroadcast() function
call.

4. The mutex is freed.

If successful, the function returns rcOk , otherwise it returns an error
code.

If the semaphore counter has a zero value, returns rcBusy .

A conditional variable is a synchronization primitive that is used to notify one or more threads about the ful�llment
of a condition required by these threads. A conditional variable is used together with a mutex. The notifying and
noti�ed threads capture a mutex to execute critical sections. During execution of a critical section, the noti�ed
thread veri�es that its required condition was ful�lled (for example, the data has been prepared by the notifying
thread). If the condition is ful�lled, the noti�ed thread executes the critical section and frees the mutex. If the
condition is not ful�lled, the noti�ed thread is locked at the conditional variable and waits for the condition to be
ful�lled. When this happens, the mutex is automatically freed. During execution of a critical section, the notifying
thread veri�es ful�llment of the condition required by the noti�ed thread. If the condition is ful�lled, the notifying
thread signals this ful�llment through the conditional variable and frees the mutex. The noti�ed thread that was
locked and waiting for the ful�llment of its required condition resumes execution of the critical section while
automatically capturing the mutex. After the critical section is executed, the noti�ed thread frees the mutex.

The standard API usage scenario for working with conditional variables includes the following steps:

Use of a conditional variable and mutex by noti�ed threads includes the following steps:

Use of a conditional variable and mutex by notifying threads includes the following steps:

161

condvar.h functions

Function Information about the function

KosCondvarInit()

KosCondvarWaitTimeout()

KosCondvarWait()

Information about the API conditional variable functions is provided in the table below.

Purpose

Initializes a conditional variable.

Parameters

[out] condvar – pointer to the conditional variable. The conditional
variable type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

N/A

Purpose

Waits for condition ful�llment for a period that does not exceed the
speci�ed time.

Parameters

[in] condvar – pointer to the conditional variable. The conditional
variable type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

[in,out] mutex – pointer to the mutex. The mutex type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

[in] mdelay – condition ful�llment time-out in milliseconds, or
INFINITE_TIMEOUT to set an unlimited time-out.

Returned values

Returns rcOk if successful.

Returns rcTimeout if the time-out has elapsed.

Purpose

Waits inde�nitely for condition ful�llment.

Parameters

[in] condvar – pointer to the conditional variable. The conditional
variable type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

162

KosCondvarSignal()

KosCondvarBroadcast()

Using the API

[in,out] mutex – pointer to the mutex. The mutex type is de�ned in the
sysroot-*-kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Signals condition ful�llment to one of the threads waiting for it.

Parameters

[in, out] condvar – pointer to the conditional variable. The conditional
variable type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

N/A

Purpose

Signals condition ful�llment to all threads waiting for it.

Parameters

[in, out] condvar – pointer to the conditional variable. The conditional
variable type is de�ned in the sysroot-*-
kos/include/kos/sync_types.h header �le from the
KasperskyOS SDK.

Returned values

N/A

Managing I/O memory isolation (iommu_api.h)

The API is de�ned in the sysroot-*-kos/include/coresrv/iommu/iommu_api.h header �le from the
KasperskyOS SDK.

The API is intended for managing the isolation of physical memory regions used by devices on a PCIe bus for DMA.
(Isolation is provided by the IOMMU.)

Information about API functions is provided in the table below.

163

Information about API functions

iommu_api.h functions

Function Information about the function

KnIommuAttachDevice()

KnIommuDetachDevice()

A device on the PCIe bus cannot use DMA unless the device is attached to the IOMMU domain. After a device is
attached to the IOMMU domain, the device can access all DMA bu�ers that are associated with this IOMMU
domain. A device can be attached to only one IOMMU domain at a time, but multiple devices can be attached to
the same IOMMU domain. A DMA bu�er can be associated with multiple IOMMU domains at the same time. Each
process is associated with a separate IOMMU domain.

The API attaches devices on the PCIe bus to an IOMMU domain associated with the calling process, and performs
the inverse operation. A device is normally attached to an IOMMU domain when its driver is initialized. A device is
usually detached from an IOMMU domain when errors are encountered during driver initialization or driver
�nalization.

A DMA bu�er is associated with an IOMMU domain when calling the KnIoDmaBegin() function that is included in
the API dma.h.

Purpose

Attaches a device on a PCIe bus to the IOMMU domain associated with the
calling process.

Parameters

[in] bdf – address of the device on the PCIe bus in BDF format.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Additional information

If IOMMU is not enabled, rcOk is returned.

Purpose

Detaches a device on a PCIe bus from the IOMMU domain associated with the
calling process.

Parameters

[in] bdf – address of the device on the PCIe bus in BDF format.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Additional information

If IOMMU is not enabled, rcOk is returned.

164

Using the API

1. Create a queue abstraction.

A queue abstraction consists of a structure containing queue metadata and a queue bu�er intended for
storing elements of the queue. A queue bu�er is logically divided into equal segments, each of which is
intended for an individual element of the queue. The number of segments in a queue bu�er matches the
maximum number of elements in the queue. The alignment of segment addresses corresponds to the data
types of elements in the queue.

To complete this step, call the KosQueueCreate() function. This function can allocate memory for the queue
bu�er or use already allocated memory. The size of the already allocated memory must be su�icient to
accommodate the maximum number of elements in the queue. Also take into account that the size of a
segment in the queue bu�er is rounded to the next largest multiple of the alignment value de�ned through the
objAlign parameter. The initial address of the already allocated memory must also be aligned to correspond
to the data types of queue elements. If the memory address alignment speci�ed in the buffer parameter is
less than the value de�ned through the objAlign parameter, the function returns RTL_NULL .

2. Exchange data between threads by adding and extracting elements of the queue.

To add one element to the end of the queue, you must reserve a segment in the queue bu�er by calling the
KosQueueAlloc() function, copy this element to the reserved segment, and call the KosQueuePush()
function.

To add a sequence of elements to the end of the queue, you must reserve the necessary number of segments
in the queue bu�er via KosQueueAlloc() function calls, copy the elements of this sequence to the reserved
segments, and call the KosQueuePushArray() function. The order of elements in a sequence is not changed
after this sequence is added to the queue. In other words, elements are added to the queue in the same order
in which the pointers to reserved segments in the queue bu�er are put into the array that is passed through the
objs parameter of the KosQueuePushArray() function.

To extract the �rst element of the queue, you must call the KosQueuePop() function. This function returns the
pointer to the reserved segment in the queue bu�er that contains the �rst element of the queue. After using
an extracted element (for example, after checking or saving the value of an element), you must free the queue
bu�er segment occupied by this element. To do so, call the KosQueueFree() function.

To clear the queue and free all registered segments in the queue bu�er, you must call the KosQueueFlush()
function.

3. Delete the queue abstraction.

To complete this step, call the KosQueueDestroy() function. This function deletes the queue bu�er if only
the memory for this bu�er was allocated by the KosQueueCreate() function. Otherwise, you must separately
delete the queue bu�er.

Using queues (queue.h)

The API is de�ned in the header �le sysroot-*-kos/include/kos/queue.h from the KasperskyOS SDK.

The API sets up data exchange between threads owned by one process via a queuing mechanism that does not
lock threads. In other words, you can add or extract elements of a queue without locking other threads that add or
extract elements of this queue.

Information about API functions is provided in the table below.

The standard scenario for API usage includes the following steps:

165

Information about API functions

queue.h functions

Function Information about the function

KosQueueCreate()

KosQueueDestroy()

KosQueueAlloc()

KosQueueFree()

Purpose

Creates a queue abstraction.

Parameters

[in] objCount – maximum number of elements in the queue.

[in] objSize – size (in bytes) of an element in the queue.

[in] objAlign – alignment of segment addresses in the queue bu�er. The
addresses of segments in the queue bu�er may be unaligned (objAlign=1) or
aligned (objAlign=2,4,...,2^N) to the boundary of a 2^N-byte sequence (for
example, two-byte or four-byte).

[in,optional] buffer – pointer to the allocated memory for the queue bu�er,
or RTL_NULL to automatically allocate the memory.

Returned values

If successful, the function returns the queue abstraction ID, otherwise it returns
RTL_NULL .

Purpose

Deletes a queue abstraction.

Parameters

[in] queue – queue abstraction ID.

Returned values

N/A

Purpose

Reserves a segment in the queue bu�er.

Parameters

[in] queue – queue abstraction ID.

Returned values

If successful, the function returns the pointer to the reserved segment in the
queue bu�er, otherwise it returns RTL_NULL .

Purpose

Resets the reservation of the de�ned segment in the queue bu�er.

166

KosQueuePush()

KosQueuePushArray()

KosQueuePop()

Parameters

[in] queue – queue abstraction ID.

[in] obj – pointer to the reserved segment in the queue bu�er.

Returned values

N/A

Purpose

Adds an element to the end of the queue.

Parameters

[in] queue – queue abstraction ID.

[in] obj – pointer to the reserved segment in the queue bu�er.

Returned values

N/A

Purpose

Adds a sequence of elements to the end of the queue.

Parameters

[in] queue – queue abstraction ID.

[in] objs – array of pointers to reserved segments in the queue bu�er.

[in] count – number of elements in the sequence.

Returned values

N/A

Purpose

Extracts the �rst element of the queue.

Parameters

[in] queue – queue abstraction ID.

[in] timeout – timeout (in milliseconds) for an element to appear in the
queue, or INFINITE_TIMEOUT to set an unlimited timeout.

Returned values

If successful, this function returns the pointer to the reserved segment in the
queue bu�er containing the �rst element of the queue. Otherwise it returns
RTL_NULL .

167

KosQueueFlush()

barriers.h functions

Function Information about the function

IoReadBarrier()

IoWriteBarrier()

IoReadWriteBarrier()

Purpose

Clears the queue and resets the reservation of all registered segments in the
queue bu�er.

Parameters

[in] queue – queue abstraction ID.

Returned values

N/A

Using memory barriers (barriers.h)

This API is de�ned in the header �le sysroot-*-kos/include/coresrv/io/barriers.h from the
KasperskyOS SDK.

The API sets barriers for reading from memory and/or writing to memory. A memory barrier is an instruction for a
compiler or processor that guarantees that memory access operations speci�ed in source code before setting a
barrier will be executed before the memory access operations speci�ed in source code after setting a barrier. Use
of memory barriers is required if the speci�c order of memory write and memory read operations is important.
Otherwise, the optimization mechanisms of a compiler and/or processor could cause these operations to be
executed in a di�erent order than the order speci�ed in the source code.

Information about API functions is provided in the table below.

Purpose

Sets a barrier for reading from memory.

Parameters

N/A

Returned values

N/A

Purpose

Sets a barrier for writing to memory.

Parameters

N/A

Returned values

N/A

Purpose

168

Using the API

Information about API functions

syscalls.h functions

Function Information about the function

Call()

Sets a barrier for writing to memory and reading from memory.

Parameters

N/A

Returned values

N/A

Executing system calls (syscalls.h)

This API is de�ned in the header �le sysroot-*-kos/include/coresrv/syscalls.h from the
KasperskyOS SDK.

The API allows execution of the Call() , Recv() , and Reply() system calls for sending and receiving IPC
messages.

Information about API functions is provided in the table below.

Pointers to bu�ers containing the constant part and arena of IPC messages are passed to API functions by using
an IPC message header whose type is de�ned in the header �le sysroot-*-kos/include/ipc/if_rend.h from
the KasperskyOS SDK. Prior to API function calls, the headers of IPC messages must be bound to bu�ers
containing the constant part and arena of IPC messages. To do so, use the PackInMsg() and PackOutMsg()
functions that are declared in the header �le sysroot-*-kos/include/services/rtl/nk_msg.h from the
KasperskyOS SDK.

The Call() , CallEx() , Recv() , and RecvEx() functions lock execution of the calling thread while waiting for
the system calls to complete. The CallEx() and RecvEx() functions let you de�ne the timeout for completion
of a system call. When this timeout is reached, an uncompleted system call is interrupted and the thread that is
waiting for its completion resumes execution. A system call is also interrupted if an error occurs during its
execution (such as an error due to termination of a server process). If a thread waiting on the completion of a
system call is terminated externally, this system call is also interrupted. A system call executed by the CallEx() or
RecvEx() function can be interrupted (for example, for correct termination of a process) by using the API
ipc_api.h.

If a system call was interrupted using the API ipc_api.h, the CallEx() and RecvEx() functions return the error
code rcIpcInterrupt . If IPC message transmission is prohibited by security mechanisms (such as the Kaspersky
Security Module or a capability-based security mechanism implemented by the KasperskyOS kernel), the Call() ,
CallEx() , and Reply() functions return the error code rcSecurityDisallow .

Purpose

Executes the Call() system call with an unlimited timeout for its completion.

169

CallEx()

Reply()

Recv()

Parameters

[in] handle – client IPC handle.

[in] msgOut – pointer to the header of IPC requests.

[in,out] msgIn – pointer to the header of IPC responses.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Executes the Call() system call with a de�ned timeout for its completion and the capability
to interrupt its execution.

Parameters

[in] handle – client IPC handle.

[in] msgOut – pointer to the header of IPC requests.

[in,out] msgIn – pointer to the header of IPC responses.

[in] mdelay – timeout (in milliseconds) for completion of a Call() system call, or
INFINITE_TIMEOUT to de�ne an unlimited timeout.

[in,optional] syncHandle – handle of the IPC synchronization object, or INVALID_HANDLE
if an interrupt of the Call() system call is not required.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Executes the Reply() system call.

Parameters

[in] handle – server IPC handle.

[in] msgOut – pointer to the header of IPC responses.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Executes the Recv() system call with an unlimited timeout for its completion.

Parameters

[in] handle – server IPC handle.

170

RecvEx()

Using the API

[in,out] msgIn – pointer to the header of IPC requests.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Executes the Recv() system call with a de�ned timeout for its completion and the capability
to interrupt its execution.

Parameters

[in] handle – server IPC handle.

[in,out] msgIn – pointer to the header of IPC responses.

[in] mdelay – timeout (in milliseconds) for completion of a Recv() system call, or
INFINITE_TIMEOUT to de�ne an unlimited timeout.

[in,optional] syncHandle – handle of the IPC synchronization object, or INVALID_HANDLE
if an interrupt of the Recv() system call is not required.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

IPC interrupt (ipc_api.h)

This API is de�ned in the header �le sysroot-*-kos/include/coresrv/ipc/ipc_api.h from the
KasperskyOS SDK.

The API interrupts the Call() and Recv() system calls if one or more process threads are locked while waiting
for these system calls to complete. For example, you may need to interrupt these system calls to correctly
terminate a process so that threads waiting for the completion of these system calls can resume execution.

Information about API functions is provided in the table below.

The API interrupts system calls in process threads that were locked after the CallEx() or RecvEx() function
was called from the API syscalls.h if these functions were called while specifying the IPC synchronization object
handle in the syncHandle parameter. To create an IPC synchronization object, call the
KnIpcCreateSyncObject() function. (The handle of an IPC synchronization object cannot be transferred to
another process because the necessary �ag for this operation is not set in the permissions mask of this handle.)

The KnIpcSetInterrupt() function switches an IPC synchronization object to a state that allows interruption of
the system calls in those process threads that have been locked after a CallEx() or RecvEx() function call
specifying the handle of this IPC synchronization object in the syncHandle parameter. A system call can be
interrupted only during certain stages of its execution. A system call that is executed by the CallEx() function
can be interrupted only when the server has not yet received a Recv() or RecvEx() function call for the IPC
channel whose client IPC handle was speci�ed during the CallEx() function call. A system call executed by the
RecvEx() function can be interrupted only while waiting for an IPC request from a client.

171

Information about API functions

ipc_api.h functions

Function Information about the function

KnIpcCreateSyncObject()

KnIpcSetInterrupt()

KnIpcClearInterrupt()

The KnIpcClearInterrupt() function cancels the action of the KnIpcSetInterrupt() function.

To delete an IPC synchronization object, close its handle by calling the KnHandleClose() function that is
declared in the header �le sysroot-*-kos/include/coresrv/handle/handle_api.h from the
KasperskyOS SDK.

Purpose

Creates an IPC synchronization object.

Parameters

[out] syncHandle – pointer to the handle of the IPC synchronization
object.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Switches the de�ned IPC synchronization object to a state in which the
Call() and Recv() system calls are interrupted.

Parameters

[in] syncHandle – handle of the IPC synchronization object.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

Purpose

Switches the de�ned IPC synchronization object to a state in which the
Call() and Recv() system calls are not interrupted.

Parameters

[in] syncHandle – handle of the IPC synchronization object.

Returned values

If successful, the function returns rcOk , otherwise it returns an error code.

POSIX support

172

There is no XSI support or optional functionality.

In KasperskyOS, signals cannot interrupt the Call() , Recv() , and Reply() system calls that support the
operation of libraries that implement the POSIX interface.
The KasperskyOS kernel does not transmit signals.

Limitations on interaction between processes

Interface Purpose Implementation

Header �le
based on the
POSIX.1-2008

standard

fork()
Create a new
(child)
process.

Not implemented unistd.h

POSIX support limitations

KasperskyOS has a limited implementation of POSIX oriented toward the POSIX.1-2008 standard. These limitations
are primarily due to security precautions.

Limitations a�ect the following:

Interaction between processes

Interaction between threads via signals

Asynchronous input/output

Use of robust mutexes

Terminal operations

Shell operations

File handle management

Clock usage

Getting system parameters

Limitations include:

Unimplemented interfaces

Interfaces that are implemented with deviations from the POSIX.1-2008 standard

Stub interfaces that do not perform any operations except assign the ENOSYS value to the errno variable and
return the value -1

173

pthread_

atfork()

Register the
handlers that
are called
before and
after the
child process
is created.

Not implemented pthread.h

wait()

Wait for the
child process
to stop or
complete.

Stub sys/wait.h

waitid()

Wait for the
state of the
child process
to change.

Not implemented sys/wait.h

waitpid()

Wait for the
child process
to stop or
complete.

Stub sys/wait.h

execl()
Run the
executable
�le.

Stub unistd.h

execle()
Run the
executable
�le.

Stub unistd.h

execlp() Stub unistd.h

execv()
Run the
executable
�le.

Not implemented unistd.h

execve()
Run the
executable
�le.

Not implemented unistd.h

execvp()
Run the
executable
�le.

Stub unistd.h

fexecve()
Run the
executable
�le.

Stub unistd.h

setpgid()

Move the
process to
another
group or
create a
group.

Stub unistd.h

setsid() Create a
session.

Stub unistd.h

getpgrp() Get the
group ID of

Stub unistd.h

Run the
executable
�le.

174

the calling
process.

getpgid() Get the
group ID.

Stub unistd.h

getppid()
Get the ID of
the parent
process.

Stub unistd.h

getsid() Get the
session ID.

Stub unistd.h

times()

Get the time
values for
the process
and its
descendants.

Stub sys/times.h

kill()

Send a signal
to the
process or
group of
processes.

Only the SIGTERM signal can be sent. The pid
parameter is ignored.

signal.h

pause() Wait for a
signal.

Stub unistd.h

sigpending()

Check for
received
blocked
signals.

Not implemented signal.h

sigqueue()
Send a signal
to the
process.

Not implemented signal.h

sigtimedwait()

Wait for a
signal from
the de�ned
set of signals.

Not implemented signal.h

sigwaitinfo()

Wait for a
signal from
the de�ned
set of signals.

Not implemented signal.h

sem_init()
Create an
unnamed
semaphore.

You cannot create an unnamed semaphore for
synchronization between processes. If a non-zero
value is passed through the pshared parameter, it will
return only the value -1 and will assign the ENOTSUP
value to the errno variable.

semaphore.h

sem_open()
Create/open
a named
semaphore.

You cannot open a named semaphore that was
created by another process. Named semaphores (like
unnamed semaphores) are local, which means that
they are accessible only to the process that created
them.

semaphore.h

pthread_

spin_init()
Create a spin
lock.

You cannot create a spin lock for synchronization
between processes. If
the PTHREAD_PROCESS_SHARED value is passed
through the pshared parameter, this value will be
ignored.

pthread.h

175

mmap() Map to
memory.

You cannot perform memory mapping for interaction
between processes. If the MAP_SHARED and
PROT_WRITE values are passed through the flags
and prot parameters, respectively, it will return only
the MAP_FAILED value and will assign the EACCES
value to the errno variable. For all other possible
values of the prot parameter, the MAP_SHARED value
of the flags parameter is ignored. In addition, you
cannot pass combinations of the
PROT_WRITE|PROT_EXEC and
PROT_READ|PROT_WRITE|PROT_EXEC �ags through
the prot parameter. In this case, it will return only the
MAP_FAILED value and will assign the ENOMEM value
to the errno variable.

sys/mman.h

mprotect()

De�ne the
memory
access
permissions.

For security purposes, some con�gurations of the
KasperskyOS kernel prohibit granting simultaneous
write-and-execute access to virtual memory regions.
If this type of kernel con�guration is in use and you
pass the PROT_WRITE|PROT_EXEC value through the
prot parameter, it will only return the -1 value and
will assign the ENOTSUP value to the errno variable.

sys/mman.h

pipe()
Create an
unnamed
channel.

You cannot use an unnamed channel for data transfer
between processes. Unnamed channels are local,
which means that they are accessible only to the
process that created them.

unistd.h

mkfifo()

Create a
special FIFO
�le (named
channel).

Stub sys/stat.h

mkfifoat()

Create a
special FIFO
�le (named
channel).

Not implemented sys/stat.h

Limitations on interaction between threads via signals

Interface Purpose Implementation

Header �le
based on the
POSIX.1-2008

standard

pthread_kill() Send a signal to a
thread.

You cannot send a signal to a thread. If a
signal number is passed through the sig
parameter, only the ENOSYS value is returned.

signal.h

siglongjmp()
Restore the state of
the control thread
and the signals mask.

Not implemented setjmp.h

sigsetjmp()
Save the state of
the control thread
and the signals mask.

Not implemented setjmp.h

Asynchronous input/output limitations

176

Interface Purpose Implementation Header �le based on the
POSIX.1-2008 standard

aio_cancel() Cancel input/output requests that are
waiting to be handled.

Not
implemented

aio.h

aio_error() Receive an error from an asynchronous
input/output operation.

Not
implemented

aio.h

aio_fsync() Request the execution of input/output
operations.

Not
implemented

aio.h

aio_read() Request a �le read operation.
Not
implemented

aio.h

aio_return() Get the status of an asynchronous
input/output operation.

Not
implemented

aio.h

aio_suspend() Wait for the completion of asynchronous
input/output operations.

Not
implemented

aio.h

aio_write() Request a �le write operation.
Not
implemented

aio.h

lio_listio() Request execution of a set of
input/output operations.

Not
implemented

aio.h

Limitations on the use of robust mutexes

Interface Purpose Implementation
Header �le based on

the POSIX.1-2008
standard

pthread_mutex_consistent() Return a robust mutex to
a consistent state.

Not
implemented

pthread.h

pthread_mutexattr_getrobust() Get a robust mutex
attribute.

Not
implemented

pthread.h

pthread_mutexattr_setrobust() De�ne a robust mutex
attribute.

Not
implemented

pthread.h

Terminal operation limitations

Interface Purpose Implementation

Header �le
based on the
POSIX.1-2008

standard

ctermid() Get the path to the �le of the
control terminal.

Only returns or passes an empty
string through the s parameter.

stdio.h

tcsetattr() De�ne the terminal settings.
The input speed, output speed,
and other settings speci�c to
hardware terminals are ignored.

termios.h

tcdrain() Wait for output completion. Returns only the value -1 . termios.h

tcflow() Suspend or resume receipt or
transmission of data.

Suspending output and resuming
suspended output are not

termios.h

177

supported.

tcflush() Clear the input queue or output
queue, or both of these queues.

Returns only the value -1 . termios.h

tcsendbreak() Break the connection with the
terminal for a set time.

Returns only the value -1 . termios.h

ttyname() Get the path to the terminal �le. Returns only a null pointer. unistd.h

ttyname_r() Get the path to the terminal �le. Returns only an error value. unistd.h

tcgetpgrp() Get the ID of a group of
processes using the terminal.

Returns only the value -1 . unistd.h

tcsetpgrp() De�ne the ID for a group of
processes using the terminal.

Returns only the value -1 . unistd.h

tcgetsid()

Get the ID of a group of
processes for the leader of the
session connected to the
terminal.

Returns only the value -1 . termios.h

Shell operation limitations

Interface Purpose Implementation

Header �le
based on

the
POSIX.1-

2008
standard

popen()

Create a child process for
command execution and an
unnamed channel with this
process.

Only assigns the ENOSYS value to the
errno variable and returns the NULL value.

stdio.h

pclose()

Close the unnamed channel
with the child process created
by popen() , and wait for the
child process to terminate.

Cannot be used because popen() always
returns NULL instead of the handle of the
unnamed channel that serves as an input
parameter for pclose() .

stdio.h

system() Create a child process for
command execution.

Stub stdlib.h

wordexp() Perform a shell-like expansion of
the string.

Not implemented wordexp.h

wordfree()
Free up the memory allocated
for the results from calling
wordexp() .

Not implemented wordexp.h

Limitations on �le handle management

Interface Purpose Implementation

Header �le
based on the
POSIX.1-2008

standard

dup() Make a copy Handles of regular �les, standard I/O streams, sockets and fcntl.h

178

of the handle
of an opened
�le.

channels are supported. There is no guarantee that the
lowest available handle will be received.

dup2()

Make a copy
of the handle
of an opened
�le.

Handles of regular �les, standard I/O streams, sockets and
channels are supported. The handle of an opened �le needs
to be passed through the fildes2 parameter.

fcntl.h

Limitations on clock usage

Interface Purpose Implementation

Header
�le based

on the
POSIX.1-

2008
standard

clock_gettime() Get the time
value.

If the CLOCK_PROCESS_CPUTIME_ID value or
CLOCK_THREAD_CPUTIME_ID value is passed through
the clock_id parameter, it will return only the value -1
and will assign the EINVAL value to the errno variable.

time.h

clock()

Get the CPU
time spent on
execution of
the calling
process.

Returns the amount of time (in milliseconds) that has
elapsed since the KasperskyOS kernel was started.

time.h

Getting system parameters

Interface Purpose Implementation Header �le based on the POSIX.1-2008 standard

confstr() Get a system parameter. Stub unistd.h

POSIX interfaces and their implementation speci�cs

Interface Purpose Implementation

Header �le
based on the
POSIX.1-2008

standard

bind()

Assign a
name to
a
socket.

When using a VFS version that supports only network operations,
�les of sockets in the AF_UNIX family are saved in a special �le
system implemented by this VFS version when bind() is called. A
socket �le can be created only in the root of the �le system or in
the /tmp directory, and it can be re-used after the socket is
closed.

sys/socket.h

POSIX implementation speci�cs

In KasperskyOS, the speci�c implementation of some POSIX interfaces not entirely de�ned by the POSIX.1-2008
standard di�ers from the implementation of these interfaces in Linux and other UNIX-like operating systems.
Information about these interfaces is provided in the table below.

179

mmap() Map to
memory.

Mapping more than 4 GB is not supported on hardware platforms
running an AArch64 (ARM64) processor architecture.

sys/mman.h

read()
Read
from a
�le.

If the size of the buf bu�er exceeds the size of the read data, the
remainder of this bu�er is �lled with zeros.

unistd.h

Concurrently using POSIX and the libkos API

In a thread that is created using Pthreads, you cannot use the following libkos APIs:

event.h, mutex.h, rwlock.h, semaphore.h, condvar.h

thread.h, thread_api.h

dma.h

ports.h

mmio.h

irq.h

The following libkos APIs can be used together with Pthreads (and other POSIX APIs):

handle_api.h

notice_api.h

task.h, task_api.h

cm_api.h, ns_api.h

queue.h

POSIX interfaces cannot be used in threads that were created using the thread.h and thread_api.h APIs.

The syscalls.h API can be used in any threads that were created using Pthreads or the thread.h and thread_api.h
APIs.

Obtaining statistical data on the system

The libkos and libc libraries provide APIs for obtaining statistical data on the system. This data includes the
following information:

CPU time usage by the system and by an individual process

Memory usage by the system and by an individual process

Info on processes and threads

Info on �le systems and network interfaces

180

The API de�ned in the header �le sysroot-*-kos/include/coresrv/stat/stat_api.h from the
KasperskyOS SDK includes functions that "wrap" the KnProfilerGetCounters() function declared in the
header �le sysroot-*-kos/include/coresrv/profiler/profiler_api.h from the KasperskyOS SDK.
This function requests the values of performance counters. To get this statistical data, you need to build a
solution with a KasperskyOS kernel version that supports performance counters (for details, see "Image library").

Receiving information about CPU time

Information about CPU time

Function Value of the param
parameter

Obtained value

Receiving information about memory usage

Obtaining statistical data on the system through the libkos library API

The libkos library provides an API that obtains statistical data on CPU time and memory usage, and info on
processes and threads. This API is de�ned in the header �le sysroot-*-
kos/include/coresrv/stat/stat_api.h from the KasperskyOS SDK.

Uptime of CPUs (processor cores) is counted from the startup of the KasperskyOS kernel.

To obtain information about CPU time usage, use the KnGroupStatGetParam() , KnTaskStatGetParam() and
KnCpuStatGetParam() functions. The values provided in the table below need to be passed in the param
parameter of these functions.

KnGroupStatGetParam() GROUP_PARAM_CPU_KERNEL Uptime of all processors in kernel mode

KnGroupStatGetParam() GROUP_PARAM_CPU_USER Uptime of all processors in user mode

KnGroupStatGetParam() GROUP_PARAM_CPU_IDLE Uptime of all processors in idle mode

KnTaskStatGetParam() TASK_PARAM_TIME_TOTAL Uptime of all processors used for execution of
the de�ned process

KnTaskStatGetParam() TASK_PARAM_TIME_USER Uptime of all processors used for execution of
the de�ned process in user mode

KnCpuStatGetParam() CPU_STAT_PARAM_IDLE Uptime of the de�ned processor in idle mode

KnCpuStatGetParam() CPU_STAT_PARAM_USER Uptime of the de�ned processor in user mode

KnCpuStatGetParam() CPU_STAT_PARAM_KERNEL Uptime of the de�ned processor in kernel
mode

The CPU time obtained by calling the KnGroupStatGetParam() , KnTaskStatGetParam() or
KnCpuStatGetParam() function is presented in nanoseconds.

The CPU index (enumeration starts with zero) is the input parameter of the KnCpuStatGetParam() function. To
get the total number of processors on a hardware platform, use the KnHalGetCpuCount() function declared in
the header �le sysroot-*-kos/include/coresrv/hal/hal_api.h from the KasperskyOS SDK.

181

Information about memory usage

Function Value of the param parameter Obtained value

The size of physical memory used by a process refers only to the memory allocated directly for this process. For
example, if the memory of a process is mapped to an MDL bu�er created by another process, the size of this
bu�er is not included in this value.

Obtaining information on processes and threads

Information on processes and threads

Function Value of the param
parameter

Obtained value

To receive information about memory usage, you need to use the KnGroupStatGetParam() and
KnTaskStatGetParam() functions. The values provided in the table below need to be passed in the param
parameter of these functions.

KnGroupStatGetParam() GROUP_PARAM_MEM_TOTAL Size of all installed physical memory

KnGroupStatGetParam() GROUP_PARAM_MEM_FREE Size of free physical memory

KnGroupStatGetParam() GROUP_PARAM_MEM_EXEC Size of physical memory with the
"execution access" attribute

KnGroupStatGetParam() GROUP_PARAM_MEM_SHARED Size of physical memory used as shared
memory

KnTaskStatGetParam() TASK_PARAM_MEM_PHY Size of physical memory used by the
de�ned process

KnTaskStatGetParam() TASK_PARAM_MEM_VIRT Size of virtual memory of the de�ned
process

KnTaskStatGetParam() TASK_PARAM_MEM_SHARED
Size of virtual memory of the de�ned
process mapped to shared physical
memory

KnTaskStatGetParam() TASK_PARAM_MEM_PAGE_TABLE Size of the page table of the de�ned
process

The memory size obtained by calling the KnGroupStatGetParam() or KnTaskStatGetParam() function is
presented as the number of memory pages. The size of a memory page is 4 KB for all hardware platforms
supported by KasperskyOS.

In addition to information about CPU time and memory usage, the KnGroupStatGetParam() and
KnTaskStatGetParam() functions also let you obtain information on processes and threads. To receive this
information, the values provided in the table below need to be passed through the param parameter of these
functions.

KnGroupStatGetParam() GROUP_PARAM_TASKS Number of user processes (not counting the
kernel process)

KnGroupStatGetParam() GROUP_PARAM_THREADS Total number of threads (including kernel
threads)

KnTaskStatGetParam() TASK_PARAM_PPID ID of the parent process of the de�ned process
(PPID)

KnTaskStatGetParam() TASK_PARAM_PRIO Priority of the initial thread of the de�ned
process

182

Obtaining information on CPU time and memory usage by each process

1. Get the list of processes by calling the KnGroupStatGetTaskList() function.

2. Get the number of items on the list of processes by calling the KnTaskStatGetTasksCount() function.

3. Iterate through the list of processes, repeating the following steps:

a. Get an item from the list of processes by calling the KnTaskStatEnumTaskList() function.

b. Get the process name by calling the KnTaskStatGetName() function.

This is necessary to identify the process for which the information about CPU time and memory usage will
be received.

c. Get information about CPU time and memory usage by calling the KnTaskStatGetParam() function.

d. Verify that the process was not terminated. If the process has terminated, discard the obtained information
about the CPU time and memory used by this process.

KnTaskStatGetParam() TASK_PARAM_STATE State of the de�ned process (according to the
list of TaskExecutionStates de�ned in the
header �le sysroot-*-
kos/include/task/pcbpage.h from the
KasperskyOS SDK)

KnTaskStatGetParam() TASK_PARAM_IMGSIZE
Size of the memory-loaded image of the
program running in the context of the de�ned
process, in bytes

KnTaskStatGetParam() TASK_PARAM_TIME_START Time (in nanoseconds) between startup of the
kernel and startup of the de�ned process

KnTaskStatGetParam() TASK_PARAM_HANDLES Number of handles owned by the de�ned
process

KnTaskStatGetParam() TASK_PARAM_THREADS Number of threads in the de�ned process

In addition to the KnGroupStatGetParam() and KnTaskStatGetParam() functions, information on processes
and threads can also be obtained by using the following functions:

KnTaskStatGetName() – gets the name of the de�ned process.

KnTaskStatGetPath() – gets the name of the executable �le in ROMFS that was used to start the de�ned
process.

This function can be used only if the process was started from an executable �le in ROMFS. Otherwise, the
function call will result in an empty string.

KnTaskStatGetId() – gets the ID of the de�ned process (PID).

KnProfilerGetCounters() – gets the values of performance counters.

For example, to get the number of kernel threads and the total number of handles, pass the
kl.core.Core.threads and handles.total values through the names parameter.

To get information about CPU time and memory usage by each process, do the following:

183

To verify that the process was not terminated, you need to call the KnTaskStatGetParam() function,
using the param parameter to pass the TASK_PARAM_STATE value. A value other than
TaskStateTerminated should be received.

e. Finish working with the item on the list of processes by calling the KnTaskStatCloseTask() function.

4. Finish working with the list of processes by calling the KnTaskStatCloseTaskList() function.

Calculating CPU load

Indicators of load on CPUs (processor cores) may be the following values:

Percent load of all processors

Percent load of all processors by each process

Percent load of each processor

These indicators are calculated for a speci�c time interval, at the start and end of which the information about
CPU time utilization was received. (For example, CPU load can be monitored with periodic receipt of information
about CPU time utilization.) The values obtained at the start of the interval need to be subtracted from the values
obtained at the end of the interval. In other words, the following increments need to be obtained for the interval:

TK – uptime of all processors in kernel mode.

TKi [i=1,2,...,n] – uptime of the ith processor in kernel mode.

TU – uptime of all processors in user mode.

TUi [i=1,2,...,n] – uptime of the ith processor in user mode.

TIDLE – uptime of all processors in idle mode.

TIDLEi [i=1,2,...,n] – uptime of the ith processor in idle mode.

Tj [j=1,2,...,m] – CPU time spent on execution of the jth process.

The percent load of all processors is calculated as follows:

(TK+TU)/(TK+TU+TIDLE).

The percent load of the ith processor is calculated as follows:

(TKi+TUi)/(TKi+TUi+TIDLEi).

The percent load of all processors caused by the jth process is calculated as follows:

Tj/(TK+TU+TIDLE).

Obtaining statistical data on the system through the libc library API

The libkos library provides APIs that let you obtain statistical data on �le systems and network interfaces
managed by VFS. The functions of these APIs are presented in the table below.

184

Information on �le systems and network interfaces

Function Header �le from the KasperskyOS SDK Obtained information

Messages transmitted through the MessageBus cannot contain data. These messages can be used only to
notify subscribers about events.

IProviderFactory

Provides factory methods for obtaining access to instances of all other interfaces.

IProviderControl

Interface for registering and deregistering a publisher and subscriber in the bus.

IProvider (MessageBus component)

Interface for transferring a message to the bus.

ISubscriber

Callback interface for sending a message to a subscriber.

IWaiter

Interface for waiting for a callback when the corresponding message appears.

Message structure

topic

Identi�er of the message subject.

statvfs() sysroot-*-
kos/include/strict/posix/sys/statvfs.h

File system information, such as the
block size, number of blocks, and
number of available blocks

getvfsstat() sysroot-*-kos/include/sys/statvfs.h
The information on all mounted �le
systems is identical to the information
provided by the statvfs() function

getifaddrs() sysroot-*-kos/include/ifaddrs.h
Information on network interfaces,
such as their name, IP address, and
subnet mask

MessageBus component

The MessageBus component implements the message bus that ensures receipt, distribution and delivery of
messages between programs running KasperskyOS. This bus is based on the publisher-subscriber model. Use of a
message bus lets you avoid having to create a large number of IPC channels to connect each subscriber program
to each publisher program.

The MessageBus component provides an additional level of abstraction over KasperskyOS IPC that helps simplify
the development and expansion of your programs. MessageBus is a separate program that is accessed through
IPC. However, developers are provided with a MessageBus access library that lets you avoid direct use of IPC calls.

The API of the access library provides the following interfaces:

Each message contains two parameters:

185

id

Additional parameter that identi�es a particular message.

i_messagebus_control.h (fragment)

class IProviderFactory
{
...
 virtual fdn::ResultCode CreateBusControl(IProviderControlPtr& controlPtr) = 0;
 virtual fdn::ResultCode CreateBus(IProviderPtr& busPtr) = 0;
 virtual fdn::ResultCode CreateCallbackWaiter(IWaiterPtr& waiterPtr) = 0;
 virtual fdn::ResultCode CreateSubscriberRunner(ISubscriberRunnerPtr& runnerPtr) =
0;
...
};
...
fdn::ResultCode InitConnection(const std::string& connectionId, IProviderFactoryPtr&
busFactoryPtr);

The topic and id parameters are unique for each message. The interpretation of topic+id is determined by
the contract between the publisher and subscriber. For example, if there are changes to the con�guration data
used by the publisher and subscriber, the publisher forwards a message regarding the modi�ed data and the id of
the speci�c entry containing the new data. The subscriber uses mechanisms outside of the MessageBus to
receive the new data based on the id key.

IProviderFactory interface

The IProviderFactory interface provides factory methods for receiving the interfaces necessary for working
with the MessageBus component.

A description of the IProviderFactory interface is provided in the �le named
messagebus/i_messagebus_control.h .

An instance of the IProviderFactory interface is obtained by using the free InitConnection() function,
which receives the name of the IPC channel between your application and the MessageBus program. The
connection name is de�ned in the init.yaml.in �le when describing the solution con�guration. If the
connection is successful, the output parameter contains a pointer to the IProviderFactory interface.

The interface for registering and deregistering (see "IProviderControl interface") publishers and subscribers in
the message bus is obtained by using the IProviderFactory::CreateBusControl() method.

The interface containing the methods enabling the publisher to send messages to the bus (see "IProvider
interface (MessageBus component)") is obtained by using the IProviderFactory::CreateBus() method.

The interfaces containing the methods enabling the subscriber to receive messages from the bus (see
"ISubscriber, IWaiter and ISubscriberRunner interfaces") are obtained by using the
IProviderFactory::CreateCallbackWaiter and IProviderFactory::CreateSubscriberRunner()
methods.

It is not recommended to use the IWaiter interface, because calling a method of this interface is a locking
call.

186

Registering and deregistering a publisher

i_messagebus_control.h (fragment)

class IProviderControl
{
...
 virtual fdn::ResultCode RegisterPublisher(const Topic& topic, ClientId& id) = 0;
 virtual fdn::ResultCode UnregisterPublisher(ClientId id) = 0;
...
};

Registering and deregistering a subscriber

i_messagebus_control.h (fragment)

class IProviderControl
{
...
 virtual fdn::ResultCode RegisterSubscriber(const std::string& subscriberName,
const std::set<Topic>& topics, ClientId& id) = 0;
 virtual fdn::ResultCode UnregisterSubscriber(ClientId id) = 0;
...
};

IProviderControl interface

The IProviderControl interface provides the methods for registering and deregistering publishers and
subscribers in the message bus.

A description of the IProviderControl interface is provided in the �le named
messagebus/i_messagebus_control.h .

The IProviderFactory interface is used to obtain an interface instance.

The IProviderControl::RegisterPublisher() method is used to register the publisher in the message bus.
This method receives the message subject and puts the unique ID of the bus client into the output parameter. If
the message subject is already registered in the bus, the call will be declined and the client ID will not be �lled.

The IProviderControl::UnregisterPublisher() method is used to deregister a publisher in the message
bus. This method accepts the bus client ID received during registration. If the indicated ID is not registered as a
publisher ID, the call will be declined.

The IProviderControl::RegisterSubscriber() method is used to register the subscriber in the message
bus. This method accepts the subscriber name and the list of subjects of messages for the necessary
subscription, and puts the unique ID of the bus client into the output parameter.

The IProviderControl::UnregisterSubscriber() method is used to deregister a subscriber in the message
bus. This method accepts the bus client ID received during registration. If the indicated ID is not registered as a
subscriber ID, the call will be declined.

187

Sending a message to the bus

i_messagebus.h (fragment)

class IProvider
{
public:
...
 virtual fdn::ResultCode Push(ClientId id, BundleId dataId) = 0;
...
};

Receiving a message from the bus

i_subscriber.h (fragment)

IProvider interface (MessageBus component)

The IProvider interface provides the methods enabling the publisher to send messages to the bus.

A description of the IProvider interface is provided in the �le named messagebus/i_messagebus.h .

The IProviderFactory interface is used to obtain an interface instance.

The IProvider::Push() method is used to send a message. This method accepts the bus client ID received
during registration and the message ID. If the message queue in the bus is full, the call will be declined.

ISubscriber, IWaiter and ISubscriberRunner interfaces

The ISubscriber , IWaiter , and ISubscriberRunner interfaces provide the methods enabling the subscriber
to receive messages from the bus and process them.

Descriptions of the ISubscriber , IWaiter and ISubscriberRunner interfaces are provided in the �le named
messagebus/i_subscriber.h .

The IProviderFactory interface is used to obtain instances of the IWaiter and ISubscriberRunner
interfaces. The implementation of the ISubscriber callback interface is provided by the subscriber application.

You can use the IWaiter::Wait() or ISubscriberRunner::Run() method to switch a subscriber to standby
mode, waiting for a message from the bus. These methods accept the bus client ID and the pointer to the
ISubscriber callback interface. If the client ID is not registered, the call will be declined.

It is not recommended to use the IWaiter interface, because calling the IWaiter::Wait() method is a locking
call.

The ISubscriber::OnMessage() method will be called when a message is received from the bus. This method
accepts the message subject and message ID.

188

class ISubscriber
{
...
 virtual fdn::ResultCode OnMessage(const std::string& topic, BundleId id) = 0;
};
...
class IWaiter
{
...
 [[deprecated("Use ISubscriberRunner::Run method instead.")]]
 virtual fdn::ResultCode Wait(ClientId id, const ISubscriberPtr& subscriberPtr) =
0;
};
...
class ISubscriberRunner
{
...
 virtual fdn::ResultCode Run(ClientId id, const ISubscriberPtr& subscriberPtr) = 0;
};

execution_manager_proxy.h interface

client.cpp

#include <component/execution_manager/kos_ipc/execution_manager_proxy.h>
...
namespace execmgr = execution_manager;

int main(int argc, const char *argv[])
{
 // ...
 execmgr::IExecutionManagerPtr ptr;
 // name of the IPC channel for connecting to the ExecutionManager process. It must
match the MAIN_CONN_NAME value in the CMakeLists.txt file for building
ExecutionManager.
 char mainConnection[] = "ExecMgrEntity";
 execmgr::ipc::ExecutionManagerConfig cfg{mainConnection};
 if (CreateExecutionManager(cfg, ptr) != eka::sOk)

ExecutionManager component

The API is de�ned in the header �les located in the directory sysroot-*-
kos/include/component/execution_manager/ from the SDK.

The ExecutionManager component usage scenario is described in the article titled "Starting a process using the
KasperskyOS API".

The API is de�ned in the header �le sysroot-*-
kos/include/component/execution_manager/kos_ipc/execution_manager_proxy.h

The interface contains the factory method CreateExecutionManager() for getting the pointer to the instance
of the IExecutionManager interface that is required for working with the ExecutionManager component.

Usage example:

189

 {
 std::cerr << "Cannot create execution manager" << std::endl;
 return EXIT_FAILURE;
 }
 // ...
}

IExecutionManager interface

client.cpp

int main(int argc, const char *argv[])
{
 // ...
 execmgr::IApplicationControllerPtr ac;
 if (ptr->GetApplicationController(ac) != eka::sOk)
 {
 std::cerr << "Cannot get application controller" << std::endl;
 return EXIT_FAILURE;
 }

 execmgr::ISystemControllerPtr sc;
 if (ptr->GetSystemController(sc) != eka::sOk)
 {
 std::cerr << "Cannot get system controller" << std::endl;
 return EXIT_FAILURE;
 }

 // ...
}

IApplicationController interface

The API is de�ned in the header �le sysroot-*-
kos/include/component/execution_manager/i_execution_manager.h

The IExecutionManager interface lets you access pointers to the following interfaces:

IApplicationController – interface for starting and stopping processes.

ISystemController – interface for managing the system.

Usage example:

The API is de�ned in the header �le sysroot-*-
kos/include/component/execution_manager/i_application_control.h

The IApplicationController interface provides the following methods that let you change the state of a
process:

StartEntity(

const std::filesystem::path& runPath,

const StartEntityInfo& info,

190

struct IApplicationController
{
 // All fields of the StartEntityInfo structure are optional for initialization.
 struct StartEntityInfo
 {
 // Process name. Unless otherwise specified, the process class name will be
used.
 // If the process class name is not specified, the executable file name will
be used.
 std::string entityName;
 // Process class. Unless otherwise specified, the process name will be used.
If the process name is not specified, the executable file name will be used.
 std::string eiid;
 std::vector<std::string> args; // Command-line arguments.
 std::vector<std::string> envs; // Environment variables.
 // Policy for restarting a process when it crashes. Available values:
 // EntityRestartPolicy::DoNotRestart – do not restart.
 // EntityRestartPolicy::AlwaysRestart – always restart.
 EntityRestartPolicy restartPolicy { EntityRestartPolicy::DoNotRestart };
 };

 struct StartEntityResultInfo
 {
 std::string eiid; // Security class assigned to the process.
 EntityId entId; // Structure that identifies the started process.
 Uid sid; // Security ID of the started process.
 std::string taskName; // Name of the started process.
 };
};

client.cpp

int main(int argc, const char *argv[])
{
 // ...
 const fs::path appPath{"/application"};

 execmgr::IApplicationController::StartEntityResultInfo result;
 execmgr::IApplicationController::StartEntityInfo info;

 info.entityName = std::string{"application.Application"};

StartEntityResultInfo& resInfo) – method for starting a process.

RestartEntity(EntityId endId) – method for restarting a previously started process.

ShutdownEntity(EntityId entId) – method for sending a termination signal to a process.

StopEntity(EntityId entId) – method for immediately stopping execution of a process.

The StartEntity() method receives the path to the executable �le that should be run and the structure
containing the run parameters for the StartEntityInfo process, and returns the structure containing the
StartEntityResultInfo process run results. All �elds of the StartEntityInfo structure are optional for
initialization.

All other methods receive the EntityId structure that identi�es the started process.

Usage example:

191

 info.eiid = std::string{"application.Application"};
 info.args = std::vector<std::string>{"1", "ARG1", "ARG2" , "ARG3"};
 info.envs = std::vector<std::string>{"ENV1=10", "ENV2=envStr"};

 std::cout << "Starting application from elf\n";

 if (ac->StartEntity(appPath, info, result) != eka::sOk)
 {
 std::cerr << "Can not start application from " << appPath << std::endl;
 return EXIT_FAILURE;
 }

 std::cout << "Application started with process sid " << result.sid << "\n";

 auto AppId = result.entId;

 if (ac->StopEntity(AppId) != eka::sOk)
 {
 std::cerr << "Cannot stop process " << appPath << std::endl;
 return EXIT_FAILURE;
 }

 // ...
}

ISystemController interface

client.cpp

int main(int argc, const char *argv[])
{
 // ...

 if (sc->StopAllEntities() != eka::sOk)
 {
 std::cerr << "Cannot stop all processes\n";
 return EXIT_FAILURE;
 }
 // ...
}

The API is de�ned in the header �le sysroot-*-
kos/include/component/execution_manager/i_system_control.h

The ISystemController interface provides the following method for system management:

StopAllEntities() method stops all running processes, then terminates the ExecutionManager process,
then sends a device shutdown request to the kernel.

Usage example:

192

System programs and application software

Building programs during the solution build process

Building a solution image

Building a KasperskyOS-based solution

This section contains the following information:

Description of the KasperskyOS-based solution build process.

Descriptions of the scripts, libraries and build templates provided in KasperskyOS Community Edition.

Information on how to use dynamic libraries in a KasperskyOS-based solution.

Building a solution image

A KasperskyOS-based solution consists of system software (including the KasperskyOS kernel and Kaspersky
Security Module) and application software integrated for operation within a software/hardware system.

For more details, refer to Structure and startup of a KasperskyOS-based solution.

Programs are divided into two types according to their purpose:

System programs create the infrastructure for application software. For example, they facilitate hardware
operations, support the IPC mechanism, and implement �le systems and network protocols. System programs
are included in KasperskyOS Community Edition. If necessary, you can develop your own system programs.

Application software is designed for interaction with a solution user and for performing user tasks. Application
software is not included in KasperskyOS Community Edition.

During a solution build, programs are divided into the following two types:

System programs provided as executable �les in KasperskyOS Community Edition.

System programs or application software that requires linking to an executable �le.

Programs that require linking are divided into the following types:

System programs that implement an IPC interface whose ready-to-use transport libraries are provided in
KasperskyOS Community Edition.

Application software that implements its own IPC interface. To build this software, transport methods and
types need to be generated by using the NK compiler.

Client programs that do not provide endpoints.

193

1. Prepare EDL, CDL and IDL descriptions of applications, an init description �le (init.yaml by default), and �les
containing a description of the solution security policy (security.psl by default).

When building with CMake , an EDL description can be generated by using the generate_edl_file()
command.

2. Generate *.edl.h �les for all programs except the system programs provided in KasperskyOS Community
Edition.

3. For programs that implement their own IPC interface, generate code of the transport methods and types that
are used for generating, sending, receiving and processing IPC messages.

4. Build all programs that are part of the solution, and link them to the transport libraries of system programs or
applications if necessary. To build applications that implement their own IPC interface, you will need the code
containing transport methods and types that was generated at step 3.

5. Build the Einit initializing program.

KasperskyOS Community Edition provides an image of the KasperskyOS kernel and the executable �les of some
system programs and driver applications that are ready to use in a solution.

A specialized Einit program intended for starting all other programs, and a Kaspersky Security Module are built for
each speci�c solution and are therefore not already provided in KasperskyOS Community Edition. Instead, the
toolchain provided in KasperskyOS Community Edition includes the tools for building these resources.

The general step-by-step build scenario is described in the article titled Build process overview. A solution image
can be built as follows:

 Using scripts of the CMake build system, which is provided in KasperskyOS Community
Edition.

[Without CMake] Using other automated build systems or manually with scripts and compilers provided in
KasperskyOS Community Edition.

[Recommended]

Build process overview

To build a solution image, the following is required:

When building with CMake , the nk_build_edl_files() command is used for this purpose.

When building without CMake , the NK compiler must be used for this.

When building with CMake , the nk_build_idl_files() and nk_build_cdl_files() commands are
used for these purposes.

When building without CMake , the NK compiler must be used for this.

When building with CMake , standard build commands are used for this purpose. The necessary cross-
compilation con�guration is done automatically.

When building without CMake , the cross compilers included in KasperskyOS Community Edition must be
manually used for this purpose.

194

6. Build the Kaspersky Security Module.

7. Create the solution image.

Example 1

Example 2

When building with CMake , the Einit program is built during the solution image build process using the
build_kos_qemu_image() and build_kos_hw_image() commands.

When building without CMake , the einit tool must be used to generate the code of the Einit program.
Then the Einit application must be built using the cross compiler that is provided in KasperskyOS
Community Edition.

When building with CMake , the security module is built during the solution image build process using the
build_kos_qemu_image() and build_kos_hw_image() commands.

When building without CMake , the makekss script must be used for this purpose.

When building with CMake , the build_kos_qemu_image() and build_kos_hw_image() commands are
used for this purpose.

When building without CMake , the makeimg script must be used for this.

For the basic hello example included in KasperskyOS Community Edition that contains one application that does
not provide any services, the build scenario looks as follows:

The echo example included in KasperskyOS Community Edition describes a basic case of interaction between two
programs via an IPC mechanism. To set up this interaction, you will need to implement an interface with the Ping
method on a server and put the Ping service into a new component (for example, Responder), and an instance of
this component needs to be put into the EDL description of the Server program.

If a solution contains programs that utilize an IPC mechanism, the build scenario looks as follows:

195

Recommended structure of project directories

Example structure of project directories

Using CMake from the contents of KasperskyOS Community Edition

To automate the process of preparing the solution image, you need to con�gure the CMake build system. You can
base this system on the build system parameters used in the examples from KasperskyOS Community Edition.

CMakeLists.txt �les use the standard CMake syntax, and commands and macros from libraries provided in
KasperskyOS Community Edition.

When creating a KasperskyOS-based solution, it is recommended to use the following directory structure in a
project:

In the project root, create a CMakeLists.txt boot �le containing the general build instructions for the entire
solution.

The source code of each program being developed should be placed into a separate directory within the src
subdirectory.

Create CMakeLists.txt �les for building each application in the corresponding directories.

To generate the source code of the Einit program, you should create a separate einit directory containing
the src subdirectory in which you should put the init.yaml.in and security.psl.in templates.

Any other �les that need to be included in the solution image can also be put into this directory.

Create a CMakeLists.txt �le for building the Einit program in the einit directory.

The �les of EDL, CDL and IDL descriptions should be put into the resources directory in the project root.

196

example$ tree
.
├── CMakeLists.txt
├── hello
│ ├── CMakeLists.txt
│ ├── src
│ │ ├── hello.c
├── einit
│ ├── CMakeLists.txt
│ ├── src
│ │ ├── init.yaml.in
│ │ ├── security.psl.in
├── resources
│ ├── Hello.idl
│ ├── Hello.cdl
│ ├── Hello.edl

Building a solution image

build.sh

#!/bin/bash

Script to be run in the project root.
You can get information about the cmake tool run parameters
via the shell command cmake --help, and from
the official CMake documentation.

TARGET="aarch64-kos"
SDK_PREFIX="/opt/KasperskyOS-SDK"

Initialize the build system
cmake \
 -G "Unix Makefiles" \
 -D CMAKE_BUILD_TYPE:STRING=Release \
 -D CMAKE_TOOLCHAIN_FILE=$SDK_PREFIX/toolchain/share/toolchain-$TARGET.cmake \
 -S . \
 -B build

Build
To build a solution image for QEMU, you must specify the target defined in the
NAME parameter of the CMake command build_kos_qemu_image() in the CMakeLists.txt
file
for building the Einit program.
To build a solution image for the hardware platform, you must specify the target
defined in the NAME parameter of the CMake command build_kos_hw_image() in the
CMakeLists.txt file for building the Einit program.
To build a solution image for QEMU and start QEMU with this image, you must
specify the sim target.
cmake --build build --target sim

To build a solution image, you must use the cmake tool (the toolchain/bin/cmake executable �le from
KasperskyOS Community Edition).

Build script example:

197

Example CMakeLists.txt boot �le

CMakeLists.txt

cmake_minimum_required(VERSION 3.12)
project (example)

Initializes the CMake library for the KasperskyOS SDK.
include (platform)
initialize_platform ()
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

CMakeLists.txt root �le

The CMakeLists.txt boot �le contains general build instructions for the entire solution.

The CMakeLists.txt boot �le must contain the following commands:

cmake_minimum_required (VERSION 3.25) indicates the minimum supported version of CMake .

For a KasperskyOS-based solution build, CMake version 3.25 or later is required.

The required version of CMake is provided in KasperskyOS Community Edition and is used by default.

include (platform) connects the platform library of CMake .

initialize_platform() initializes the platform library.

project_header_default("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO") sets the �ags of the
compiler and linker.

 Connect and con�gure packages for the provided system programs and drivers that need to be
included in the solution:

CMake descriptions of system programs and drivers provided in KasperskyOS Community Edition, and
descriptions of their exported variables and properties are located in the corresponding �les at
/opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-kos/lib/cmake/<program
name>/<program name>-config.cmake

The Einit initializing program must be built using the add_subdirectory(einit) command.

All applications to be built must be added by using the add_subdirectory(<program directory name>)
command.

[Optional]

A package is connected by using the find_package() command.

After connecting a package, you must add the package-related directories to the list of search directories
by using the include_directories() command.

For some packages, you must also set the values of properties by using the set_target_properties()
command.

198

Add package importing components for working with Virtual File System.
Components are imported from the following directory: /opt/KasperskyOS-Community-
Edition-<version>/sysroot-aarch64-kos/lib/cmake/vfs/vfs-config.cmake
find_package (vfs REQUIRED COMPONENTS ENTITY CLIENT_LIB)
include_directories (${vfs_INCLUDE})

Add a package importing components for building an audit program and
connecting to it.
find_package (klog REQUIRED)
include_directories (${klog_INCLUDE})

Build the Einit initializing program
add_subdirectory (einit)

Build the hello application
add_subdirectory (hello)

CMakeLists.txt �les for building applications

The CMakeLists.txt �le for building an application must contain the following commands:

include (platform/nk) connects the CMake library for working with the NK compiler.

project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO") sets the �ags of the
compiler and linker.

An EDL description of a process class for a program can be generated by using the generate_edl_file()
command.

If the program provides endpoints using an IPC mechanism, the following transport code must be generated:

a. idl.h �les are generated by the nk_build_idl_files() command

b. cdl.h �les are generated by the nk_build_cdl_files() command

c. edl.h �les are generated by the nk_build_edl_files() command

add_executable (<program name> "<path to the file containing the program source
code>") adds the program build target.

add_dependencies (<program name> <name of the edl.h file build target>) adds a program
build dependency on edl.h �le generation.

target_link_libraries (<program name> <list of libraries>) determines the libraries that need
to be linked with the program during the build.

For example, if the program uses �le I/O or network I/O, it must be linked with the ${vfs_CLIENT_LIB}
transport library.

CMake descriptions of system programs and drivers provided in KasperskyOS Community Edition, and
descriptions of their exported variables and properties are located in the corresponding �les at
/opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-kos/lib/cmake/<program
name>/<program name>-config.cmake

199

Example CMakeLists.txt �le for building a simple application

CMakeLists.txt

project (hello)

Tools for working with the NK compiler.
include (platform/nk)

Set compile flags.
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

Define the name of the project that includes the program.
set (LOCAL_MODULE_NAME "example")

Define the application name.
set (ENTITY_NAME "Hello")
Please note the contents of the init.yaml.in and security.psl.in templates
They define program names as ${LOCAL_MODULE_NAME}.${ENTITY_NAME}

To automatically add descriptions of IPC channels to the init.yaml �le when building a solution, you must
de�ne the EXTRA_CONNECTIONS property and assign it a value with descriptions of the relevant IPC channels.

Please note the indentations at the beginning of strings in the EXTRA_CONNECTIONS property. These
indentations are necessary to correctly insert values into the init.yaml �le and must comply with its syntax
requirements.

Example of creating an IPC channel between a Client process and a Server process:

set_target_properties (Client PROPERTIES
EXTRA_CONNECTIONS
" - target: Server
 id: server_connection")

When building this solution, the description of this IPC channel will be automatically added to the init.yaml
�le when processing macros of the init.yaml.in template.

To automatically add a list of arguments for the main() function and a dictionary of environment variables to
the init.yaml �le when building a solution, you must de�ne the EXTRA_ARGS and EXTRA_ENV properties and
assign the appropriate values to them.

Note the indentations at the beginning of strings in the EXTRA_ARGS and EXTRA_ENV properties. These
indentations are necessary to correctly insert values into the init.yaml �le and must comply with its syntax
requirements.

Example of sending the Client program the "-v" argument of the main() function and the environment
variable VAR1 set to VALUE1 :

set_target_properties (Client PROPERTIES
EXTRA_ARGS
" - \"-v\""
EXTRA_ENV
" VAR1: VALUE1")

When building this solution, the description of the main() function argument and the environment variable
value will be automatically added to the init.yaml �le when processing macros of the init.yaml.in template.

200

Define the targets that will be used to create the generated files of the program.
set (ENTITY_IDL_TARGET ${ENTITY_NAME}_idl)
set (ENTITY_CDL_TARGET ${ENTITY_NAME}_cdl)
set (ENTITY_EDL_TARGET ${ENTITY_NAME}_edl)

Define the name of the target that will be used to build the program.
set (APP_TARGET ${ENTITY_NAME}_app)

Add the idl.h file build target.
nk_build_idl_files (${ENTITY_IDL_TARGET}
 NK_MODULE ${LOCAL_MODULE_NAME}
 IDL "resources/Hello.idl"
)

Add the cdl.h file build target.
nk_build_cdl_files (${ENTITY_CDL_TARGET}
 IDL_TARGET ${ENTITY_IDL_TARGET}
 NK_MODULE ${LOCAL_MODULE_NAME}
 CDL "resources/Hello.cdl")

Add the EDL file build target. The EDL_FILE variable is exported
and contains the path to the generated EDL file.
generate_edl_file (${ENTITY_NAME}
 PREFIX ${LOCAL_MODULE_NAME}
)

Add the edl.h file build target.
nk_build_edl_files (${ENTITY_EDL_TARGET}
 NK_MODULE ${LOCAL_MODULE_NAME}
 EDL ${EDL_FILE}
)

Define the target for the program build.
add_executable (${APP_TARGET} "src/hello.c")
The program name in init.yaml and security.psl must match the name of the executable
file
set_target_properties (${APP_TARGET} PROPERTIES OUTPUT_NAME ${ENTITY_NAME})
Libraries that are linked to the program during the build
target_link_libraries (${APP_TARGET}
 PUBLIC ${vfs_CLIENT_LIB} # The program uses file I/O
 # and must be connected as a
client to VFS
)

CMakeLists.txt �le for building the Einit program

The CMakeLists.txt �le for building the Einit initializing program must contain the following commands:

include (platform/image) connects the CMake library that contains the solution image build scripts.

project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO") sets the �ags of the
compiler and linker.

Con�gure the packages of system programs and drivers that need to be included in the solution.

A package is connected by using the find_package () command.

201

set_target_properties (${vfs_ENTITY} PROPERTIES
EXTRA_ARGS
" - \"-f\"
 - \"fstab\""
EXTRA_ENV
" ROOTFS: ramdisk0,0 / ext2 0")

When building this solution, the description of the main() function argument and the environment variable value
will be automatically added to the init.yaml �le when processing macros of the init.yaml.in template.

CMake descriptions of system programs and drivers provided in KasperskyOS Community Edition, and
descriptions of their exported variables and properties are located in the corresponding �les at
/opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-kos/lib/cmake/<program
name>/<program name>-config.cmake

To automatically add descriptions of IPC channels between processes of system programs to the init.yaml
�le when building a solution, you must add these channels to the EXTRA_CONNECTIONS property for the
corresponding programs.

Please note the indentations at the beginning of strings in the EXTRA_CONNECTIONS property. These
indentations are necessary to correctly insert values into the init.yaml �le and must comply with its syntax
requirements.

For example, the VFS program does not have a channel for connecting to the Env program by default. To
automatically add a description of this channel to the init.yaml �le during a solution build, you must add the
following call to the CMakeLists.txt �le for building the Einit program:

set_target_properties (${vfs_ENTITY} PROPERTIES
EXTRA_CONNECTIONS
" - target: env.Env
 id: {var: ENV_SERVICE_NAME, include: env/env.h}"

When building this solution, the description of this IPC channel will be automatically added to the init.yaml
�le when processing macros of the init.yaml.in template.

To automatically add a list of arguments for the main() function and a dictionary of environment variables to
the init.yaml �le when building a solution, you must de�ne the EXTRA_ARGS and EXTRA_ENV properties and
assign the appropriate values to them.

Note the indentations at the beginning of strings in the EXTRA_ARGS and EXTRA_ENV properties. These
indentations are necessary to correctly insert values into the init.yaml �le and must comply with its syntax
requirements.

For some packages, you must also set the values of properties by using the set_target_properties ()
command.

Example of sending the VfsEntity program the "-f fstab" argument of the main() function and the
environment variable ROOTFS set to ramdisk0,0 / ext2 0 :

set(ENTITIES <full list of programs included in the solution>) de�nes the ENTITIES variable
containing a list of executable �les of all programs included in the solution.

One or both commands for building the solution image:

build_kos_hw_image() creates the target for building a solution image for the hardware platform.

202

Example CMakeLists.txt �le for building the Einit program

CMakeLists.txt

project (einit)

Connect the library containing solution image build scripts.
include (platform/image)

Set compile flags.
project_header_default ("STANDARD_GNU_11:YES" "STRICT_WARNINGS:NO")

Configure the VFS program.
By default, the VFS program is not mapped to a program implementing a block device.
If you need to use a block device, such as ata from the ata component,
you must define this device in the variable ${blkdev_ENTITY}_REPLACEMENT
For more information about exported variables and properties of the VFS program,
see /opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-
kos/lib/cmake/vfs/vfs-config.cmake
find_package(ata)
set_target_properties (${vfs_ENTITY} PROPERTIES ${blkdev_ENTITY}_REPLACEMENT
${ata_ENTITY})
In the simplest case, you do not need to interact with a drive.
For this reason, we set the value of the ${blkdev_ENTITY}_REPLACEMENT variable equal
to an empty string
set_target_properties (${vfs_ENTITY} PROPERTIES ${blkdev_ENTITY}_REPLACEMENT "")

Define the ENTITIES variable with a list of executable files of programs.
It is important to include all programs that are part of the project, except the
Einit program.
Please note that the name of the executable file of a program must
match the name of the target indicated in add_executable() in the CMakeLists.txt
file for building this program.
set(ENTITIES
 ${vfs_ENTITY}
 Hello_app
)

Create the build target named kos-image, which is a solution image for the hardware
platform.
build_kos_hw_image (kos-image
 EINIT_ENTITY EinitHw
 CONNECTIONS_CFG "src/init.yaml.in" # template of the init.yaml
file
 SECURITY_PSL "src/security.psl.in" # template of the security.psl
file
 IMAGE_FILES ${ENTITIES}
)

Create the build target named kos-qemu-image, which is a solution image for QEMU.
build_kos_qemu_image (kos-qemu-image
 EINIT_ENTITY EinitQemu
 CONNECTIONS_CFG "src/init.yaml.in"
 SECURITY_PSL "src/security.psl.in"
 IMAGE_FILES ${ENTITIES}
)

build_kos_qemu_image() creates the target for building a solution image for QEMU.

203

init.yaml.in template

The init.yaml.in template is used to automatically generate a part of the init.yaml �le prior to building the
Einit program using CMake tools.

When using the init.yaml.in template, you do not have to manually add descriptions of system programs and
the IPC channels for connecting to them to the init.yaml �le.

The init.yaml.in template must contain the following data:

Root entities key.

List of all applications included in the solution.

For applications that use an IPC mechanism, you must specify a list of IPC channels that connect this
application to other applications.

The IPC channels that connect this application to other applications are either indicated manually or speci�ed
in the CMakeLists.txt �le for this application using the EXTRA_CONNECTIONS property.

To specify a list of IPC channels that connect this application to system programs that are included in
KasperskyOS Community Edition, the following macros are used:

The @INIT_<program name>_ENTITY_CONNECTIONS@ and @INIT_<program
name>_ENTITY_CONNECTIONS+@ macros also add the list of connections for each program de�ned in the
EXTRA_CONNECTIONS property when building this program.

If you need to pass main() function arguments de�ned in the EXTRA_ARGS property to a program when
building this program, you need to use the following macros:

If you need to pass the values of environment variables de�ned in the EXTRA_ENV property to a program when
building this program, you need to use the following macros:

@INIT_<program name>_ENTITY_CONNECTIONS@ – during the build, this is replaced with the list of IPC
channels containing all system programs that are linked to the application. The target and id �elds are
�lled according to the connect.yaml �les from KasperskyOS Community Edition located in
/opt/KasperskyOS-Community-Edition-<version>/sysroot-aarch64-kos/include/<system
program name>).

This macro needs to be used if the application does not have connections to other applications but instead
connects only to system programs. This macro adds the root connections key.

@INIT_<program name>_ENTITY_CONNECTIONS+@ – during the build, the list of IPC channels containing all
system programs that are linked to the application is added to the manually de�ned list of IPC channels. This
macro does not add the root connections key.

This macro needs to be used if the application has connections to other applications that were manually
indicated in the init.yaml.in template.

@INIT_<program name>_ENTITY_ARGS@ – during the build, this is replaced with the list of arguments of
the main() function de�ned in the EXTRA_ARGS property. This macro adds the root args key.

@INIT_<program name>_ENTITY_ARGS+@ – during the build, this macro adds the list of main() function
arguments de�ned in the EXTRA_ARGS property to the list of manually de�ned arguments. This macro does
not add the root args key.

204

Example init.yaml.in template

init.yaml.in

entities:

- name: ping.Client
 connections:
 # The "Client" program can query the "Server".
 - target: ping.Server
 id: server_connection
@INIT_Client_ENTITY_CONNECTIONS+@
@INIT_Client_ENTITY_ARGS@
@INIT_Client_ENTITY_ENV@

- name: ping.Server
@INIT_Server_ENTITY_CONNECTIONS@

@INIT_EXTERNAL_ENTITIES@

init.yaml

entities:

- name: ping.Client
 connections:
 # The "Client" program can query the "Server"
 - target: ping.Server
 id: server_connection
 - target: kl.VfsEntity
 id: {var: _VFS_CONNECTION_ID, include: vfs/defs.h}
 args:
 - "-v"
 env:
 VAR1: VALUE1

- name: ping.Server
 connections:
 - target: kl.VfsEntity
 id: {var: _VFS_CONNECTION_ID, include: vfs/defs.h}

- name: kl.VfsEntity
 path: VFS
 args:
 - "-f"

@INIT_EXTERNAL_ENTITIES@ – during the build, this macro is replaced with the list of system programs linked
to the application and their IPC channels, main() function arguments, and values of environment variables.

@INIT_<program name>_ENTITY_ENV@ – during the build, this is replaced with the dictionary of
environment variables and their values de�ned in the EXTRA_ENV property. This macro adds the root env
key.

@INIT_<program name>_ENTITY_ENV+@ – during the build, this macro adds the dictionary of environment
variables and their values de�ned in the EXTRA_ENV property to the manually de�ned variables. This macro
does not add the root env key.

When building the Einit program from this template, the following init.yaml �le will be generated:

205

 - "fstab"
 env:
 ROOTFS: ramdisk0,0 / ext2

Example security.psl.in template

security.psl.in

execute: kl.core.Execute

use nk.base._

use EDL Einit
use EDL kl.core.Core
use EDL Client
use EDL Server
@INIT_EXTERNAL_ENTITIES@

/* Startup of programs is allowed */
execute {
 grant ()
}
/* Sending and receiving requests, responses and errors is allowed. */
request {
 grant ()
}

security.psl.in template

The security.psl.in template is used to automatically generate a part of the security.psl �le prior to
building the Einit program using CMake tools.

The security.psl �le contains part of the solution security policy description.

When using the security.psl.in template, you do not have to manually add EDL descriptions of system
programs to the security.psl �le.

The security.psl.in template must contain a manually created solution security policy description, including
the following declarations:

Set the global parameters of a solution security policy

Include PSL �les in a solution security policy description

Include EDL �les of application software in a solution security policy description

Create security model objects

Bind methods of security models to security events

Create security audit pro�les

To automatically include system programs, the @INIT_EXTERNAL_ENTITIES@ macro must be used.

206

response {
 grant ()
}

error {
 grant ()
}
/* Queries via the security interface are ignored. */
security {
 grant ()
}

CMake libraries in KasperskyOS Community Edition

This section contains a description of the libraries that are provided in KasperskyOS Community Edition for
automatically building a KasperskyOS-based solution.

platform library

The platform library contains the following commands:

initialize_platform() is the command for initializing the platform library.

The initialize_platform() command can be called with the FORCE_STATIC parameter, which enables
forced static linking of executable �les:

The initialize_platform() command can be called with the NO_NEW_VERSION_CHECK parameter, which
disables the check for SDK updates and transmission of the SDK version to the Kaspersky server.

To disable the check for SDK updates and transmission of SDK version data to the Kaspersky server, use the
following call during the solution build: initialize_platform(NO_NEW_VERSION_CHECK) . For more details
about the data provision policy, see Data provision.

project_static_executable_header_default() is the command for enabling forced static linking of
executable �les de�ned via subsequent CMake add_executable() commands in one CMakeLists.txt �le.
The toolchain that supports dynamic linking performs static linking of these executable �les.

platform_target_force_static() is the command for enabling forced static linking of an executable �le
de�ned via the CMake add_executable() command. The toolchain that supports dynamic linking performs
static linking of this executable �le. For example, if the CMake commands add_executable(client
"src/client.c") and platform_target_force_static(client) are called, static linking is performed for
the client program.

project_header_default() is the command for setting compile �ags.

By default, if the toolchain in the KasperskyOS SDK supports dynamic linking, the
initialize_platform() command causes the -rdynamic �ag to be used automatically for building all
executable �les de�ned via CMake add_executable() commands.

When calling initialize_platform (FORCE_STATIC) in the CMakeLists.txt root �le, the toolchain
supporting dynamic linking performs static linking of executable �les.

207

Command parameters are de�ned in pairs consisting of a compile �ag and its value: "FLAG_1:VALUE_1"
"FLAG_2:VALUE_2" ... "FLAG_N:VALUE_N" . The CMake platform library converts these pairs into compiler
parameters. Frequently used compile �ags for C and C++ compilers from the GCC set and the values of these
�ags are presented in the table below.

Compile �ags YES value NO value Default value

STANDARD_ANSI The ISO C90 and 1998 ISO C++
standards are used.

For C and C++ compilers, the
value is converted into the
parameter -ansi .

The ISO C90 and
1998 ISO C++
standards are not
used.

STANDARD_ANSI:NO

STANDARD_C99 The ISO C99 standard is used.

For a C compiler, the value is
converted into the parameter
-std=c99 .

The ISO C99
standard is not
used.

STANDARD_C99:NO

STANDARD_GNU_C99 The ISO C99 standard with
GNU extensions is used.

For a C compiler, the value is
converted into the parameter
-std=gnu99 .

The ISO C99
standard with
GNU extensions is
not used.

STANDARD_GNU_C99:NO

STANDARD_11 The ISO C11 and 2011 ISO C++
standards are used.

For a C compiler, the value is
converted into the parameter
-std=c11 or -std=c1x
depending on the compiler
version.

For a C++ compiler, the value is
converted into the parameter
-std=c++11 or -std=c++0x
depending on the compiler
version.

The ISO C11 and
2011 ISO C++
standards are not
used.

STANDARD_11:NO

STANDARD_GNU_11 The ISO C11 and 2011 ISO C++
standards with GNU extensions
are used.

For a C compiler, the value is
converted into the parameter
-std=gnu1x or -std=gnu11
depending on the compiler
version.

For a C++ compiler, the value is
converted into the parameter
-std=gnu++0x or -
std=gnu++11 depending on
the compiler version.

The ISO C11 and
2011 ISO C++
standards with
GNU extensions
are not used.

STANDARD_GNU_11:NO

STANDARD_14 The 2014 ISO C++ standard is
used.

For a C++ compiler, the value is
converted into the parameter
-std=c++14 .

The 2014 ISO C++
standard is not
used.

STANDARD_14:NO

STANDARD_GNU_14 The 2014 ISO C++ standard
with GNU extensions is used.

The 2014 ISO C++
standard with

STANDARD_GNU_14:NO

208

set (fmt_USE_STATIC ON)
find_package (fmt REQUIRED)

set (fdn_USE_STATIC ON)
find_package (fdn REQUIRED)

For a C++ compiler, the value is
converted into the parameter
-std=gnu++14 .

GNU extensions is
not used.

STANDARD_17 The ISO C17 and 2017 ISO C++
standards are used.

For a C compiler, the value is
converted into the parameter
-std=c17 .

For a C++ compiler, the value is
converted into the parameter
-std=c++17 .

The ISO C17 and
2017 ISO C++
standards are not
used.

STANDARD_17:NO

STANDARD_GNU_17 The ISO C17 and 2017 ISO C++
standards with GNU extensions
are used.

For a C compiler, the value is
converted into the parameter
-std=gnu17 .

For a C++ compiler, the value is
converted into the parameter
-std=gnu++17 .

The ISO C17 and
2017 ISO C++
standards with
GNU extensions
are not used.

STANDARD_GNU_17:NO

STRICT_WARNINGS Warnings are enabled for the
detection of potential issues
and errors in code written in C
and C++.

For C and C++ compilers, the
value is converted into the
following parameters: -Wcast-
qual , -Wcast-align , -
Wundef .

For a C compiler, the
parameter -Wmissing-
prototypes is additionally
used.

Warnings are
disabled.

STRICT_WARNINGS:YES

If compiler �ags in the format STANDART_* are not de�ned through command parameters, the parameter
STANDARD_GNU_17:YES is used by default.

When using the initialize_platform(FORCE_STATIC) , project_static_executable_header_default()
and platform_target_force_static() commands, you may encounter linking errors if the static variants of
the required libraries are missing (for example, if they were not built or are not included in the KasperskyOS SDK).
Even if the static variants of the required libraries are available, these errors may still occur because the build
system searches for the dynamic variants of required libraries by default instead of the expected static variants
when using the initialize_platform(FORCE_STATIC) , project_static_executable_header_default()
and platform_target_force_static() commands. To avoid errors, �rst make sure that the static variants are
available. Then con�gure the build system to search for static libraries (although this capability may not be available
for some libraries), or explicitly de�ne linking with static libraries.

Examples of con�guring the build system to search for static libraries:

209

set (sqlite_wrapper_USE_STATIC ON)
find_package (sqlite_wrapper REQUIRED)

target_link_libraries(${PROJECT_NAME} PUBLIC logger::logger-static)

generate_edl_file(NAME ...)

Example that explicitly de�nes linking with a static library:

For more details about using dynamic libraries, see "Using dynamic libraries".

These commands are used in CMakeLists.txt �les for the Einit program and application software.

nk library

This section contains a description of the commands and macros of the CMake library for working with the NK
compiler.

generate_edl_�le()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/nk2.cmake .

This command generates an EDL �le containing a description of the process class.

Parameters:

NAME – name of the EDL �le being created. Required parameter.

PREFIX – parameter in which you need to specify the name of the process class, excluding the name of the
EDL �le. For example, if the name of the process class for which the EDL �le is being created is de�ned as
kl.core.NameServer , the PREFIX parameter must pass the value kl.core .

EDL_COMPONENTS – name of the component and its instance that will be included in the EDL �le. For example:
EDL_COMPONENTS "env: kl.Env" . To include multiple components, you need to use multiple
EDL_COMPONENTS parameters.

SECURITY – quali�ed name of the security interface method that will be included in the EDL �le.

OUTPUT_DIR – directory in which the EDL �le will be created. The default directory is
${CMAKE_CURRENT_BINARY_DIR} .

As a result of this command, the EDL_FILE variable is exported and contains the path to the generated EDL �le.

Example call:

210

generate_edl_file(${ENTITY_NAME} EDL_COMPONENTS "env: kl.Env")

nk_build_idl_files(NAME ...)

nk_build_idl_files (echo_idl_files NK_MODULE "echo" IDL "resources/Ping.idl")

For an example of using this command, see the article titled "CMakeLists.txt �les for building application software".

nk_build_idl_�les()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/nk2.cmake .

This command creates a CMake target for generating .idl.h �les for one or more de�ned IDL �les using the NK
compiler.

Parameters:

NAME – name of the CMake target for building .idl.h �les. If a target has not yet been created, it will be
created by using add_library() with the speci�ed name. Required parameter.

NOINSTALL – if this option is speci�ed, �les will only be generated in the working directory and will not be
installed in global directories: ${CMAKE_BINARY_DIR}/_headers_
${CMAKE_BINARY_DIR}/_headers_/${PROJECT_NAME} .

NK_MODULE – parameter in which you need to specify the package name, excluding the name of the IDL �le. For
example, if the package name in the IDL description is de�ned as kl.core.NameServer , the kl.core value
must be passed in the NK_MODULE parameter.

WORKING_DIRECTORY – working directory for calling the NK compiler, which is
${CMAKE_CURRENT_BINARY_DIR} by default.

DEPENDS – additional build targets on which the IDL �le depends.

To add multiple targets, you need to use multiple DEPENDS parameters.

IDL – path to the IDL �le for which the idl.h �le is being generated. Required parameter.

To add multiple IDL �les, you need to use multiple IDL parameters.

If one IDL �le imports another IDL �le, idl.h �les need to be generated in the order necessary for compliance
with dependencies (with the most deeply nested �rst).

NK_FLAGS – additional �ags for the NK compiler.

Example call:

For an example of using this command, see the article titled "CMakeLists.txt �les for building application software".

211

nk_build_cdl_files(NAME ...)

nk_build_cdl_files (echo_cdl_files IDL_TARGET echo_idl_files NK_MODULE "echo" CDL
"resources/Ping.cdl")

nk_build_cdl_�les()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/nk2.cmake .

This command creates a CMake target for generating .cdl.h �les for one or more de�ned CDL �les using the NK
compiler.

Parameters:

NAME – name of the CMake target for building .cdl.h �les. If a target has not yet been created, it will be
created by using add_library() with the speci�ed name. Required parameter.

NOINSTALL – if this option is speci�ed, �les will only be generated in the working directory and are not installed
in global directories: ${CMAKE_BINARY_DIR}/_headers_
${CMAKE_BINARY_DIR}/_headers_/${PROJECT_NAME} .

IDL_TARGET – target when building .idl.h �les for IDL �les containing descriptions of endpoints provided by
components described in CDL �les.

NK_MODULE – parameter in which you need to specify the component name, excluding the name of the CDL
�le. For example, if the component name in the CDL description is de�ned as kl.core.NameServer , the
kl.core value must be passed in the NK_MODULE parameter.

WORKING_DIRECTORY – working directory for calling the NK compiler, which is
${CMAKE_CURRENT_BINARY_DIR} by default.

DEPENDS – additional build targets on which the CDL �le depends.

To add multiple targets, you need to use multiple DEPENDS parameters.

CDL – path to the CDL �le for which the .cdl.h �le is being generated. Required parameter.

To add multiple CDL �les, you need to use multiple CDL parameters.

NK_FLAGS – additional �ags for the NK compiler.

Example call:

For an example of using this command, see the article titled "CMakeLists.txt �les for building application software".

nk_build_edl_�les()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/nk2.cmake .

212

nk_build_edl_files(NAME ...)

nk_build_edl_files (echo_server_edl_files CDL_TARGET echo_cdl_files NK_MODULE "echo"
EDL "resources/Server.edl")
nk_build_edl_files (echo_client_edl_files NK_MODULE "echo" EDL "resources/Client.edl")

add_nk_idl()

This command creates a CMake target for generating an .edl.h �le for one de�ned EDL �le using the NK
compiler.

Parameters:

NAME – name of the CMake target for building an .edl.h �le. If a target has not yet been created, it will be
created by using add_library() with the speci�ed name. Required parameter.

NOINSTALL – if this option is speci�ed, �les will only be generated in the working directory and are not installed
in global directories: ${CMAKE_BINARY_DIR}/_headers_
${CMAKE_BINARY_DIR}/_headers_/${PROJECT_NAME} .

CDL_TARGET – target when building .cdl.h �les for CDL �les containing descriptions of components of the
EDL �le for which the build is being performed.

IDL_TARGET – target when building .idl.h �les for IDL �les containing descriptions of interfaces of the EDL �le
for which the build is being performed.

NK_MODULE – parameter in which you need to specify the name of the process class, excluding the name of the
EDL �le. For example, if the process class name in the EDL description is de�ned as kl.core.NameServer , the
kl.core value must be passed in the NK_MODULE parameter.

WORKING_DIRECTORY – working directory for calling the NK compiler, which is
${CMAKE_CURRENT_BINARY_DIR} by default.

DEPENDS – additional build targets on which the EDL �le depends.

To add multiple targets, you need to use multiple DEPENDS parameters.

EDL – path to the EDL �le for which the edl.h �le is being generated. Required parameter.

NK_FLAGS – additional �ags for the NK compiler.

Example calls:

For an example of using this command, see the article titled "CMakeLists.txt �les for building application software".

Generating transport code for development in C++

The CMake commands add_nk_idl(), add_nk_cdl() and add_nk_edl() are used to generate transport proxy objects
and stubs using the nkppmeta compiler when building a solution.

213

add_nk_idl(NAME IDL_FILE ...)

add_nk_idl (ANIMAL_IDL "${CMAKE_SOURCE_DIR}/resources/Animal.idl"
 NK_MODULE "example"
 LANG "CXX")

add_nk_cdl()

add_nk_cdl(NAME CDL_FILE ...)

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>/toolchain/share/cmake/Modules/platform/nk2.cmake .

This command creates a CMake target for generating a *.idl.cpp.h header �le for a de�ned IDL �le using the
nkppmeta compiler. The command also creates a library containing the transport code for the de�ned interface.
To link to this library, use the bind_nk_targets() command.

The generated header �les contain a C++ representation for the interface and data types described in the IDL �le,
and the methods required for use of proxy objects and stubs.

Parameters:

NAME — name of the CMake target. Required parameter.

IDL_FILE — path to the IDL �le. Required parameter.

NK_MODULE – parameter in which you need to specify the package name, excluding the name of the IDL �le. For
example, if the package name in the IDL description is de�ned as kl.core.NameServer , the kl.core value
must be passed in the NK_MODULE parameter.

LANG – parameter in which you need to specify the CXX value.

Example call:

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>/toolchain/share/cmake/Modules/platform/nk2.cmake .

This command creates a CMake target for generating a *.cdl.cpp.h �le for a de�ned CDL �le using the
nkppmeta compiler. The command also creates a library containing the transport code for the de�ned
component. To link to this library, use the bind_nk_targets() command.

The *.cdl.cpp.h �le contains the tree of embedded components and endpoints provided by the component
described in the CDL �le.

Parameters:

NAME — name of the CMake target. Required parameter.

CDL_FILE — path to the CDL �le. Required parameter.

214

add_nk_cdl (CAT_CDL "${CMAKE_SOURCE_DIR}/resources/Cat.cdl"
 NK_MODULE "example"
 LANG "CXX")

add_nk_edl()

add_nk_edl(NAME EDL_FILE ...)

add_nk_edl (SERVER_EDL "${CMAKE_SOURCE_DIR}/resources/Server.edl"
 NK_MODULE "example"
 LANG "CXX")

NK_MODULE – parameter in which you need to specify the component name, excluding the name of the CDL
�le. For example, if the component name in the CDL description is de�ned as kl.core.NameServer , the
kl.core value must be passed in the NK_MODULE parameter.

LANG – parameter in which you need to specify the CXX value.

Example call:

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>/toolchain/share/cmake/Modules/platform/nk2.cmake .

This command creates a CMake target for generating a *.edl.cpp.h �le for a de�ned EDL �le using the
nkppmeta compiler. The command also creates a library containing the transport code for the server or client
program. To link to this library, use the bind_nk_targets() command.

The *.edl.cpp.h �le contains the tree of embedded components and endpoints provided by the process class
described in the EDL �le.

Parameters:

NAME — name of the CMake target. Required parameter.

EDL_FILE — path to the EDL �le. Required parameter.

NK_MODULE – parameter in which you need to specify the name of the process class, excluding the name of the
EDL �le. For example, if the process class name in the EDL description is de�ned as kl.core.NameServer , the
kl.core value must be passed in the NK_MODULE parameter.

LANG – parameter in which you need to specify the CXX value.

Example call:

image library

215

build_kos_qemu_image(NAME ...)

This section contains a description of the commands and macros of the CMake library named image that is
included in KasperskyOS Community Edition and contains solution image build scripts.

build_kos_qemu_image()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/image.cmake .

The command creates a CMake target for building a solution image for QEMU.

Parameters:

NAME – name of the CMake target for building a solution image. Required parameter.

PERFCNT_KERNEL – use the kernel with performance counters if it is available in KasperskyOS Community
Edition.

EINIT_ENTITY – name of the executable �le that will be used to start the Einit program.

EXTRA_XDL_DIR – additional directories to include when building the Einit program.

CONNECTIONS_CFG – path to the init.yaml �le or init.yaml.in template.

SECURITY_PSL – path to the security.psl �le or security.psl.in template.

KLOG_ENTITY – target for building the Klog system program, which is responsible for the security audit. If the
target is not speci�ed, the audit is not performed.

QEMU_FLAGS – additional �ags for running QEMU.

IMAGE_BINARY_DIR_BIN – directory for the �nal image and other artifacts. It matches
CMAKE_CURRENT_BINARY_DIR by default.

NO_AUTO_BLOB_CONTAINER – solution image will not include the BlobContainer program that is required for
working with dynamic libraries in shared memory. For more details, refer to "Including the BlobContainer system
program in a KasperskyOS-based solution".

PACK_DEPS , PACK_DEPS_COPY_ONLY , PACK_DEPS_LIBS_PATH , and PACK_DEPS_COPY_TARGET – parameters
that de�ne the method used to add dynamic libraries to the solution image.

IMAGE_FILES – executable �les of applications and system programs (except the Einit program) and any
other �les to be added to the ROMFS image.

To add multiple applications or �les, you can use multiple IMAGE_FILES parameters.

<path to files> – free parameters like IMAGE_FILES .

Example call:

216

build_kos_qemu_image (kos-qemu-image
 EINIT_ENTITY EinitQemu
 CONNECTIONS_CFG "src/init.yaml.in"
 SECURITY_CFG "src/security.cfg.in"
 IMAGE_FILES ${ENTITIES})

build_kos_hw_image(NAME ...)

For an example of using this command, see the article titled "CMakeLists.txt �les for building the Einit program".

build_kos_hw_image()

This command is declared in the �le /opt/KasperskyOS-Community-Edition-
<version>toolchain/share/cmake/Modules/platform/image.cmake .

The command creates a CMake target for building a solution image for the hardware platform.

Parameters:

NAME – name of the CMake target for building a solution image. Required parameter.

PERFCNT_KERNEL – use the kernel with performance counters if it is available in KasperskyOS Community
Edition.

EINIT_ENTITY – name of the executable �le that will be used to start the Einit program.

EXTRA_XDL_DIR – additional directories to include when building the Einit program.

CONNECTIONS_CFG – path to the init.yaml �le or init.yaml.in template.

SECURITY_PSL – path to the security.psl �le or security.psl.in template.

KLOG_ENTITY – target for building the Klog system program, which is responsible for the security audit. If the
target is not speci�ed, the audit is not performed.

IMAGE_BINARY_DIR_BIN – directory for the �nal image and other artifacts. The default directory is
CMAKE_CURRENT_BINARY_DIR .

NO_AUTO_BLOB_CONTAINER – solution image will not include the BlobContainer program that is required for
working with dynamic libraries in shared memory. For more details, refer to "Including the BlobContainer system
program in a KasperskyOS-based solution".

PACK_DEPS , PACK_DEPS_COPY_ONLY , PACK_DEPS_LIBS_PATH , and PACK_DEPS_COPY_TARGET – parameters
that de�ne the method used to add dynamic libraries to the solution image.

IMAGE_FILES – executable �les of applications and system programs (except the Einit program) and any
other �les to be added to the ROMFS image.

To add multiple applications or �les, you can use multiple IMAGE_FILES parameters.

<path to files> – free parameters like IMAGE_FILES .

217

build_kos_hw_image (kos-image
 EINIT_ENTITY EinitHw
 CONNECTIONS_CFG "src/init.yaml.in"
 SECURITY_CFG "src/security.cfg.in"
 IMAGE_FILES ${ENTITIES})

Example call:

For an example of using this command, see the article titled "CMakeLists.txt �les for building the Einit program".

Building without CMake

This section contains a description of the scripts, tools, compilers and build templates provided in KasperskyOS
Community Edition.

These tools can be used:

In other build systems.

To perform individual steps of the build.

To analyze the build speci�cations and write a custom build system.

The general scenario for building a solution image is described in the article titled Build process overview.

Tools for building a solution

This section contains a description of the scripts, tools, compilers and build templates provided in KasperskyOS
Community Edition.

Build scripts and tools

KasperskyOS Community Edition includes the following build scripts and tools:

nk-gen-c

The NK compiler (nk-gen-c) generates transport code based on the IDL, CDL, and EDL descriptions.
Transport code is needed for generating, sending, receiving, and processing IPC messages.

nk-psl-gen-c

The nk-psl-gen-c compiler generates the C-language source code of the Kaspersky Security Module based
on the solution security policy description and the IDL, CDL, and EDL descriptions. The nk-psl-gen-c
compiler also generates the C-language source code of solution security policy tests based on solution
security policy tests in PAL.

einit

The einit tool automates the creation of code for the Einit initializing program. This program is the �rst to
start when KasperskyOS is loaded. Then it starts all other programs and creates IPC channels between them.

218

nk-gen-c

nk-gen-c [-I <PATH>]... [-o <PATH>] [--types] [--interface] [--endpoints]
[--client] [--server] [--extended-errors] [--trace-client-ipc {headers|dump}]
[--trace-server-ipc {headers|dump}] [--ipc-trace-method-filter <METHOD>[,METHOD]...]
[-h|--help] [--version] <FILE>

makekss

The makekss script creates the Kaspersky Security Module.

makeimg

The makeimg script creates the �nal boot image of the KasperskyOS-based solution with all programs to be
started and the Kaspersky Security Module.

The NK compiler (nk-gen-c) generates transport code based on the IDL, CDL, and EDL descriptions.

The nk-gen-c compiler receives the IDL, CDL or EDL �le and creates the following �les:

A *.*dl.h �le containing the transport code.

A *.*dl.nk.d �le that lists the created *.*dl.h �le's dependencies on the IDL and CDL �les. The
*.*dl.nk.d �le is created for the build system.

Syntax of the shell command for starting the nk-gen-c compiler:

Basic parameters:

FILE

Path to the IDL, CDL, or EDL �le for which you need to generate transport code.

-I PATH

These parameters are used to de�ne the paths to directories containing the auxiliary �les required for
generating transport code. (The auxiliary �les are located in the sysroot-*-kos/include directory from the
KasperskyOS SDK.) These parameters can also be used to de�ne the paths to directories containing IDL and
CDL �les that are referenced by the �le de�ned via the FILE parameter.

-o PATH

Path to an existing directory where the created �les will be placed. If this parameter is not speci�ed, the
created �les will be put into the current directory.

-h --help

Prints the Help text.

--version

Prints the version of the nk-gen-c compiler.

--extended-errors

This parameter provides the capability to use interface methods with one or more error parameters of user-
de�ned IDL types. (The client works with error parameters like it works with output parameters.)

< >

< >

|

219

Selective generation of transport code

If no selective generation �ag for transport code is speci�ed, the nk-gen-c compiler generates transport code
with all possible methods and types for the de�ned IDL, CDL, or EDL �le.

If the --extended-errors parameter is not speci�ed, you can use interface methods only with one
status error parameter of the IDL type UInt16 whose value is passed to the client via return code of the
interface method. This mechanism is obsolete and will no longer be supported in the future, so you are
advised to always specify the --extended-errors parameter.

To reduce the volume of generated transport code, you can use �ags for selective generation of transport code.
For example, you can use the --server �ag for programs that implement endpoints, and use the --client �ag
for programs that utilize the endpoints.

Flags for selective generation of transport code for an IDL �le:

--types

The transport code includes the types corresponding to the IDL types from the de�ned IDL �le, and the types
corresponding to this �le's imported IDL types that are used in IDL types of the de�ned IDL �le. However, the
types corresponding to imported IDL constants and to the aliases of imported IDL types are not included in the
*.idl.h �le. To use the types corresponding to imported IDL constants and to the aliases of imported IDL
types, you must separately generate the transport code for the IDL �les from which you are importing.

--interface

The transport code corresponds to the --types �ag, and includes the types of structures of the constant
part of IPC requests and IPC responses for interface methods whose signatures are speci�ed in the de�ned
IDL �le. In addition, the transport code contains constants indicating the sizes of IPC message arenas.

--client

The transport code corresponds to the --interface �ag, and includes the proxy object type, proxy object
initialization method, and the interface methods speci�ed in the de�ned IDL �le.

--server

The transport code corresponds to the --interface �ag, and includes the types and dispatcher (dispatch
method) used to process IPC requests corresponding to the interface methods speci�ed in the de�ned IDL �le.

Flags for selective generation of transport code for a CDL or EDL �le:

--types

The transport code includes the types corresponding to the IDL types that are used in the method parameters
of endpoints provided by the component (for the de�ned CDL �le) or process class (for the de�ned EDL �le).

--endpoints

The transport code corresponds to the --types �ag, and includes the types of structures of the constant
part of IPC requests and IPC responses for the methods of endpoints provided by the component (for the
de�ned CDL �le) or process class (for the de�ned EDL �le). In addition, the transport code contains constants
indicating the sizes of IPC message arenas.

--client

220

Printing diagnostic information about sending and receiving IPC messages

nk-psl-gen-c

The transport code corresponds to the --types �ag, and includes the types of structures of the constant
part of IPC requests and IPC responses for the methods of endpoints provided by the component (for the
de�ned CDL �le) or process class (for the de�ned EDL �le). In addition, the transport code contains constants
indicating the sizes of IPC message arenas, and the proxy object types, proxy object initialization methods, and
methods of endpoints provided by the component (for the de�ned CDL �le) or process class (for the de�ned
EDL �le).

--server

The transport code corresponds to the --types �ag, and includes the types and dispatchers (dispatch
methods) used to process IPC requests corresponding to the endpoints provided by the component (for the
de�ned CDL �le) or process class (for the de�ned EDL �le). In addition, the transport code contains constants
indicating the sizes of IPC message arenas, and the stub types, stub initialization methods, and the types of
structures of the constant part of IPC requests and IPC responses for the methods of endpoints provided by
the component (for the de�ned CDL �le) or process class (for the de�ned EDL �le).

Transport code can generate diagnostic information about sending and receiving IPC messages and print this data
via standard error. To generate transport code with these capabilities, use the following parameters:

--trace-client-ipc headers dump

The code for printing diagnostic information is executed directly before the Call() system call is executed
and immediately after it is executed. If the headers value is speci�ed, the diagnostic information includes the
endpoint method ID (MID), the endpoint ID (RIID), the size of the constant part of the IPC message (in bytes),
the contents of the IPC message arena handle, the size of the IPC message arena (in bytes), and the size of the
utilized part of the IPC message arena (in bytes). If the dump value is speci�ed, the diagnostic information
additionally includes the contents of the constant part and arena of the IPC message in hexadecimal format.

When using this parameter, you must either specify the selective generation �ag for transport code --client
or refrain from specifying a selective generation �ag for transport code.

--trace-server-ipc headers dump

The code for printing diagnostic information is executed directly before calling the function that implements
the interface method, and immediately after the completion of this function. In other words, it is executed when
the dispatcher (dispatch method) is called in the interval between execution of the Recv() and Reply()
system calls. If the headers value is speci�ed, the diagnostic information includes the endpoint method ID
(MID), the endpoint ID (RIID), the size of the constant part of the IPC message (in bytes), the contents of the
IPC message arena handle, the size of the IPC message arena (in bytes), and the size of the utilized part of the
IPC message arena (in bytes). If the dump value is speci�ed, the diagnostic information additionally includes the
contents of the constant part and arena of the IPC message in hexadecimal format.

When using this parameter, you must either specify the selective generation �ag for transport code --server
or refrain from specifying a selective generation �ag for transport code.

--ipc-trace-method-filter METHOD ,METHOD

Diagnostic information is printed if only the de�ned interface methods are called. For the METHOD value, you
can use the interface method name or the construct package name : interface method name . The
package name and interface method name are speci�ed in the IDL �le.

If this parameter is not speci�ed, diagnostic information is printed when any interface method is called.

This parameter can be speci�ed multiple times. For example, you can specify all required interface methods in
one parameter or specify each required interface method in a separate parameter.

{ | }

{ | }

< >[]...

< > < >

221

nk-psl-gen-c [{-I|--include-dir} <DIR>]... [{-o|--output} <FILE>] [--out-tests <FILE>]
[{-t|--tests} <ARG>] [{-a|--audit} <FILE>] [-h|--help] [--version] <INPUT>

einit

The nk-psl-gen-c compiler generates the C-language source code of the Kaspersky Security Module based on
the solution security policy description and the IDL, CDL, and EDL descriptions. This code is used by the makekss
script.

The nk-psl-gen-c compiler can also generate the C-language source code of solution security policy tests
based on solution security policy tests in PAL.

Syntax of the shell command for starting the nk-psl-gen-c compiler:

Parameters:

INPUT

Path to the top-level �le of the solution security policy description. This is normally the security.psl �le.

-I --include-dir DIR

These parameters are used to de�ne the paths to directories containing IDL, CDL, and EDL �les pertaining to
the solution, and the paths to directories containing auxiliary �les from the KasperskyOS SDK (common ,
sysroot-*-kos/include , toolchain/include).

-o --output FILE

Path to the �le that will save the source code of the Kaspersky Security Module and (optionally) the source
code of solution security policy tests. The path must include existing directories.

--out-tests FILE

Path to the �le that will save the source code of the solution security policy tests.

-t --tests ARG

De�nes whether the source code of solution security policy tests must be generated. ARG can take the
following values:

-a --audit FILE

Path to the �le that will save the C-language source code of the audit decoder.

-h --help

Prints the Help text.

--version

Prints the version of the nk-psl-gen-c compiler.

{ | } < >

{ | } < >

< >

{ | } < >

skip: – source code of tests is not generated. This value is used by default if the -t, --tests ARG
parameter is not speci�ed.

generate: – source code of tests is generated. If the source code of tests is generated, you are advised
to use the --out-tests FILE parameter. Otherwise, the source code of tests will be saved in the same
�le containing the source code of the Kaspersky Security Module, which may lead to errors during the build.

< >

< >

{ | } < >

|

222

einit -I PATH -o PATH [--help] FILE

makekss

makekss --target=ARCH --module=PATH --with-nk="PATH" --with-nktype="TYPE" --with-
nkflags="FLAGS" [--output="PATH"][--help][--with-cc="PATH"][--with-cflags="FLAGS"]
FILE

The einit tool automates the creation of code for the Einit initializing program.

The einit tool receives the solution initialization description (the init.yaml �le by default) and EDL, CDL and
IDL descriptions, and creates a �le containing the source code of the Einit initializing program. Then the Einit
program must be built using the C-language cross compiler that is provided in KasperskyOS Community Edition.

Syntax for using the einit tool:

Parameters:

FILE

Path to the init.yaml �le.

-I PATH

Path to the directory containing the auxiliary �les (including EDL, CDL and IDL descriptions) required for
generating the initializing program. By default, these �les are located in the directory /opt/KasperskyOS-
Community-Edition-<version>/sysroot-aarch64-kos/include .

-o, --out-file PATH

Path to the created .c �le containing the code of the initializing program.

-h, --help

Displays the Help text.

The makekss script creates the Kaspersky Security Module.

The script calls the nk-psl-gen-c compiler to generate the source code of the security module, then compiles the
resulting code by calling the C compiler that is provided in KasperskyOS Community Edition.

The script creates the security module from the solution security policy description.

Syntax for using the makekss script:

Parameters:

FILE

Path to the top-level �le of the solution security policy description.

--target=ARCH

Processor architecture for which the build is intended.

223

makeimg

makeimg --target=ARCH --sys-root=PATH --with-toolchain=PATH --ldscript=PATH --img-
src=PATH --img-dst=PATH --with-init=PATH [--with-extra-asflags=FLAGS][--with-extra-
ldflags=FLAGS][--help] FILES

--module=-lPATH

Path to the ksm_kss library. This key is passed to the C compiler for linking to this library.

--with-nk=PATH

Path to the nk-psl-gen-c compiler that will be used to generate the source code of the security module. By
default, the compiler is located in /opt/KasperskyOS-Community-Edition-
<version>/toolchain/bin/nk-psl-gen-c .

--with-nktype="TYPE"

Indicates the type of NK compiler that will be used. To use the nk-psl-gen-c compiler, indicate the psl type.

--with-nkflags="FLAGS"

Parameters used when calling the nk-psl-gen-c compiler.

The nk-psl-gen-c compiler will require access to all EDL, CDL and IDL descriptions. To enable the nk-psl-
gen-c compiler to �nd these descriptions, you need to pass the paths to these descriptions in the --with-
nkflags parameter by using the -I switch of the nk-psl-gen-c compiler.

--output=PATH

Path to the created security module �le.

--with-cc=PATH

Path to the C compiler that will be used to build the security module. The compiler provided in KasperskyOS
Community Edition is used by default.

--with-cflags=FLAGS

Parameters used when calling the C compiler.

-h, --help

Displays the Help text.

The makeimg script creates the �nal boot image of the KasperskyOS-based solution with all executable �les of
programs and the Kaspersky Security Module.

The script receives a list of �les, including the executable �les of all applications that need to be added to ROMFS
of the loaded image, and creates the following �les:

Solution image

Solution image without character tables (.stripped)

Solution image with debug character tables (.dbg.syms)

Syntax for using the makeimg script:

224

Parameters:

FILES

List of paths to �les, including the executable �les of all applications that need to be added to ROMFS.

The security module (ksm.module) must be explicitly speci�ed, or else it will not be included in the solution
image. The Einit application does not need to be indicated because it will be automatically included in the
solution image.

--target=ARCH

Architecture for which the build is intended.

--sys-root=PATH

Path to the root directory sysroot. By default, this directory is located in /opt/KasperskyOS-Community-
Edition-version/sysroot-aarch64-kos/ .

--with-toolchain=PATH

Path to the set of auxiliary tools required for the solution build. By default, these tools are located in
/opt/KasperskyOS-Community-Edition-<version>/toolchain/ .

--ldscript=PATH

Path to the linker script required for the solution build. By default, this script is located in /opt/KasperskyOS-
Community-Edition-<version>/libexec/aarch64-kos/ .

--img-src=PATH

Path to the precompiled KasperskyOS kernel. By default, the kernel is located in /opt/KasperskyOS-
Community-Edition-<version>/libexec/aarch64-kos/ .

--img-dst=PATH

Path to the created image �le.

--with-init=PATH

Path to the executable �le of the Einit initializing program.

--with-extra-asflags=FLAGS

Additional �ags for the AS Assembler.

--with-extra-ldflags=FLAGS

Additional �ags for the LD Linker.

-h, --help

Displays the Help text.

Cross compilers

The toolchain provided in the KasperskyOS SDK includes one or more GCC compilers. The toolchain/bin
directory contains the following �les:

Executable �les of compilers (for example, x86_64-pc-kos-gcc , arm-kos-g++)

225

echo '' | aarch64-kos-gcc -dM -E -

Linker operation speci�cs

1. libc is the standard C library.

2. libm is the library that implements the mathematical functions of the standard C language library.

3. libvfs_stubs is the library that contains stubs of I/O functions (for example, open , socket , read , write).

4. libkos is the library for accessing the KasperskyOS core endpoints.

5. libenv is the library of the subsystem for con�guring the environment of applications (environment variables,
arguments of the main function, and custom con�gurations).

6. libsrvtransport-u is the library that supports IPC between processes and the kernel.

The provided script is intended only for demonstrating the build commands being used.

build.sh

#!/bin/sh

The SDK variable should specify the path to the KasperskyOS Community Edition
installation directory.
SDK=/opt/KasperskyOS-Community-Edition-<version>
TOOLCHAIN=$SDK/toolchain
SYSROOT=$SDK/sysroot-aarch64-kos

PATH=$TOOLCHAIN/bin:$PATH

Create the Hello.edl.h file from Hello.edl

Executable �les of linkers (for example, x86_64-pc-kos-ld , arm-kos-ld)

Executable �les of assemblers (for example, x86_64-pc-kos-as , arm-kos-as)

In addition to standard macros, an additional macro __KOS__=1 is de�ned in GCC. Use of this macro lets you
simplify porting of the software code to KasperskyOS, and also simpli�es development of platform-independent
programs.

To view the list of standard macros of GCC, run the following command:

When building the executable �le of an application, by default the linker links the following libraries in the speci�ed
order:

Example build without using CMake

Below is an example of a script for building a basic example. This example contains a single application called
Hello , which does not provide any endpoints.

226

(The Hello program does not implement any endpoints, so there are no CDL or IDL
files.)
nk-gen-c -I $SYSROOT/include Hello.edl

Compile and build the Hello program
aarch64-kos-gcc -o hello hello.c

Create the Kaspersky Security Module (ksm.module)
makekss --target=aarch64-kos \
 --module=-lksm_kss \
 --with-nkflags="-I $SDK/examples/common -I $SYSROOT/include" \
 security.psl

Create code of the Einit initializing program
einit -I $SYSROOT/include -I . init.yaml -o einit.c

Compile and build the Einit program
aarch64-kos-gcc -I . -o einit einit.c

Create loadable solution image (kos-qemu-image)
makeimg --target=aarch64-kos \
 --sys-root=$SYSROOT \
 --with-toolchain=$TOOLCHAIN \
 --ldscript=$SDK/libexec/aarch64-kos/kos-qemu.ld \
 --img-src=$SDK/libexec/aarch64-kos/kos-qemu \
 --img-dst=kos-qemu-image \
 Hello ksm.module

Run solution under QEMU
qemu-system-aarch64 -m 1024 -serial stdio -kernel kos-qemu-image

Using dynamic libraries

Dynamic libraries (*.so �les) can be used in a KasperskyOS-based solution. Compared to static libraries (*.a
�les), dynamic libraries provide the following advantages:

E�icient use of RAM.

Multiple processes can use the same instance of a dynamic library. Also, a program and dynamic libraries in one
process can use the same instance of a dynamic library.

Dynamic libraries can be loaded into memory and unloaded from memory on the initiative of the programs that
use them.

Convenient software updates.

A dynamic library update is applied to all programs and dynamic libraries dependent on this dynamic library
without having to rebuild them.

Capability to implement a mechanism for plug-ins.

Plug-ins for solution components consist of dynamic libraries.

Shared use of code and data.

One instance of a dynamic library can be concurrently used by multiple processes, and by a program and
dynamic libraries in one process. This enables centralized management of multi-access to resources or storage
of shared data, for example.

227

Dynamic libraries are provided in the KasperskyOS SDK, and can also be created by a KasperskyOS-based
solution developer. Normal operation of third-party dynamic libraries cannot be guaranteed.
Due to current technical limitations, libc.so and libpthread.so cannot be used in a KasperskyOS-based
solution.

1. Processes that use dynamic libraries must have access to the �le systems in which the �les of the dynamic
libraries are stored. Access to �le systems is provided by VFS, which may be implemented in the context of the
processes using the dynamic libraries, or may be a separate process. The dynamic libraries must not be used by
VFS or other software that is used by VFS to work with storage (such as a storage driver).

2. The toolchain must support dynamic linking.

The KasperskyOS SDK comes with a separate toolchain for each supported processor architecture. A required
toolchain may not support dynamic linking. To check whether dynamic linking is supported, you need to use the
CMake get_property() command in the CMakeLists.txt root �le as follows:

get_property(CAN_SHARED GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS)
if(CAN_SHARED)
 message(STATUS "Dynamic linking is supported.")
endif()

3. The executable code of programs that use dynamic libraries must be built with the -rdynamic �ag (with
dynamic linking).

If the toolchain supports dynamic linking, the CMake initialize_platform() command causes this �ag to
be used automatically for building all executable �les de�ned via CMake add_executable() commands.

If the CMake initialize_platform(FORCE_STATIC) command is called in the CMakeLists.txt root �le,
the toolchain supporting dynamic linking performs static linking of executable �les.
The CMake project_static_executable_header_default() command a�ects the build of executable
�les de�ned via subsequent CMake add_executable() commands in one CMakeLists.txt �le. The toolchain
that supports dynamic linking performs static linking of these executable �les.
The CMake platform_target_force_static() command a�ects the build of one executable �le de�ned via
the CMake add_executable() command. The toolchain that supports dynamic linking performs static linking
of this executable �le.
The executable code of programs that is built with the -rdynamic �ag is linked to a static library if a dynamic
library is not found. For example, if the CMake target_link_libraries (client -lm) command is being
used, the client program is linked to the static library libm.a if the dynamic library libm.so is not found.

1. Loading into memory.

Prerequisites for using dynamic libraries

To use dynamic libraries in a KasperskyOS-based solution, the following conditions must be met:

Life cycle of a dynamic library

The life cycle of a dynamic library includes the following phases:

228

A dynamic library linked to a program is loaded into memory upon startup of the process in whose context this
program is executed. A running process can load a dynamic library into memory by calling the dlopen()
function of the POSIX interface. A dynamic library may be linked to other dynamic libraries, so a program
depends not only on the dynamic library directly linked to it, but also depends on the entire dependency graph
of this library. A dynamic library is loaded into memory together with all of the dynamic libraries that it depends
on.

If the BlobContainer system program is included in a KasperskyOS-based solution, one instance of a dynamic
library is loaded into shared memory regardless of how many processes are using this library. (More speci�cally,
only the part of the dynamic library that includes code and read-only data is loaded into shared memory. The
other part of the dynamic library is loaded into the memory of each process that uses this library.) If the
BlobContainer system program is not included in a solution, separate instances of a dynamic library are
loaded into the memory of processes that are using this library. A dynamic library on which several other
dynamic libraries depend is loaded into shared memory or into the memory of a process in a single instance.

If a list of dynamic libraries is de�ned through the LD_PRELOAD environment variable, these dynamic libraries will
be loaded into memory even if the program is not dependent on them. (List items must be absolute or relative
paths to dynamic libraries separated by a colon, for example:
LD_PRELOAD=libmalloc.so:libfree.so:/usr/somepath/lib/libfoo.so .) The functions that are
exported by the dynamic libraries speci�ed in LD_PRELOAD replace the identically named functions that are
exported by other dynamic libraries loaded into shared memory or process memory. This can be used for
debugging purposes if you need to replace functions imported from dynamic libraries.

The dynamic library loader searches for program-dependent dynamic libraries in the following order:

1. Absolute paths de�ned through the LD_LIBRARY_PATH environment variable.

Paths must be separated by a colon, for example: LD_LIBRARY_PATH=/usr/lib:/home/user/lib .

2. Absolute paths de�ned in the DT_RUNPATH or DT_RPATH �eld of the .dynamic section of executable �les
and dynamic libraries.

Linking of executable �les and dynamic libraries may include de�ned paths that the dynamic library loader
will search. (For example, this can be done through the INSTALL_RPATH property in the CMake command
set_target_properties() .) Paths used to search for dynamic libraries are stored in the DT_RUNPATH or
DT_RPATH �eld of the .dynamic section. This �eld may be in executable �les linked to dynamic libraries and
in dynamic libraries linked to other dynamic libraries.

3. Path /lib .

The dynamic library loader searches in this same order if a relative path to a dynamic library is speci�ed in the
filename parameter of the dlopen() function or in the LD_PRELOAD environment variable. If the absolute
path is speci�ed, the loader puts the dynamic library into memory without performing a search.

2. Use by a process (or processes).

3. Unloading from memory.

A dynamic library is unloaded from shared memory when all processes using this library have terminated or
called the dlclose() function of the POSIX interface. A dynamic library that was loaded into process memory
by calling the dlopen() function is unloaded by calling the dlclose() function. A dynamic library that is linked
to a program cannot be unloaded from memory until termination of the process in whose context this program
is executed. A dynamic library that is linked to other dynamic libraries is unloaded from memory after all libraries
that depend on it are unloaded, or after the process is terminated.

Including the BlobContainer system program in a KasperskyOS-based
solution

229

If the BlobContainer program is provided in the KasperskyOS SDK, it must be included into a solution in which
dynamic libraries are used. To check whether the BlobContainer program is included in the KasperskyOS SDK,
you need to make sure that the sysroot-*-kos/bin/BlobContainer executable �le is available.

entities:

- name: example.BlobContainer
 path: example_blob_container
 args:
 - "-v"
 env:
 _BLOB_CONTAINER_BACKEND: kl.custombc
@INIT_example_blob_container_ENTITY_CONNECTIONS@

The BlobContainer program can be included in a solution either automatically or manually. This program is
automatically included in a solution by running the CMake commands build_kos_qemu_image() and
build_kos_hw_image() if at least one program in the solution is linked to a dynamic library. (To disable automatic
inclusion of the BlobContainer program in a solution, you need to add the NO_AUTO_BLOB_CONTAINER value to
the parameters of the CMake commands build_kos_qemu_image() and build_kos_hw_image() .) If programs
in a solution work with dynamic libraries using only a POSIX interface (the dlopen() , dlsym() , dlerror() , and
dlclose() functions), the BlobContainer program needs to be manually included in the solution.

When using the BlobContainer program, you must create IPC channels from the processes using dynamic
libraries to the process of the BlobContainer program. These IPC channels can be created statically or
dynamically. If a statically created IPC channel is not available, the client and server parts of the BlobContainer
program attempt to dynamically create an IPC channel using the name server.

If the BlobContainer program is automatically included in a solution, the @INIT_EXTERNAL_ENTITIES@ ,
@INIT_<program name>_ENTITY_CONNECTIONS@ and @INIT_<program name>_ENTITY_CONNECTIONS+@
macros used in the init.yaml.in �le automatically create within the init description dictionaries of IPC channels
that enable static creation of IPC channels between processes of programs linked to dynamic libraries and the
process of the BlobContainer program. (The process of the BlobContainer program receives the name
kl.bc.BlobContainer , while the IPC channels receive the name kl.BlobContainer .) However, dictionaries of
IPC channels to the BlobContainer program process are not automatically created for processes that work with
dynamic libraries using only a POSIX interface. To ensure that the required IPC channels are statically created,
these dictionaries must be manually created (these IPC channels must have the name kl.BlobContainer).

If the BlobContainer program is manually included in the solution and you need to statically create IPC channels
from processes using dynamic libraries to the BlobContainer program process, you must manually create
dictionaries of the required IPC channels in the init description. By default, the IPC channel to the BlobContainer
program process has the name kl.BlobContainer . However, this name can be changed through the environment
variable _BLOB_CONTAINER_BACKEND . This variable must be de�ned for the BlobContainer process and for
processes using dynamic libraries.

The environment variable _BLOB_CONTAINER_BACKEND de�nes not only the name of statically created IPC
channels to the BlobContainer program process, but also de�nes the endpoint name that is published on the
name server and used to dynamically create IPC channels to the BlobContainer program process. This is
convenient when multiple processes of the BlobContainer program are running simultaneously (for example, to
isolate its own dynamic libraries from external ones), and when di�erent processes using dynamic libraries must
interact over IPC with di�erent processes of the BlobContainer program. In this case, you need to de�ne
di�erent values for the environment variable _BLOB_CONTAINER_BACKEND for di�erent processes of the
BlobContainer program, and then use these values for the environment variable _BLOB_CONTAINER_BACKEND
for processes using dynamic libraries. The speci�c value must be selected depending on the speci�c process of
the BlobContainer program that requires the dynamically created IPC channel.

Example use of the environment variable _BLOB_CONTAINER_BACKEND in the init.yaml.in �le:

230

- name: client.Client
 path: client
 env:
 _BLOB_CONTAINER_BACKEND: kl.custombc
@INIT_client_ENTITY_CONNECTIONS@

@INIT_EXTERNAL_ENTITIES@

set_target_properties (ExecMgrEntity PROPERTIES
EXTRA_ENV
" _BLOB_CONTAINER_BACKEND: kl.custombc")

set_target_properties (dump_collector::entity PROPERTIES
EXTRA_ENV
" _BLOB_CONTAINER_BACKEND: kl.custombc")

add_library(<build target name> SHARED [list of paths to files of the library source
code])

add_library(<build target name> [list of paths to files of the library source code])

#!/bin/bash
...
cmake -G "Unix Makefiles" \
 -D CMAKE_BUILD_TYPE:STRING=Debug \
 -D CMAKE_TOOLCHAIN_FILE=$SDK_PREFIX/toolchain/share/toolchain-$TARGET.cmake \
 -D BUILD_SHARED_LIBS=YES \

Example use of the environment variable _BLOB_CONTAINER_BACKEND in CMake commands:

If the BlobContainer program is being used, the VFS working with �les of dynamic libraries must be a separate
process. An IPC channel must also be created from the process of the BlobContainer program to the VFS
process.

Building dynamic libraries

When building dynamic libraries, you must use a toolchain that supports dynamic linking.

To build a dynamic library, you need to use the following CMake command:

Use of this CMake command results in an error if the toolchain does not support dynamic linking.

You can also build a dynamic library by using the following CMake command:

The cmake shell command must be called with the -D BUILD_SHARED_LIBS=YES parameter. (If the cmake shell
command is called without the -D BUILD_SHARED_LIBS=YES parameter, a static library will be built.)

Example:

231

 -B build \
 && cmake --build build --target kos-image

Build the static library
add_library(somelib_static STATIC src/somesrc.cpp)
set_target_properties(somelib_static PROPERTIES OUTPUT_NAME "somelib")
The PLATFORM_SUPPORTS_DYNAMIC_LINKING variable has the
value "true" when using dynamic
linking. If initialize_platform(FORCE_STATIC) is called,
this variable has the value "false".
if(PLATFORM_SUPPORTS_DYNAMIC_LINKING)
Build the dynamic library
 add_library(somelib_shared SHARED src/somesrc.cpp)
 set_target_properties(somelib_shared PROPERTIES OUTPUT_NAME "somelib")
endif()

set_property(TARGET <list of names of build targets> PROPERTY
POSITION_INDEPENDENT_CODE ON)

set(RESOURCES ${CMAKE_SOURCE_DIR}/resources)
set(FSTAB ${RESOURCES}/fstab)
set(DISK_IMG ${CMAKE_CURRENT_BINARY_DIR}/ramdisk0.img)
set(RESOURCES_DIR ${CMAKE_CURRENT_SOURCE_DIR}/../resources)
set(EXT4_PART_DIR ${CMAKE_CURRENT_BINARY_DIR}/../system_hdd)

set_target_properties(${vfs_ENTITY} PROPERTIES
EXTRA_ARGS
" - \"-f\"
 - \"fstab\""
EXTRA_ENV
" ROOTFS: ramdisk0 / ext4 0"
${blkdev_ENTITY}_REPLACEMENT "${ramdisk_ENTITY};${sdcard_ENTITY}")

By default, the library �le name matches the name of the build target de�ned via the parameter of the CMake
add_library() command. The library �le name can be changed by using the CMake
set_target_properties() command. This can be done to make the library �le name identical for its dynamic
and static variants.

Example:

A dynamic library can be linked to other static and dynamic libraries by using the CMake
target_link_libraries() command. In this case, static libraries must be built with the -fPIC �ag. This �ag is
applied when building a static library if the following CMake command is used:

Adding dynamic libraries to a KasperskyOS-based solution image

To add dynamic libraries to the KasperskyOS-based solution image, use PACK_DEPS_COPY_ONLY ON ,
PACK_DEPS_LIBS_PATH , and PACK_DEPS_COPY_TARGET parameters in the CMake commands
build_kos_qemu_image() and build_kos_hw_image() .

Example:

232

add_custom_target(copy-so)

add_custom_command(OUTPUT ${DISK_IMG}
 COMMAND ${CMAKE_COMMAND} -E copy_directory ${RESOURCES_DIR}/rootdir
${EXT4_PART_DIR}
 COMMAND mke2fs -v -d ${EXT4_PART_DIR} -t ext4 ${DISK_IMG} 40M
 DEPENDS copy-so
 COMMENT "Creating disk image '${DISK_IMG}' from files in '${EXT4_PART_DIR}'
...")

build_kos_hw_image(kos-image
 ...
 IMAGE_FILES ${ENTITIES_LIST} ${FSTAB} ${DISK_IMG}
 PACK_DEPS_COPY_ONLY ON
 PACK_DEPS_LIBS_PATH ${EXT4_PART_DIR}/lib
 PACK_DEPS_COPY_TARGET copylibs)

if(PLATFORM_SUPPORTS_DYNAMIC_LINKING)
 add_dependencies(copy-so copylibs)
endif()

Dynamic libraries that are loaded into memory by calling the dlopen() function of the POSIX interface are not
added to the solution image.

The solution program-dependent dynamic libraries are added to a storage device image (for example, one with an
ext4 �le system) that will be included into the solution image.

The build system does the following:

Searches for dynamic libraries and copies these libraries to the directory whose path is speci�ed in the
PACK_DEPS_LIBS_PATH parameter of the CMake commands build_kos_qemu_image() and
build_kos_hw_image() . (To ensure that the found dynamic libraries are included in the storage device image,
this directory must reside in the �le system that will be put into the storage device image.)

Creates a storage device image that includes the directory containing the dynamic libraries.

To create a storage device image, use the CMake command add_custom_command() . The target speci�ed in
the DEPENDS parameter of the CMake command add_custom_command() , indicates that a storage device
image is created. The target speci�ed in the PACK_DEPS_COPY_TARGET parameter of the CMake commands
build_kos_qemu_image() and build_kos_hw_image() , indicates that dynamic libraries are copied. To
make sure that the storage device image is created only after the dynamic libraries are fully copied, use the
CMake command add_dependencies() .

Adds the storage device image to the solution image.

To add the storage device image to the solution image, specify the full path to the storage device image in the
IMAGE_FILES parameter of the CMake commands build_kos_qemu_image() and build_kos_hw_image() .

233

Just like solution components, the KasperskyOS kernel also has a formal speci�cation (for details, see "Methods
of KasperskyOS core endpoints").

The formal speci�cation of a solution component does not de�ne how this component will be implemented. In
other words, the presence of components in a formal speci�cation of a solution component does not mean that
these components will be present in the architecture of this solution component.

Developing security policies

Formal speci�cations of KasperskyOS-based solution components

Solution development includes the creation of formal speci�cations for its components that form a global picture
for the Kaspersky Security Module. A formal speci�cation of a KasperskyOS-based solution component
(hereinafter referred to as the formal speci�cation of the solution component) is comprised of a system of
IDL, CDL and EDL descriptions (IDL and CDL descriptions are optional) for this component. These descriptions are
used to automatically generate transport code of solution components, and source code of the security module
and the initializing program. The formal speci�cations of solution components are also used as source data for the
solution security policy description.

Each solution component corresponds to an EDL description. In terms of a formal speci�cation, a solution
component is a container for components that provide endpoints. Multiple instances of one solution component
may be used at the same time, which means that multiple processes can be started from the same executable �le.
Processes that correspond to the same EDL description are processes of the same class. An EDL description
de�nes the process class name and the top-level component parameters, such as the provided endpoints with
one or multiple interfaces, the security interface, and embedded components.

Each embedded component corresponds to a CDL description. This description de�nes the component name,
provided endpoints, security interface, and embedded components. Embedded components can simultaneously
provide endpoints, support a security interface, and serve as containers for other components. Each embedded
component can provide multiple endpoints with one or more interfaces.

Each interface (including the security interface) is de�ned in an IDL description. This description de�nes the
interface name, signatures of interface methods, and data types for the parameters of interface methods. The
data comprising signatures of interface methods and de�nitions of data types for parameters of interface
methods is referred to as a package.

Processes that do not provide endpoints may only act as clients. Processes that provide endpoints are servers,
but they can also act as clients at the same time.

Names of process classes, components, packages and interfaces

Process classes, components, packages and interfaces are identi�ed by their names in IDL, CDL and EDL
descriptions. Within one KasperskyOS-based solution, the names of process classes and the names of
components form one set of names, while the names of packages form a di�erent set of names. These two sets
may overlap. A set of package names includes a set of interface names.

234

The name of an IDL, CDL or EDL �le begins with an uppercase letter and must not contain any underscores _ .

1. The following declaration is used:

entity <process class name>

2. [Optional] The following declaration is used:

components {
 <component instance name : component name>
 [...]
}

Each component instance is indicated in a separate line. The component instance name must not contain any
underscores _ . The list can contain multiple instances of one component. Each component instance in the list
has a unique name.

3. [Optional] The following declaration is used:

security <interface name>

4. [Optional] The following declaration is used:

endpoints {
 <endpoint name : interface name>

The name of a process class, component, package or interface is a link to the IDL, CDL or EDL �le in which this
name is de�ned. This link is a path to the IDL, CDL or EDL �le (without the extension and dot before it) relative to
the directory that is included in the set of directories where the source code generators search for IDL, CDL and
EDL �les. (This set of directories is de�ned by parameters -I path to the directory .) A dot is used as a
separator in a path description.

< >

For example, the kl.core.NameServer process class name is a link to the EDL �le named NameServer.edl ,
which is located in the KasperskyOS SDK at the following path:

sysroot-*-kos/include/kl/core

However, source code generators must be con�gured to search for IDL, CDL and EDL �les in the following
directory:

sysroot-*-kos/include

EDL description

EDL descriptions are placed into separate *.edl �les and contain declarations in the Entity De�nition Language
(EDL):

Process class name.

List of instances of components.

Security interface.

List of endpoints.

235

 [...]
}

Each endpoint is indicated in a separate line. The endpoint name must not contain any underscores _ . The list
can contain multiple endpoints with the same interface. Each endpoint in the list has a unique name.

A security interface and provided endpoints can be de�ned in an EDL description and in a CDL description. If
solution component development is utilizing already prepared constituent parts (such as libraries) that are
accompanied by CDL descriptions, it is advisable to refer to them from the EDL description by using the
components declaration. Otherwise, you can describe all provided endpoints in the EDL description. In addition,
you can separately de�ne the security interface in the EDL description and in each CDL description.

Examples of EDL �les

Hello.edl

// Class of processes that do not contain components.
entity Hello

Signald.edl

/* Class of processes that contain
 * one instance of one component. */
entity kl.Signald

components {
 signals : kl.Signals
}

LIGHTCRAFT.edl

/* Class of processes that contain
 * two instances of different components. */
entity kl.drivers.LIGHTCRAFT

components {
 KUSB : kl.drivers.KUSB
 KIDF : kl.drivers.KIDF
}

Downloader.edl

/* Class of processes that do not contain
 * components and provide one endpoint. */
entity updater.Downloader

endpoints {
 download : updater.Download
}

The EDL language is case sensitive.

Single-line comments and multi-line comments can be used in an EDL description.

236

1. The following declaration is used:

component <component name>

2. [Optional] The following declaration is used:

security <interface name>

3. [Optional] The following declaration is used:

endpoints {
 <endpoint name : interface name>
 [...]
}

Each endpoint is indicated in a separate line. The endpoint name must not contain any underscores _ . The list
can contain multiple endpoints with the same interface. Each endpoint in the list has a unique name.

4. [Optional] The following declaration is used:

components {
 <component instance name : component name>
 [...]
}

Each component instance is indicated in a separate line. The component instance name must not contain any
underscores _ . The list can contain multiple instances of one component. Each component instance in the list
has a unique name.

At least one optional declaration is used in a CDL description. If a CDL description does not use at least one
optional declaration, this description will correspond to an "empty" component that does not provide endpoints,
does not contain embedded components, and does not support a security interface.

Examples of CDL �les

KscProductEventsProvider.cdl

CDL description

CDL descriptions are placed into individual *.cdl �les and contain declarations in the Component De�nition
Language (CDL):

The name of the component.

Security interface.

List of endpoints.

List of instances of embedded components.

The CDL language is case sensitive.

Single-line comments and multi-line comments can be used in a CDL description.

237

// Component provides one endpoint.
component kl.KscProductEventsProvider

endpoints {
 eventProvider : kl.IKscProductEventsProvider
}

KscConnectorComponent.cdl

// Component provides multiple endpoints.
component kl.KscConnectorComponent

endpoints {
 KscConnCommandSender : kl.IKscConnCommandSender
 KscConnController : kl.IKscConnController
 KscConnSettingsHolder : kl.IKscConnSettingsHolder
 KscDataProvider : kl.IKscDataProvider
 ProductDataHolder : kl.IProductDataHolder
 KscDataNotifier : kl.IKscDataNotifier
 KscConnectorStateNotifier : kl.IKscConnectorStateNotifier
}

FsVerifier.cdl

/* Component does not provide endpoints, supports
 * a security interface, and contains one instance
 * of another component. */
component FsVerifier

security Approve

components {
 verifyComp : Verify
}

1. The following declaration is used:

package <package name>

2. [Optional] The
following declaration is used:

import <package name>

3. [Optional]

IDL description

IDL descriptions are placed into separate *.idl �les and contain declarations in the Interface De�nition Language
(IDL):

Package name.

Packages from which the data types for interface method parameters are imported.

De�nitions of data types for parameters of interface methods.

238

4. [Optional] The following declaration is used:

interface {
 <interface method name([parameters])>;
 [...]
}

Each method signature is indicated in a separate line. The method name must not contain any underscores _ .
Each method in the list has a unique name. The parameters of methods are divided into input parameters (in),
output parameters (out), and parameters for transmitting error information (error). The order of parameters
in the description is important: �rst input parameters, then output parameters, then error parameters. Methods
of the security interface cannot have output parameters and error parameters.

Input parameters and output parameters are transmitted in IPC requests and IPC responses, respectively. Error
parameters are transmitted in IPC responses if the server cannot correctly handle the corresponding IPC
requests.

The server can inform a client about IPC request processing errors via error parameters as well as through
output parameters of interface methods. If the server sets the error �ag in an IPC response when an error
occurs, this IPC response will contain the error parameters without any output parameters. Otherwise this IPC
response will contain output parameters just like when requests are correctly processed. (The error �ag is set in
IPC responses by using the nk_err_reset() macro de�ned in the nk/types.h header �le from the
KasperskyOS SDK.)

An IPC response sent with the error �ag set and an IPC response with the error �ag not set are considered to
be di�erent types of events for the Kaspersky Security Module. When describing a solution security policy, this
di�erence lets you conveniently distinguish between the processing of events associated with the correct
execution of IPC requests and the processing of events associated with incorrect execution of IPC requests. If
the server does not set the error �ag in IPC responses, the security module must check the values of output
parameters indicating errors to properly process events related to the incorrect execution of IPC requests. (A
client can check the state of the error �ag in an IPC response even if the corresponding interface method does
not contain error parameters. To do so, the client uses the nk_msg_check_err() macro de�ned in the
nk/types.h header �le from the KasperskyOS SDK.)

Signatures of interface methods cannot be imported from other IDL �les.

At least one optional declaration is used in a IDL description. If an IDL description does not use at least one
optional declaration, this description will correspond to an "empty" package that does not assign any interface
methods or data types (including from other IDL descriptions).
Some IDL �les from the KasperskyOS SDK do not describe interface methods, but instead only contain
de�nitions of data types. These IDL �les are used only as exporters of data types.
If a package contains a description of interface methods, the interface name matches the package name.

Examples of IDL �les

Env.idl

package kl.Env

// Definitions of data types for interface method parameters
typedef string<128> Name;
typedef string<256> Arg;
typedef sequence<Arg,256> Args;

Signatures of interface methods.

The IDL language is case sensitive.

Single-line comments and multi-line comments can be used in an IDL description.

239

// Interface includes one method.
interface {
 Read(in Name name, out Args args, out Args envs);
}

Kpm.idl

package kl.Kpm

// Import data types for parameters of interface methods
import kl.core.Types

// Definition of data type for parameters of interface methods
typedef string<64> String;

/* Interface includes multiple methods.
 * Some methods do not have any parameters. */
interface {
 Shutdown();
 Reboot();
 PowerButtonPressedWait();
 TerminationSignalWait(in UInt32 entityId, in String entityName);
 EntityTerminated(in UInt32 entityId);
 Terminate(in UInt32 callingEntityId);
}

MessageBusSubs.idl

package kl.MessageBusSubs

// Import data types for interface method parameters
import kl.MessageBusTypes

/* Interface includes a method that has
 * input and output parameters, and
 * an error parameter.*/
interface {
 Wait(in ClientId id,
 out Message topic,
 out BundleId dataId,
 error ResultCode result);
}

WaylandTypes.idl

// Package contains only definitions of data types.
package kl.WaylandTypes

typedef UInt32 ClientId;
typedef bytes<8192> Buffer;
typedef string<4096> ConnectionId;
typedef SInt32 SsizeT;
typedef UInt32 SizeT;
typedef SInt32 ShmFd;
typedef SInt32 ShmId;
typedef bytes<16384000> ShmBuffer;

240

Primitive types

const UInt32 DeviceNameMax = 0o100;
const UInt32 HandleTypeUserLast = 0x0001FFFF;
const UInt32 MaxLogMessageSize = (2 << 3) ** 2;
const UInt32 MaxLogMessageCount = 100;
const UInt64 MaxLen = (MaxLogMessageSize + 4) * MaxLogMessageCount;

Unions

IDL data types

IDL supports primitive data types as well as composite data types. The set of supported composite types includes
unions, structures, arrays, and sequences.

IDL supports the following primitive types:

SInt8 , SInt16 , SInt32 , SInt64 – signed integer.

UInt8 , UInt16 , UInt32 , UInt64 – unsigned integer.

Handle – value whose binary representation consists of multiple �elds, including a handle �eld and a handle
permissions mask �eld.

bytes< size in bytes > – byte bu�er consisting of a memory area with a size that does not exceed the
de�ned number of bytes.

string< size in bytes > – string bu�er consisting of a byte bu�er whose last byte is a terminating zero.
The maximum size of a string bu�er is a unit larger than the de�ned size due to the additional byte with the
terminating zero.

< >

< >

Integer literals can be speci�ed in decimal format, hexadecimal format (for example, 0x2f , 0X2f , 0x2F , 0X2F) or
octal format (for example, 0O123 , 0o123).

You can use the reserved word const to de�ne the named integer constants by assigning their values using
integer literals or integer expressions.

Example de�nitions of named integer constants:

Named integer constants can be used to avoid problems associated with so-called "magic numbers". For example,
if an IDL description de�nes named integer constants for return codes of an interface method, you can interpret
these codes without additional information when describing a policy. Named integer constants and integer
expressions can also be applied in de�nitions of byte bu�ers, string bu�ers, and composite types to de�ne the size
of data or the number of data elements.

The bytes< size in bytes > and string< size in bytes > constructs are used in de�nitions of
composite types, signatures of interface methods, and when creating type aliases because they de�ne
anonymous types (types without a name).

< > < >

241

union <type name> {
 <member type> <member name>;
 [...]
}

union ExitInfo {
 UInt32 code;
 ExceptionInfo exc;
}

Structures

struct <type name> {
 <field type> <field name>;
 [...]
}

struct SessionEvqParams {
 UInt32 count;
 UInt32 align;
 UInt32 size;
}

Arrays

array<<type of elements, number of elements>>

The Handle type can be used as the type of array elements if this array is not included in another composite
data type. However, the total number of handles in an IPC message cannot exceed 255.

A union stores di�erent types of data in one memory area. In an IPC message, a union is provided with an additional
tag �eld that de�nes which speci�c member of the union is used.

The following construct is used to de�ne a union:

Example of a union de�nition:

The following construct is used to de�ne a structure:

Example of a structure de�nition:

The following construct is used to de�ne an array:

This construct is used in de�nitions of other composite types, signatures of interface methods, and when creating
type aliases because it de�nes an anonymous type.

242

Sequences

sequence<<type of elements, number of elements>>

The Handle type cannot be used as the type of sequence elements.

Variable-size and �xed-size types

Types based on composite types

const UInt32 MessageSize = 64;

struct BazInfo {
 array<UInt8, 100> a;
 sequence<sequence<UInt32, MessageSize>, ((2 << 2) + 2 ** 2) * MessageSize> b;
 string<100> c;
 bytes<4096> d;
 UInt64 e;
}

union foo {
 UInt32 value1;
 UInt8 value2;
}

struct bar {

A sequence is a variable-sized array. When de�ning a sequence, the maximum number of elements of the
sequence is speci�ed.

The following construct is used to de�ne a sequence:

This construct is used in de�nitions of other composite types, signatures of interface methods, and when creating
type aliases because it de�nes an anonymous type.

The bytes , string and sequence types are variable-size types. In other words, the maximum number of
elements is assigned when de�ning these types, but less elements (or none) may actually be used. Data of the
bytes , string and sequence types are stored in the IPC message arena. All other types are �xed-size types.
Data of �xed-size types are stored in the constant part of IPC messages.

Composite types can be used to de�ne other composite types. The de�nition of an array or sequence can also be
included in the de�nition of another type.

Example de�nition of a structure with embedded de�nitions of an array and sequence:

The de�nition of a union or structure cannot be included in the de�nition of another type. However, a type
de�nition may include already de�ned unions and structures. This is done by indicating the names of the included
types in the type de�nition.

Example de�nition of a structure that includes a union and structure:

243

 UInt32 a;
 UInt8 b;
}

struct BazInfo {
 foo x;
 bar y;
}

Creating aliases of types

typedef <type name/anonymous type definition> <type alias>

typedef UInt64 ApplicationId;
typedef Handle PortHandle;

typedef array<UInt8, 4> IP4;

const UInt32 MaxDevices = 8;
struct Device {
 string<32> DeviceName;
 UInt8 DeviceID;
}
typedef sequence<Device, MaxDevices> Devices;

union foo {
 UInt32 value1;
 UInt8 value2;
}

typedef foo bar;

De�ning anonymous types in signatures of interface methods

Type aliases make it more convenient to work with types. For example, type aliases can be used to assign
mnemonic names to types that have abstract names. Assigned aliases for anonymous types also let you receive
named types.

The following construct is used to create a type alias:

Example of creating mnemonic aliases:

Example of creating an alias for an array de�nition:

Example of creating an alias for a sequence de�nition:

Example of creating an alias for a union de�nition:

244

const UInt8 DeviceCount = 8;

interface {
 Poll(in UInt32 timeout,
 out sequence<UInt32, DeviceCount / 2> report,
 out UInt32 count,
 out UInt32 rc);
}

const UInt8 itemHeaderLen = 2;
const UInt8 itemBlockLen = 4;
const UInt8 maxItemCount = 0X10;
const UInt64 maxLen = (2 << 3) + (itemHeaderLen + itemBlockLen * 4) * maxItemCount;

interface {
 CopyPage(in array<UInt8, 4 * maxLen> page);
}

Details on operators of integer expressions in IDL

Syntax Operation Precedence Associativity Special considerations

-a Sign change 1 No N/A

~a Bitwise
negation

1 No N/A

a **
b Exponentiation 2 No

Anonymous types can be de�ned in signatures of interface methods.

Example of de�ning a sequence in an interface method signature:

Integer expressions in IDL

Integer expressions in IDL are composed of named integer constants, integer literals, operators (see the table
below), and grouping parentheses.

Example use of integer expressions:

If an integer over�ow occurs when computing an expression, the source code generator using the IDL �le will
terminate with an error.

Special considerations:

Due to the lack of associativity, you must use
parentheses when specifying multiple
consecutive operators to de�ne the order of
operations.

Example:

(a ** b) ** c

a ** (b ** c)

The power exponent cannot be negative.

245

a * b Multiplication 3 Left N/A

a / b Integer division 3 Left

a % b Modulo 3 Left

a + b Addition 4 Left N/A

a - b Subtraction 4 Left N/A

a <<
b Bit shift left 2* No

a >>
b

Bit shift right 2* No

Special considerations:

The result of the operation is a value obtained
by rounding the real quotient down to the next
lower integer. For example, 4 / 3 = 1, -4 / 3 = -2.

The divisor cannot be zero.

Special considerations:

The sign of the operation result matches the
sign of the divisor. For example, -5 % 2 = 1, 5 %
-2 = -1.

The divisor cannot be zero.

Special considerations:

The precedence is lower than with unary
operations but incomparable to the
precedences of binary arithmetic operations.
Therefore, in expressions with binary arithmetic
operations, you must use parentheses to
de�ne the order of operations.

Example:

a << (b + c)

(a << b) ** c

Due to the lack of associativity, you must use
parentheses when specifying multiple
consecutive operators to de�ne the order of
operations.

Example:

(a << b) << c

a << (b << c)

The shift value must be within the interval [0;
63].

Special considerations:

The precedence is lower than with unary
operations but incomparable to the
precedences of binary arithmetic operations.
Therefore, in expressions with binary arithmetic
operations, you must use parentheses to
de�ne the order of operations.

Example:

246

The top-level �le is normally named security.psl , but it can have any other name in the *.psl format.

a >> (b * c)

(a >> b) / c

Due to the lack of associativity, you must use
parentheses when specifying multiple
consecutive operators to de�ne the order of
operations.

Example:

(a >> b) >> c

a >> (b >> c)

The shift value must be within the interval [0;
63].

Describing a security policy for a KasperskyOS-based solution

A KasperskyOS-based solution security policy description (hereinafter also referred to as a solution security policy
description or policy description) provides a set of interrelated text �les with the psl extension that contain
declarations in the PSL language (Policy Speci�cation Language). Some �les reference other �les through an
inclusion declaration, which results in a hierarchy of �les with one top-level �le. The top-level �le is speci�c to the
solution. Files of lower and intermediate levels contain parts of the solution security policy description that may be
speci�c to the solution or may be re-used in other solutions.

Some of the �les of the lower and intermediate levels are provided in the KasperskyOS SDK. These �les contain
de�nitions of the basic data types and formal descriptions of KasperskyOS security models. KasperskyOS
security models (hereinafter referred to as security models) serve as the framework for implementing security
policies for KasperskyOS-based solutions. Files containing formal descriptions of security models reference a �le
containing de�nitions of the basic data types that are used in the descriptions of models.

The other �les of lower and intermediate levels are created by the policy description developer if any parts of the
policy description need to be re-used in other solutions. A policy description developer can also put parts of the
policy description into separate �les for convenient editing.

The top-level �le references �les containing de�nitions of basic data types and descriptions of security models
that are applied in the part of the solution security policy that is described in this �le. The top-level �le also
references all �les of the lower and intermediate levels that were created by the policy description developer.

General information about a KasperskyOS-based solution security policy
description

In simpli�ed terms, a KasperskyOS-based solution security policy description consists of bindings that associate
descriptions of security events with calls of methods provided by security model objects. A security model object
is an instance of a class whose de�nition is a formal description of a security model (in a PSL �le). Formal
descriptions of security models contain signatures of methods of security models that determine the
permissibility of interactions between di�erent processes and between processes and the KasperskyOS kernel.
These methods are divided into two types:

247

Security models

Security model rules are methods of security models that return a "granted" or "denied" result. Security model
rules can change security contexts (for information about a security context, see "Resource Access Control").

Security model expressions are methods of security models that return values that can be used as input data
for other methods of security models.

A security model object provides methods that are speci�c to one security model and stores the parameters used
by these methods (for example, the initial state of a �nite-state machine or the size of a container for speci�c
data). The same object can be used to work with multiple resources. (In other words, you do not need to create a
separate object for each resource.) However, the security contexts of these resources will be independent of each
other. Likewise, multiple objects of one or more di�erent security models can be used to work with the same
resource. In this case, di�erent objects will use the security context of the same resource without any reciprocal
in�uence.

Security events serve as signals indicating the initiation of interaction between di�erent processes and between
processes and the KasperskyOS kernel. Security events include the following events:

Clients send IPC requests.

Servers or the kernel send IPC responses.

The kernel or processes initialize the startup of processes.

The kernel starts.

Processes query the Kaspersky Security Module via the security interface.

Security events are processed by the security module.

The KasperskyOS SDK provides PSL �les that describe the following security models:

Base – methods that implement basic logic.

Pred – methods that implement comparison operations.

Bool – methods that implement logical operations.

Math – methods that implement integer arithmetic operations.

Struct – methods that provide access to structural data elements (for example, access to parameters of
interface methods transmitted in IPC messages).

Regex – methods for text data validation based on regular expressions.

HashSet – methods for working with one-dimensional tables associated with resources.

StaticMap – methods for working with two-dimensional "key–value" tables associated with resources.

Flow – methods for working with �nite-state machines associated with resources.

Mic – methods for implementing Mandatory Integrity Control (MIC).

248

Security event handling by the Kaspersky Security Module

Basic rules

1. Declarations can be listed in any sequence in a �le.

2. One declaration can be written to one or multiple lines.

3. The PSL language is case sensitive.

4. Single-line comments and multi-line comments are supported:

/* This is a comment
 * And this, too */
// Another comment

Types of declarations

The Kaspersky Security Module calls all methods (rules and expressions) of security models related to an occurring
security event. If all rules returned the "granted" result, the security module returns the "granted" decision. If even
one rule returned the "denied" result, the security module returns the "denied" decision.

If even one method related to an occurring security event cannot be correctly performed, the security module
returns the "denied" decision.

If no rule is related to an occurring security event, the security module returns the "denied" decision. In other words,
all interactions between solution components and between those components and the KasperskyOS kernel are
denied by default (Default Deny principle) unless those interactions are explicitly allowed by the solution security
policy.

PSL language syntax

The PSL language has declarations for the following purposes:

Setting the global parameters of a solution security policy

Including PSL �les in a solution security policy description

Including EDL �les in a solution security policy description

Create security model objects

Bind methods of security models to security events

Creating security audit pro�les

Creating solution security policy tests

249

use <link to PSL file._>

Setting the global parameters of a KasperskyOS-based solution security
policy

Global parameters include the following parameters of a solution security policy:

Execute interface used by the KasperskyOS kernel when querying the Kaspersky Security Module to notify it
about kernel startup or about initiating the startup of a process by the kernel or by other processes. To de�ne
this interface, use the following declaration:

execute: kl.core.Execute

KasperskyOS currently supports only one execute interface (Execute) de�ned in the �le named
kl/core/Execute.idl . (This interface consists of one main method, which has no parameters and does not
perform any actions. The main method is reserved for potential future use.)

[Optional] Global security audit pro�le and initial security audit run-time level. (For more details about pro�les
and the security audit run-time level, see "Creating security audit pro�les".) To de�ne these parameters, use the
following declaration:

audit default = <security audit profile name> <security audit runtime-level>

Example:

audit default = global 0

The default global pro�le is the empty security audit pro�le described in the �le named
toolchain/include/nk/base.psl from the KasperskyOS SDK, and the default security audit runtime-level
is 0. When the empty security audit pro�le is applied, a security audit is not conducted.

Including PSL �les in a KasperskyOS-based solution security policy
description

To include a PSL �le in a policy description, use the following declaration:

The link to the PSL �le is the �le path (without the extension and dot before it) relative to the directory that is
included in the set of directories where the nk-psl-gen-c compiler searches for PSL, IDL, CDL, and EDL �les.
(This set of directories is de�ned by the parameters -I path to the directory when starting the makekss
script or the nk-psl-gen-c compiler.) A dot is used as a separator in a path description. A declaration is ended by
the ._ character sequence.

< >

Example:

250

use policy_parts.flow_part._

Including a PSL �le containing a formal description of a security model

/* Include the base.psl file containing a formal description of the
 * Base security model */
use nk.base._

/* Include the flow.psl file containing a formal description of the
 * Flow security model */
use nk.flow._
/* The nk-psl-gen-c compiler must be configured to search for
 * PSL, IDL, CDL, and EDL files in the toolchain/include directory. */

use EDL kl.core.Core

use EDL <link to EDL file>

This declaration includes the flow_part.psl �le, which is located in the policy_parts directory. The
policy_parts directory must reside in one of the directories where the nk-psl-gen-c compiler searches for
PSL, IDL, CDL, and EDL �les. For example, the policy_parts directory may reside in the same directory as the
PSL �le containing this declaration.

To use the methods of a required security model, the policy description must include a PSL �le containing a formal
description of this model. PSL �les containing formal descriptions of security models are located in the
KasperskyOS SDK at the following path:

toolchain/include/nk

Example:

Including EDL �les in a KasperskyOS-based solution security policy
description

To include an EDL �le for the KasperskyOS kernel in a policy description, use the following declaration:

To include an EDL �le for a program (such as a driver or application) into a policy description, use the following
declaration:

The link to the EDL �le is the EDL �le path (without the extension and dot before it) relative to the directory that is
included in the set of directories where the nk-psl-gen-c compiler searches for PSL, IDL, CDL, and EDL �les.
(This set of directories is de�ned by the parameters -I path to the directory when starting the makekss
script or the nk-psl-gen-c compiler.) A dot is used as a separator in a path description.

< >

Example:

251

/* Include the UART.edl file, which is located
 * in the KasperskyOS SDK at the path sysroot-*-kos/include/kl/drivers. */
use EDL kl.drivers.UART
/* The nk-psl-gen-c compiler must be configured to search for
 * PSL, IDL, CDL, and EDL files in the sysroot-*-kos/include directory. */

policy object <security model object name : security model name> {
 [security model object parameters]
}

<security event type> [security event selectors] {
 [security audit profile]
 <called security model methods>
}

The nk-psl-gen-c compiler �nds IDL and CDL �les through EDL �les because EDL �les contain links to the
corresponding CDL and IDL �les, and the CDL �les contain links to the corresponding CDL and IDL �les.

Creating security model objects

To call the methods of a required security model, create an object for this security model.

To create a security model object, use the following declaration:

The security model object name must begin with a lowercase letter. The parameters of a security model object are
speci�c to the security model. A description of parameters and examples of creating objects of various security
models are provided in the "KasperskyOS security models" section.

Binding methods of security models to security events

To create an attachment between methods of security models and a security event, use the following declaration:

Security event type

To de�ne the security event type, use the following speci�ers:

request – sending IPC requests.

response – sending IPC responses.

error – sending IPC responses containing information about errors.

security – processes querying the Kaspersky Security Module via the security interface.

execute – initializing the startups of processes or the startup of the KasperskyOS kernel.

252

When processes interact with the security module, they use a mechanism that is di�erent from IPC. However,
when describing a policy, queries sent by processes to the security module can be viewed as the transfer of IPC
messages because processes actually transmit messages to the security module (the recipient is not indicated
in these messages).
The IPC mechanism is not used to start processes. However, when the startup of a process is initiated, the
kernel queries the security module and provides information about the initiator of the startup and the started
process. For this reason, the policy description developer can consider the startup of a process to be analogous
to sending an IPC message from the startup initiator to the started process. When the kernel is started, this is
analogous to the kernel sending an IPC message to itself.

Security event selectors

Security event selectors let you clarify the description of the de�ned type of security event. You can use the
following selectors:

src= kernel/process class name – processes of the de�ned class or the KasperskyOS kernel are the
sources of IPC messages.

dst= kernel/process class name – processes of the de�ned class or the kernel are the recipients of IPC
messages.

interface= interface name – describes the following security events:

component= component name – describes the following security events:

endpoint= qualified endpoint name – describes the following security events:

method= method name – describes the following security events:

< >

< >

< >

Clients attempt to use the endpoints of servers or the kernel with the de�ned interface.

Processes query the Kaspersky Security Module via the de�ned security interface.

The kernel or servers send clients the results from using the endpoints with the de�ned interface.

< >

Clients attempt to use the core or server endpoints provided by the de�ned component.

The kernel or servers send clients the results from using the endpoints provided by the de�ned component.

< >

Clients attempt to use the de�ned core or server endpoints.

The kernel or servers send clients the results from using the de�ned endpoint.

< >

Clients attempt to query servers or the kernel by calling the de�ned method of the endpoint.

Processes query the security module by calling the de�ned method of the security interface.

The kernel or servers send clients the results from calling the de�ned method of the endpoint.

The kernel noti�es the security module about its startup by calling the de�ned method of the execute
interface.

The kernel initiates the startup of processes by calling the de�ned method of the execute interface.

253

The type and selectors of a security event form the security event description. It is recommended to describe
security events with maximum precision to allow only the required interactions between di�erent processes and
between processes and the kernel. If IPC messages of the same type are always veri�ed when processing the
de�ned event, the description of this event is maximally precise.

Processes initiate the startup of other processes, which results in the kernel calling the de�ned method of
the execute interface.

Process classes, components, instances of components, interfaces, endpoints, and methods must be named the
same as they are in the IDL, CDL, and EDL descriptions. The kernel must be named kl.core.Core .

The quali�ed name of the endpoint has the format path to endpoint.endpoint name . The path to the
endpoint is a sequence of component instance names separated by dots. Among these component instances,
each subsequent component instance is embedded into the previous one, and the last one provides the endpoint
with the de�ned name.

< >

For security events, specify the quali�ed name of the security interface method if you need to use the security
interface de�ned in a CDL description. (If you need to use a security interface de�ned in an EDL description, it is
not necessary to specify the quali�ed name of the method.) The quali�ed name of a security interface method is a
construct in the format path to security interface.method name . The path to the security interface is a
sequence of component instance names separated by dots. Among these component instances, each
subsequent component instance is embedded into the previous one, and the last one supports the security
interface that includes the method with the de�ned name.

< >

If selectors are not speci�ed, the participants of a security event may be any process and the kernel (except
security events in which the kernel cannot participate).

You can use combinations of selectors. Selectors can be separated by commas.

There are restrictions on the use of selectors. The interface , component , and endpoint selectors cannot be
used for security events of the execute type. The dst , component , and endpoint selectors cannot be used for
security events of the security type.

There are also restrictions on combinations of selectors. For security events of the request , response and
error types, the method selector can only be used together with one of the endpoint , interface , or
component selectors or a combination of them. (The method , endpoint , interface and component selectors
must be coordinated. In other words, the method, endpoint, interface, and component must be interconnected.)
For security events of the request type, the endpoint selector can be used only together with the dst
selector. For security events of the response and error types, the endpoint selector can be used only
together with the src selector.

To ensure that IPC messages of the same type correspond to a security event description, one of the following
conditions must be ful�lled for this description:

For events of the request , response and error type, the "interface method-endpoint-server class or
kernel" chain is unequivocally de�ned. For example, the security event description request dst=Server
endpoint=net.Net method=Send corresponds to IPC messages of the same type, and the security event
description request dst=Server corresponds to any IPC message sent to the Server .

For security events, the security interface method is speci�ed.

The execute-interface method is indicated for execute events.

There is currently support for only one �ctitious method of the main execute-interface. This method is used
by default, so it does not have to be de�ned through the method selector. This way, any description of an
execute security event corresponds to IPC messages of the same type.

254

audit <security audit profile name>

[security model object name.]<security model method name> <parameter>

When a security event is processed by the Kaspersky Security Module, expressions are called before rules.
Therefore, expressions do not receive the changes made by rules. For example, if a declaration of attachment
between StaticMap security model methods and security events �rst speci�es the set rule and then speci�es
the get_uncommited expression for the same resource, the get_uncommited expression will return the key
value that was de�ned before the current security event was processed instead of the key value that is de�ned
by the set rule when processing the current security event. The key value de�ned by the set rule when
processing the current security event can be returned by the get_uncommited expression only when
processing subsequent security events if the security module returns the "allowed" decision as a result of
processing the current security event. If the security module returns a "denied" decision as a result of
processing the current security event, all changes made by rules and expressions invoked during processing of
the current security event will be discarded.

Security audit pro�le

To de�ne a security audit pro�le, use the following construct:

If a security audit pro�le is not de�ned, the global security audit pro�le is used.

Called security model methods

To call a security model method, use the following construct:

Data of PSL-supported types can be used as the parameter. However, the following special considerations should
be taken into account:

If a security model method does not actually have a parameter, this method formally has a Unit-type parameter
designated as () .

If a security model method parameter is a dictionary {name of field 1 : value of field 1[, name of
field 2 : value of field 2]...} , this parameter does not need to be enclosed in parentheses.

If the security model method parameter is not a dictionary and does not have the Unit type, this parameter
must be enclosed in parentheses.

You can call one or more methods by using the same or di�erent security model objects. Security model rules can
use the parameter to receive values returned by expressions of security models.

A security model method (rule or expression) can use the parameter to receive the parameters of interface
methods. (For details about obtaining access to parameters of interface methods, see "Struct security model"). A
security model method can also use the parameter to receive the SID values of processes and the KasperskyOS
kernel that are de�ned by the reserved words src_sid and dst_sid . The �rst reserved word refers to the SID of
the process (or kernel) that is the source of the IPC message. The second reserved word refers to the SID of the
process (or kernel) that is the recipient of the IPC message (dst_sid cannot be used for queries to the Kaspersky
Security Module).

255

You do not have to indicate the security model object name to call certain security model methods. Also, some
of the security model methods must be called using operators instead of the call construct. For details about
the methods of security models, see KasperskyOS Security models.

Embedded constructs for binding methods of security models to security events

 match <security event selectors> {
 [security audit profile]
 <called security model methods>
 }

 choice <call of the security model expression that verifies fulfillment of
conditions> {
 "<condition 1>" : [{] // Conditional section 1
 <called security model methods>
 [}]
 "<condition 2>" : ... // Conditional section 2
 ...
 _ : ... // Conditional section, if no condition is fulfilled.
 }

You can verify the ful�llment of conditions in the choice construct only by using the expressions that are
specially intended for this purpose. Some security models contain these expressions (for more details, see
KasperskyOS Security models).
Only text and integer literals, logical values and the _ character designating an always true condition can be
used as conditions.

Examples of binding security model methods to security events

In one declaration, you can bind methods of security models to di�erent security events of the same type. To do
so, use the match sections that consist of the following types of constructs:

Match sections can be embedded into another match section. A match section simultaneously uses its own
security event selectors and the security event selectors at the level of the declaration and all match sections in
which this match section is "wrapped". By default, a match section applies the security audit pro�le of its own
container (match section of the preceding level or the declaration level), but you can de�ne a separate security
audit pro�le for the match section.

In one declaration, you can de�ne di�erent variants for processing a security event depending on the conditions in
which this event occurred (for example, depending on the state of the �nite-state machine associated with the
resource). To do so, use the conditional sections that are elements of the following construct:

The choice construct can be used within a match section. A conditional section uses the security event selectors
and security audit pro�le of its own container.

If multiple conditions described in the choice construct are simultaneously ful�lled when a security event is
processed, only the one conditional section corresponding to the �rst true condition on the list is triggered.

See "Examples of binding security model methods to security events", "Example descriptions of basic security
policies for KasperskyOS-based solutions", and "KasperskyOS security models".

256

Regardless of whether or not audit pro�les are being used, audit data contains information about "denied"
decisions that were made by the Kaspersky Security Module when IPC messages were invalid and when handling
security events that are not associated with any security model rule.

audit profile <security audit profile name> =
 { <security audit runtime-level> :
 // Security audit configuration
 { <security model object name> :
 { kss: <security audit conditions linked to the results
 from calls of security model methods>
 [, security audit conditions specific to the security model]
 }
 [,...]
 }
[,...]
 }

Security audit runtime-level

Creating security audit pro�les

A security audit (hereinafter also referred to as an audit) is the following sequence of actions. The Kaspersky
Security Module noti�es the KasperskyOS kernel about decisions made by this module. Then the kernel forwards
this data to the system program Klog , which decodes this data and forwards it to the system program
KlogStorage (data is transmitted via IPC). The latter sends the received audit data to standard output (or
standard error) or writes it to a �le.

Security audit data (hereinafter referred to as audit data) refers to information about decisions made by the
Kaspersky Security Module, which includes the actual decisions ("granted" or "denied"), descriptions of security
events, results from calling methods of security models, and data on incorrect IPC messages. Data on calls of
security model expressions is included in the audit data just like data on calls of security model rules.

To perform a security audit, you need to associate security model objects with security audit pro�le(s). A security
audit pro�le (hereinafter also referred to as an audit pro�le) combines security audit con�gurations (hereinafter
also referred to as audit con�gurations), each of which de�nes the security model objects covered by the audit,
and speci�es the conditions for conducting the audit. You can de�ne a global audit pro�le (for more details, see
"Setting the global parameters of a KasperskyOS-based solution security policy") and/or assign an audit pro�le(s)
at the level of binding security model methods to security events, and/or assign an audit pro�le(s) at the level of
match sections (for more details, see "Binding methods of security models to security events").

To create a security audit pro�le, use the following declaration:

The security audit runtime-level (hereinafter referred to as the audit runtime-level) is a global parameter of a
solution security policy and consists of an unsigned integer that de�nes the active security audit con�guration.
(The word "runtime-level" here refers to the con�guration variant and does not necessarily involve a hierarchy.) The
audit runtime-level can be changed during operation of the Kaspersky Security Module. To do so, use a specialized
method of the Base security model that is called when processes query the security module through the security
interface (for more details, see "Base security model"). The initial audit runtime-level is assigned together with the
global audit pro�le (for more details, see "Setting the global parameters of a KasperskyOS-based solution security
policy"). An empty audit pro�le can be explicitly assigned as the global audit pro�le.

257

Name of the security model object

Information about the decisions of the Kaspersky Security Module contained in audit data includes the overall
decision of the security module as well as the results from calling individual methods of security modules
covered by the audit. To ensure that information about a security module decision is included in audit data, at
least one method called during security event handling must be covered by the audit.
The names of security model objects and the names of methods provided by these objects are included in the
audit data.

Security audit conditions

You can de�ne multiple audit con�gurations in an audit pro�le. In di�erent con�gurations, di�erent security model
objects can be covered by the audit and di�erent conditions for conducting the audit can be applied. Audit
con�gurations in a pro�le correspond to di�erent audit runtime-levels. If a pro�le does not have an audit
con�guration corresponding to the current audit runtime-level, the security module will activate the con�guration
that corresponds to the next-lowest audit runtime-level. If a pro�le does not have an audit con�guration for an
audit runtime-level equal to or less than the current level, the security module will not use this pro�le (in other
words, an audit will not be performed for this pro�le).

The capability to change the audit runtime-level lets you regulate the level of detail of an audit, for example. The
higher the audit runtime-level, the higher the level of detail. In other words, a higher audit runtime-level activates
audit con�gurations in which more security model objects are covered by the audit and/or less restrictions are
applied in the audit conditions. In addition, you can change the audit runtime-level to switch the audit from one set
of logically connected security model objects to another set. For example, a low audit runtime-level activates audit
con�gurations in which the audit covers security model objects related to drivers, a medium audit runtime-level
activates audit con�gurations in which the audit covers security model objects related to the network subsystem,
and a high audit runtime-level activates audit con�gurations in which the audit covers security model objects
related to applications.

The security model object name is indicated so that the methods provided by this object can be covered by the
audit. These methods will be covered by the audit whenever they are called, provided that the conditions for
conducting the audit are observed.

Security audit conditions must be de�ned separately for each object of a security model.

To de�ne the audit conditions related to the results from calling security model methods, use the following
constructs:

["granted"] – the audit is performed if the rules return the "granted" result; the expressions are correctly
executed.

["denied"] – the audit is performed if the rules return the "denied" result; the expressions are incorrectly
executed.

["granted", "denied"] – the audit is performed regardless of the result returned by rules, and regardless
of whether or not rules are correctly ful�lled.

[] – the audit is not performed.

Audit conditions speci�c to security models are de�ned by constructs speci�c to these models (for more details,
see KasperskyOS Security models). These conditions apply to rules and expressions. For example, one of these
conditions can be the state of a �nite-state machine.

258

Security audit pro�le for a security audit route

Examples of security audit pro�les

assert ["name of test set"] {
// Constructs in PAL (Policy Assertion Language)
 [setup {<initial part of tests>}]
 sequence ["test name"] {<main part of test>}
 [...]
 [finally {<final part of tests>}]
}

After completing each test, all modi�cations in the Kaspersky Security Module related to the execution of this
test are rolled back.

Test cases

A security audit route includes the kernel and the Klog and KlogStorage processes, which are connected by IPC
channels based on the "kernel – Klog – KlogStorage " scheme. Security model methods that are associated with
transmission of audit data via this route must not be covered by the audit. Otherwise, this will lead to an avalanche
of audit data because any data transmission will give rise to new data.

To "suppress" an audit that was de�ned by a pro�le with a wider scope (for example, by a global pro�le or a pro�le
at the level of binding security model methods to a security event), assign an empty audit pro�le at the level of
binding security model methods to security events or at the level of the match section.

See "Examples of security audit pro�les".

Creating and performing tests for a KasperskyOS-based solution security
policy

A solution security policy is tested to verify whether or not the policy actually allows what should be allowed and
denies what should be denied.

To create a set of tests for a solution security policy, use the following declaration:

You can create multiple sets of tests by using several of these declarations.

A set of tests can optionally include the initial part of the tests and/or the �nal part of the tests. The execution of
each test from the set begins with whatever is described in the initial part of the test and ends with whatever is
described in the �nal part of the test. This lets you describe the repeated initial and/or �nal parts of tests in each
test.

Each test includes one or more test cases.

A test case associates a security event description and values of interface method parameters with an expected
decision of the Kaspersky Security Module. If the actual security module decision matches the expected decision,
the test case passes. Otherwise it fails.

259

[<expected decision of security module> ["test case name"]] <security event type>
<security event selectors> [{interface method parameter values}]

<variable name> <- execute dst=<kernel/process class name> ...

When a test is run, the test cases are executed in the same sequence in which they are described. In other words,
the test demonstrates how the security module handles a sequence of security events.

If all test cases within a test pass, the test passes. If even one test case fails to pass, the test fails. A test is
terminated on the �rst failing test case. Each test from the set is run regardless of whether the previous test
passed or failed.

A test case description in the PAL language is comprised of the following construct:

The expected decision of the security module can be indicated as grant ("granted"), deny ("denied") or any ("any
decision"). You are not required to indicate the expected decision of the security module. The "granted" decision is
expected by default. If the any value is speci�ed, the security module decision does not have any in�uence on
whether or not the test case passes. In this case, the test case may fail due to errors that occur when the security
module processes an IPC message (for example, when the IPC message has an invalid structure).

The name of the test case can be speci�ed if only the expected decision of the security module is speci�ed.

For information about the types and selectors of security events, and about the limitations when using selectors,
see Binding methods of security models to security events. Selectors must ensure that the security event
description corresponds to IPC messages of the same type. (When security model methods are bound to security
events, selectors may not ensure this.)

In security event descriptions, you need to specify the SID instead of the process class name (and the
KasperskyOS kernel). However, this requirement does not apply to execute events for which the SID of the
started process (or kernel) is unknown. To save the SID of the process or kernel to a variable, you need to use the
<- operator in the test case description in the following format:

The SID value will be assigned to the variable even if startup of the process of the de�ned class (or kernel) is
denied by the tested policy but the "denied" decision is expected.

The PAL language supports abbreviated forms of security event descriptions:

security : Process SID ! qualified name of security interface method corresponds to
security src= process SID method= qualified name of security interface method .

request : client SID ~> kernel/server SID : qualified name of endpoint.method name
corresponds to request src= client SID dst= kernel/server SID endpoint=
qualified name of endpoint method= method name .

response : client SID <~ kernel/server SID :
qualified name of endpoint.method name corresponds to response src= kernel/server SID
dst= client SID endpoint= qualified name of endpoint method= method name .

< > < >
< > < >

< > < > < >
< > < >

< > < >

< > < >
< > < >

< > < > < >

The values of interface method parameters must be de�ned for all types of security events except execute . If
the interface method has no parameters, specify {} . You cannot specify {} for security events of the execute
type.

Interface method parameters and their values must be de�ned by comma-separated constructs that look as
follows:

260

<parameter name> : <value>

{ param1 : 23, param2 : "bar", param3 : { collection : [5,7,12], filehandle : 15 },
param4 : { name : ["foo", "baz" } }

Currently, only an SID can be indicated as the value of a Handle parameter, and there is no capability to indicate
the SID together with a handle permissions mask. For this reason, it is not possible to properly test a solution
security policy when the permissions masks of handles in�uence the security module decisions.

/* Parameter is specified. */
request src=x dst=y endpoint=e method=m { name : { firstname: "a", lastname: "b" } }
/* Parameter is not specified. The applied value of the name parameter will be a
structure
 * consisting of two zero-sized string buffers.*/
request src=x dst=y endpoint=e method=m {}
/* Parameter element is not specified. The applied value of the lastname parameter
element will be
 * a zero-sized string buffer.*/
request src=x dst=y endpoint=e method=m { name : { firstname: "a"} }

Example tests

The names and types of parameters must comply with the IDL description. The sequence order of parameters is
not important.

Example de�nition of parameter values:

In this example, the number is passed through the param1 parameter. The string bu�er is passed through the
param2 parameter. A structure consisting of two �elds is passed through the param3 parameter. The
collection �eld contains an array or sequence of three numeric elements. The filehandle �eld contains the
SID. A union or structure containing one �eld is passed through the param4 parameter. The name �eld contains an
array or sequence of two string bu�ers.

The values of parameters (or elements of parameters) do not have to be speci�ed. If they are not speci�ed, the
system automatically applies the default values corresponding to the IDL types of parameters (and elements of
parameters):

The default values for numerical types and the Handle type are zero.

A zero-sized byte- or string bu�er is the default value for byte- or string bu�ers.

The default value for sequences is a sequence with zero elements.

The default value for arrays is an array of elements with the default values.

The default value for structures is a structure consisting of �elds with the default values.

For unions, the default value of the �rst member of the union is applied by default.

Example of applying the default value for a parameter and parameter element:

261

Test procedure

1. Save the tests in one or multiple PSL �les (*.psl or *.psl.in) .

2. Add the CMake command add_kss_pal_qemu_tests() to one of the CMakeLists.txt �les of the project.

Use the PSL_FILES parameter to de�ne the paths to PSL �les containing tests. Use the DEPENDS parameter
to de�ne the CMake targets whose execution will cause the PSL �le-dependent IDL, CDL, and EDL �les to be
put into the directories where the nk-psl-gen-c compiler can �nd them. If *.psl.in �les are utilized, use the
ENTITIES parameter to de�ne the names of process classes of system programs. (These system programs are
included in a KasperskyOS-based solution that requires security policy testing.)

Example use of the CMake command add_kss_pal_qemu_tests() in the �le einit/CMakeLists.txt :

add_kss_pal_qemu_tests (
 PSL_FILES src/security.psl.in
 DEPENDS kos-qemu-image
 ENTITIES ${ENTITIES})

3. Build and run the tests.

You must run the Bash build script cross-build.sh with the parameter --target pal-test N (N is the
index of the PSL �le in the list of PSL �les de�ned through the PSL_FILES parameter of the CMake command
add_kss_pal_qemu_tests() at step 2. For example, --target pal-test0 will create a KasperskyOS-
based solution image corresponding to the �rst PSL �le de�ned through the PSL_FILES parameter of the
CMake command add_kss_pal_qemu_tests() and then run that image in QEMU. (Instead of applications and
system programs, this solution will contain the program that runs tests.)

Example:

./cross-build.sh --target pal-test0

[==========] Running 4 tests from 1 test suite.
[----------] Global test environment set-up.
[----------] 4 tests from KSS
[RUN] KSS.KssUnitTest_flow_normal
[OK] KSS.KssUnitTest_flow_normal (6 ms)
[RUN] KSS.KssUnitTest_flow_ping_must_be_first
/home/work/build/stat/build/install/examples/ping/build/einit/
pal-test/gen_security.psl.test.c:9742: Failure
Expected equality of these values:
 rc
 Which is: -1
 NK_EOK
 Which is: 0
gen_security.psl:116: expect grant

[FAILED] KSS.KssUnitTest_flow_ping_must_be_first (8 ms)
[RUN] KSS.KssUnitTest_flow_ping_ping_is_deny
[OK] KSS.KssUnitTest_flow_ping_ping_is_deny (4 ms)

See "Examples of tests for KasperskyOS-based solution security policies".

The test procedure includes the following steps:

< >

Example test results:

262

[RUN] KSS.KssUnitTest_flow_test_deny
[OK] KSS.KssUnitTest_flow_test_deny (1 ms)
[----------] 4 tests from KSS (29 ms total)

[----------] Global test environment tear-down
[==========] 4 tests from 1 test suite ran. (42 ms total)
[PASSED] 3 tests.
[FAILED] KSS.KssUnitTest_flow_ping_must_be_first (8 ms)

PSL data types

Designations of
types

Description of types

UInt8 , UInt16 ,
UInt32 , UInt64

Unsigned integer

SInt8 , SInt16 ,
SInt32 , SInt64

Signed integer

Boolean
Boolean type

The Boolean type includes two values: true and false .

Text Text type

()

Unit type

The Unit type includes one immutable value. It is used as a stub value in cases when
PSL language syntax requires certain data formulation but this data is not actually
required. For example, the Unit type can be used to declare a method that does not
have any parameters (similar to how the void type is used in C/C++).

Text literal

A text literal includes one immutable text value.

Example de�nitions of text literals:

""

"granted"

Integer literal

An integer literal includes one immutable integer value.

Example de�nitions of integer literals:

12

-5

0xFFFF

Variant type

A variant type combines two or more types and may perform the role of either of them.

Examples of de�nitions of variant types:

The test results contain information about whether or not each test passed or failed. If a test failed, information
indicating the location of the description of the failed test example will be displayed in the PSL �le.

PSL data types

The data types supported in the PSL language are presented in the table below.

" type "[]

type< >

type 1 | type
2 | ...
<

> []

263

Boolean | ()

UInt8 | UInt16 | UInt32 | UInt64

"granted" | "denied"

{ field name
: field type

, ...

}

Dictionary

A dictionary consists of one or more types of �elds. A dictionary can be empty.

Examples of dictionary de�nitions:

{}

{ handle : Handle

, rights : UInt32

}

[type ,
...]

Tuple

A tuple consists of �elds of one or more types in the order in which the types are listed.
A tuple can be empty.

Examples of tuple de�nitions:

[]

["granted"]

[Boolean, Boolean]

Set< type of
elements >

Set

A set includes zero or more unique elements of the same type.

Examples of set de�nitions:

Set<"granted" | "denied">

Set<Text>

List< type of
elements >

List

A list includes zero or more elements of the same type.

Examples of list de�nitions:

List<Boolean>

List<Text | ()>

Map< key type,
value type >

Associative array

An associative array includes zero or more entries of the "key-value" type with unique
keys.

Example of de�ning an associative array:

Map<UInt32, UInt32>

Array< type of
elements,
number of
elements >

Array

An array includes a de�ned number of elements of the same type.

Example of de�ning an array:

Array<UInt8, 42>

Sequence< type
of elements,
number of
elements >

Sequence

A sequence includes from zero to the de�ned number of elements of the same type.

Example of de�ning a sequence:

Sequence<SInt64, 58>

[
]

[]

[] [
]

<
>

<
>

<
>

<

>

<

>

264

Aliases of certain PSL types

Aliases and de�nitions of certain data types in PSL

Type alias Type de�nition

Unsigned
Unsigned integer

UInt8 | UInt16 | UInt32 | UInt64

Signed
Signed integer

SInt8 | SInt16 | SInt32 | SInt64

Number
Integer

Unsigned | Signed

ScalarLiteral
Scalar literal

() | Boolean | Number

Literal
Literal

ScalarLiteral | Text

Sid
Type of security ID (SID)

UInt32

Handle
Type of security ID (SID)

Sid

HandleDesc

Dictionary containing �elds for the SID and handle permissions mask

{ handle : Handle

, rights : UInt32

}

Cases
Type of data received by expressions of security models called in the choice construct
for verifying ful�llment of conditions

List<Text | ()>

KSSAudit
Type of data de�ning the conditions for conducting the security audit

Set<"granted" | "denied">

Mapping IDL types to PSL types

The nk/base.psl �le from the KasperskyOS SDK de�nes the data types that are used as the types of
parameters (or structural elements of parameters) and returned values for methods of various security models.
Aliases and de�nitions of these types are presented in the table below.

Data types of the IDL language are used to describe the parameters of interface methods. The input data for
security model methods have types from the PSL language. The set of data types in the IDL language di�ers from
the set of data types in the PSL language. Parameters of interface methods transmitted in IPC messages can be
used as input data for methods of security models, so the policy description developer needs to understand how
IDL types are mapped to PSL types.

Integer types of IDL are mapped to integer types of PSL and to variant types of PSL that combine these integer
types (including with other types). For example, signed integer types of IDL are mapped to the Signed type in
PSL, and integer types of IDL are mapped to the ScalarLiteral type in PSL.

265

Before analyzing examples, you need to become familiar with the Base security model.

Processing the initiation of process startups

/* The KasperskyOS kernel and any process
 * in the solution is allowed to start any
 * process. */
execute { grant () }

/* The kernel is allowed to start a process
 * of the Einit class. */
execute src=kl.core.Core, dst=Einit { grant () }

/* An Einit-class process is allowed
 * to start any process in the solution. */
execute src=Einit { grant () }

Handling the startup of the KasperskyOS kernel

/* The KasperskyOS kernel is allowed to start.
 * (This binding is necessary so that the security
 * module can be notified of the kernel SID. The kernel starts irrespective
 * of whether this is allowed by the solution security policy
 * or denied. If the solution security policy denies the
 * startup of the kernel, after startup the kernel will terminate its
 * execution.) */
execute src=kl.core.Core, dst=kl.core.Core { grant () }

Handling IPC request forwarding

/* Any client in the solution is allowed to query
 * any server and the KasperskyOS kernel. */
request { grant () }

/* A client of the Client class is allowed to query

The Handle type in IDL is mapped to the HandleDesc type in PSL.

Unions and structures of IDL are mapped to PSL dictionaries.

Arrays and sequences of IDL are mapped to arrays and sequences of PSL, respectively.

String bu�ers in IDL are mapped to the text type in PSL.

Byte bu�ers in IDL are not currently mapped to PSL types, so the data contained in byte bu�ers cannot be used
as inputs for security model methods.

Examples of binding security model methods to security events

266

 * any server in the solution and the kernel. */
request src=Client { grant () }

/* Any client in the solution is allowed to query
 * a server of the Server class. */
request dst=Server { grant () }

/* A client of the Client class is not allowed to
 * query a server of the Server class. */
request src=Client dst=Server { deny () }

/* A client of the Client class is allowed to
 * query a server of the Server class
 * by calling the Ping method of the net.Net endpoint. */
request src=Client dst=Server endpoint=net.Net method=Ping {
 grant ()
}

/* Any client in the solution is allowed to query
 * a server of the Server class by calling the Send method
 * of the endpoint with the MessExch interface. */
request dst=Server interface=MessExch method=Send {
 grant ()
}

Handling IPC response forwarding

/* A server of the Server class is allowed to respond to
 * queries of a Client-class client that
 * calls the Ping method of the net.Net endpoint. */
response src=Server, dst=Client, endpoint=net.Net, method=Ping {
 grant ()
}

/* The server containing the kl.drivers.KIDF component
 * that provide endpoints with the monitor interface is allowed to
 * respond to queries of a DriverManager-class client
 * that uses these endpoints. */
response dst=DriverManager component=kl.drivers.KIDF interface=monitor {
 grant ()
}

Handling the transmission of IPC responses containing error information

/* A server of the Server class is not allowed to notify a client
 * of the Client class regarding errors that occur
 * when the client queries the server by calling the
 * Ping method of the net.Net endpoint. */
error src=Server, dst=Client, endpoint=net.Net, method=Ping {
 deny ()
}

Handling queries sent by processes to the Kaspersky Security Module

267

/* A process of the Sdcard class will receive the
 * "granted" decision from the Kaspersky Security Module
 /* by calling the Register method of the security interface.
 * (Using the security interface defined
 * in the EDL description.) */
security src=Sdcard, method=Register {
 grant ()
}

/* A process of the Sdcard class will receive the "denied" decision
 * from the security module when calling the Comp.Register method
 * of the security interface. (Using the security interface
 * defined in the CDL description.) */
security src=Sdcard, method=Comp.Register {
 deny ()
}

Using match sections

/* A client of the Client class is allowed to query
 * a server of the Server class by calling the Send
 * and Receive methods of the net endpoint. */
request src=Client, dst=Server, endpoint=net {
 match method=Send { grant () }
 match method=Receive { grant () }
}

/* A client of the Client class is allowed to query
 * a server of the Server class by calling the Send
 * and Receive methods of the sn.Net endpoint and the Write and
 * Read methods of the sn.Storage endpoint. */
request src=Client, dst=Server {
 match endpoint=sn.Net {
 match method=Send { grant () }
 match method=Receive { grant () }
 }
 match endpoint=sn.Storage {
 match method=Write { grant () }
 match method=Read { grant () }
 }
}

Setting audit pro�les

/* Set the default global audit profile
 * and initial audit runtime-level of 0 */
audit default = global 0
request src=Client, dst=Server {
 /* Set the parent audit profile at the level of
 * binding methods of security models to
 * security events */
 audit parent
 match endpoint=net.Net, method=Send {
 /* Set a child audit profile at the

268

 * match section level */
 audit child
 grant ()
 }
 /* This match section applies a
 * parent audit profile. */
 match endpoint=net.Net, method=Receive {
 grant ()
 }
}
/* This binding of the security model method
 * to the security event utilizes the
 * global audit profile. */
response src=Client, dst=Server {
 grant ()
}

Before analyzing examples, you need to become familiar with the Struct, Base and Flow security models.

Example 1

security.psl

execute: kl.core.Execute

use nk.base._
use EDL Einit
use EDL Client
use EDL Server
use EDL kl.core.Core

execute { grant () }

request { grant () }

response { grant () }

error { grant () }

security { grant () }

Example 2

Example descriptions of basic security policies for KasperskyOS-based
solutions

The solution security policy in this example allows any interaction between di�erent processes of the Client ,
Server and Einit classes, and between these processes and the KasperskyOS kernel. The "granted" decision will
always be received when these processes query the Kaspersky Security Module. This policy can be used only as a
stub during the early stages of development of a KasperskyOS-based solution so that the Kaspersky Security
Module does not interfere with interactions. It would be unacceptable to apply such a policy in a real-world
KasperskyOS-based solution.

269

security.psl

execute: kl.core.Execute

use nk.base._
use nk.flow._
use nk.basic._

policy object file_state : Flow {
 type States = "unverified" | "verified"
 config = {
 states : ["unverified" , "verified"],
 initial : "unverified",
 transitions : {
 "unverified" : ["verified"],
 "verified" : []
 }
 }
}

execute { grant () }

request { grant () }

response { grant () }

use EDL kl.core.Core
use EDL Einit
use EDL FsClient
use EDL FsDriver
use EDL FsVerifier

response src=FsDriver, endpoint=operationsComp.operationsImpl, method=Open {
 file_state.init {sid: message.handle.handle}
}

request src=FsClient, dst=FsDriver, endpoint=operationsComp.operationsImpl,
method=Read {
 file_state.allow {sid: message.handle.handle, states: ["verified"]}
}

security src=FsVerifier, method=Approve {
 file_state.enter {sid: message.handle.handle, state: "verified"}
}

The solution security policy in this example imposes limitations on queries sent from clients of the FsClient class
to servers of the FsDriver class. When a client opens a resource controlled by a server of the FsDriver class, a
�nite-state machine in the unverified state is associated with this resource. A client of the FsClient class is
allowed to read data from a resource controlled by a server of the FsDriver class only if the �nite-state machine
associated with this resource is in the verified state. To switch a resource-associated �nite-state machine from
the unverified state to the verified state, a process of the FsVerifier class needs to query the Kaspersky
Security Module.

In a real-world KasperskyOS-based solution, this policy cannot be applied because it allows an excessive variety of
interactions between di�erent processes and between processes and the KasperskyOS kernel.

270

Before analyzing examples, you need to become familiar with the Base, Regex and Flow security models.

Example 1

// Describing a trace security audit profile
// base – Base security model object
// session – Flow security model object
audit profile trace =
/* If the audit runtime-level is equal to 0, the audit covers
 * base object rules when these rules return
 * the "denied" result. */
 { 0 :
 { base :
 { kss : ["denied"]
 }
 }
/* If the audit runtime-level is equal to 1, the audit covers methods
 * of the session object in the following cases:
 * 1. Rules of the session object return any result, and
 * the finite-state machine is in a state other than closed.
 * 2. A query expression of the session object is executed, and the
 * finite-state machine is in a state other than closed. */
 , 1 :
 { session :
 { kss : ["granted", "denied"]
 , omit : ["closed"]
 }
 }
/* If the audit runtime-level is equal to 2, the audit covers methods
 * of the session object in the following cases:
 * 1. Rules of the session object return any result.
 * 2. A query expression of the session object is executed. */
 , 2 :
 { session :
 { kss : ["granted", "denied"]
 }
 }
 }

Example 2

// Describing a test security audit profile
// base – Base security model object
// re – Regex security model object
audit profile test =
/* If the audit runtime-level is equal to 0, rules of the base object
 * and expressions of the re object are not covered by the audit. */
 { 0 :
 { base :

Examples of security audit pro�les

271

 { kss : []
 }
 , re :
 { kss : []
 , emit : []
 }
 }
/* If the audit runtime-level is equal to 1, rules of the
 * base object are not covered by the audit, and expressions of the
 * re object are covered by the audit.*/
 , 1 :
 { base :
 { kss : []
 }
 , re :
 { kss : ["granted"]
 , emit : ["match", "select"]
 }
 }
/* If the audit runtime-level is equal to 2, rules of the base object
 * and expressions of the re object are covered by the audit. Rules
 * of the base object are covered by the audit irrespective of the
 * result that they return.*/
 , 2 :
 { base :
 { kss : ["granted", "denied"]
 }
 , re :
 { kss : ["granted"]
 , emit : ["match", "select"]
 }
 }
 }

Example 1

/* Test set that includes only one test. */
assert "some tests" {
 /* Test that includes four test cases. */
 sequence "first sequence" {
 /* It is expected that startup of a Server-class process is allowed.
 * If this is true, the s variable will be assigned the SID value
 * of the started Server-class process. */
 s <- execute dst=Server
 /* It is expected that startup of a Client-class process is allowed.
 * If this is true, the c variable will be assigned the SID value
 * of the started Client-class process. */
 c <- execute dst=Client
 /* It is expected that a client of the Client class is allowed to query
 * a server of the Server class by calling the Ping method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 grant "Client calls Ping" request src=c dst=s endpoint=pingComp.pingImpl
 method=Ping { value : 100 }

Examples of tests for KasperskyOS-based solution security policies

272

 /* It is expected that a server of the Server class is not allowed to respond
to a client
 * of the Client class if the client calls the Ping method of the
pingComp.pingImpl endpoint.
 * (The IPC response does not contain any parameters because the Ping
interface method
 * has no output parameters.) */
 deny "Server cannot respond" response src=s dst=c endpoint=pingComp.pingImpl
 method=Ping {}
 }
}

Example 2

/* Test set that includes two tests. */
assert "ping tests"{
 /* Initial part of each of the two tests
 that includes two test cases. */
 setup {
 /* It is expected that startup of a Server-class process is allowed.
 * If this is true, the s variable will be assigned the SID value
 * of the started Server-class process. */
 s <- execute dst=Server
 /* It is expected that startup of a Client-class process is allowed.
 * If this is true, the c variable will be assigned the SID value
 * of the started Client-class process. */
 c <- execute dst=Client
 }
 /* Test that includes four test cases: two test cases
 * in the initial part and two test cases in the main part.*/
 sequence "ping-ping is denied" {
 /* It is expected that a client of the Client class is allowed to query
 * a server of the Server class by calling the Ping method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 c ~> s : pingComp.pingImpl.Ping { value : 100 }
 /* It is expected that a client of the Client class is not allowed to query
 * a server of the Server class by once again calling the Ping method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 deny c ~> s : pingComp.pingImpl.Ping { value : 100 }
 }
 /* Test that includes four test cases: two test cases
 * in the initial part and two test cases in the main part. */
 sequence "ping-pong is granted" {
 /* It is expected that a client of the Client class is allowed to query
 * a server of the Server class by calling the Ping method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 c ~> s : pingComp.pingImpl.Ping { value: 100 }
 /* It is expected that a client of the Client class is allowed to query
 * a server of the Server class by calling the Pong method of the
pingComp.pingImpl endpoint
 * with the value parameter equal to 100. */
 c ~> s : pingComp.pingImpl.Pong { value: 100 }
 }
}

273

Example 3

/* Test set that includes only one test. */
assert {
 /* Test that includes eight test cases. */
 sequence {
 storage <− execute dst=test.kl.UpdateStorage
 manager <− execute dst=test.kl.UpdateManager
 deployer <− execute dst=test.kl.UpdateDeployer
 downloader <− execute dst=test.kl.UpdateDownloader
 grant manager ~>
 downloader:UpdateDownloader.Downloader.LoadPackage { url :
”url012345678” }
 grant response src=downloader dst=manager endpoint=UpdateDownloader.Downloader
 method=LoadPackage { handle : 29, result : 1 }
 deny manager ~> deployer:UpdateDeployer.Deployer.Start { handle : 29 }
 deny request src=manager dst=deployer endpoint=UpdateDeployer.Deployer
 method=Start { handle : 29 }
 }
}

Pred security model object

Pred security model methods

KasperskyOS Security models

Pred security model

The Pred security model performs comparison operations.

A PSL �le containing a description of the Pred security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/basic.psl

The basic.psl �le contains a declaration that creates a Pred security model object named pred . Consequently,
inclusion of the basic.psl �le into the solution security policy description will create a Pred security model
object by default.

A Pred security model object does not have any parameters and cannot be covered by a security audit.

It is not necessary to create additional Pred security model objects.

A Pred security model contains expressions that perform comparison operations and return values of the
Boolean type. To call these expressions, use the following comparison operators:

ScalarLiteral == ScalarLiteral – "equals".< > < >

274

pred.empty (<Text | Set | List | Map>) | ()

Bool security model object

Bool security model methods

ScalarLiteral != ScalarLiteral – "does not equal".

Number < Number – "is less than".

Number <= Number – "is less than or equal to".

Number > Number – "is greater than".

Number >= Number – "is greater than or equal to".

< > < >

< > < >

< > < >

< > < >

< > < >

The Pred security model also contains the empty expression that determines whether data contains its own
structural elements. This expression returns values of the Boolean type. If data does not contain its own
structural elements (for example, a set is empty), the expression returns true , otherwise it returns false . To call
the expression, use the following construct:

Bool security model

The Bool security model performs logical operations.

A PSL �le containing a description of the Bool security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/basic.psl

The basic.psl �le contains a declaration that creates a Bool security model object named bool . Consequently,
inclusion of the basic.psl �le into the solution security policy description will create a Bool security model object
by default.

A Bool security model object does not have any parameters and cannot be covered by a security audit.

It is not necessary to create additional Bool security model objects.

The Bool security model contains expressions that perform logical operations and return values of the Boolean
type. To call these expressions, use the following logical operators:

! Boolean – "logical NOT".

Boolean && Boolean – "logical AND".

Boolean || Boolean – "logical OR".

Boolean ==> Boolean – "implication" (! Boolean || Boolean).

< >

< > < >

< > < >

< > < > < > < >

275

bool.all (<List<Boolean>>)

bool.any (<List<Boolean>>)

bool.cond
 { if : <Boolean> // Condition
 , then : <ScalarLiteral> // Value returned when the condition is true
 , else : <ScalarLiteral> // Value returned when the condition is false
 }

Math security model object

Math security model methods

The Bool security model also contains the all , any and cond expressions.

The expression all performs a "logical AND" for an arbitrary number of values of Boolean type. It returns values
of the Boolean type. It returns true if an empty list of values ([]) is passed via the parameter. To call the
expression, use the following construct:

The expression any performs a "logical OR" for an arbitrary number of values of Boolean type. It returns values of
the Boolean type. It returns false if an empty list of values ([]) is passed via the parameter. To call the
expression, use the following construct:

cond expression performs a ternary conditional operation. Returns values of the ScalarLiteral type. To call the
expression, use the following construct:

In addition to expressions, the Bool security model includes the assert rule that works the same as the rule of the
same name included in the Base security model.

Math security model

The Math security model performs integer arithmetic operations.

A PSL �le containing a description of the Math security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/basic.psl

The basic.psl �le contains a declaration that creates a Math security model object named math . Consequently,
inclusion of the basic.psl �le into the solution security policy description will create a Math security model
object by default.

A Math security model object does not have any parameters and cannot be covered by a security audit.

It is not necessary to create additional Math security model objects.

276

math.<expression name> (<parameter>)

Struct security model object

Struct security model methods

The Math security model contains expressions that perform integer arithmetic operations. To call a part of these
expressions, use the following arithmetic operators:

Number + Number – "addition". Returns values of the Number type.

Number - Number – "subtraction". Returns values of the Number type.

Number * Number – "multiplication". Returns values of the Number type.

< > < >

< > < >

< > < >

The other expressions are as follows:

neg (Signed) – "change number sign". Returns values of the Signed type.

abs (Signed) – "get module of number". Returns values of the Signed type.

sum (List<Number>) – "add numbers from list". Returns values of the Number type. It returns 0 if an
empty list of values ([]) is passed via the parameter.

product (List<Number>) – "multiple numbers from list". Returns values of the Number type. It returns 1 if
an empty list of values ([]) is passed via the parameter.

< >

< >

< >

< >

To call these expressions, use the following construct:

Struct security model

The Struct security model obtains access to structural data elements.

A PSL �le containing a description of the Struct security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/basic.psl

The basic.psl �le contains a declaration that creates a Struct security model object named struct .
Consequently, inclusion of the basic.psl �le into the solution security policy description will create a Struct
security model object by default.

A Struct security model object does not have any parameters and cannot be covered by a security audit.

It is not necessary to create additional Struct security model objects.

The Struct security model contains expressions that provide access to structural data elements. To call these
expressions, use the following constructs:

277

message.<interface method parameter name>

To use expressions of the Struct security model, the security event description must be su�iciently precise so
that it corresponds to IPC messages of the same type (for more details, see "Binding methods of security
models to security events"). IPC messages of this type must contain the de�ned parameters of the interface
method, and the interface method parameters must contain the de�ned structural elements.

Base security model object

dictionary . field name – "get access to dictionary �eld". The type of returned data corresponds to
the type of dictionary �eld.

List | Set | Sequence | Array .[element number] – "get access to data element". The type of
returned data corresponds to the type of elements. The numbering of elements starts with zero. When out of
bounds of dataset, the expression terminates with an error and the Kaspersky Security Module returns the
"denied" decision.

HandleDesc .handle – "get SID". Returns values of the Handle type. (For details on the correlation
between handles and SID values, see "Resource Access Control").

HandleDesc .rights – "get handle permissions mask". Returns values of the UInt32 type.

< > < >

< > < >

< >

< >

Parameters of interface methods are saved in a special dictionary named message . To obtain access to an
interface method parameter, use the following construct:

The parameter name is speci�ed in accordance with the IDL description.

To obtain access to structural elements of parameters, use the constructs corresponding to expressions of the
Struct security model.

Base security model

The Base security model implements basic logic.

A PSL �le containing a description of the Base security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/base.psl

The base.psl �le contains a declaration that creates a Base security model object named base . Consequently,
inclusion of the base.psl �le into the solution security policy description will create a Base security model object
by default. Methods of this object can be called without indicating the object name.

A Base security model object does not have any parameters.

A Base security model object can be covered by a security audit. There are no audit conditions speci�c to the
Base security model.

It is necessary to create additional objects of the Base security model in the following cases:

278

Base security model methods

You need to con�gure a security audit di�erently for di�erent objects of the Base security model (for example,
you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent objects).

You need to distinguish between calls of methods provided by di�erent objects of the Base security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

The Base security model contains the following rules:

grant ()

It has a parameter of the () type. It returns the "granted" result.

Example:

/* A client of the foo class is allowed
 * to query a server of the bar class. */
request src=foo dst=bar { grant () }

assert (Boolean)

It returns the "granted" result if the true value is passed via the parameter. Otherwise it returns the "denied"
result.

Example:

/* Any client in the solution will be allowed to query a server of the foo class
 * by calling the Send method of the net.Net endpoint if the port parameter
 * of the Send method will be used to pass a value greater than 80. Otherwise any
 * client in the solution will be prohibited from querying a server of the
 * foo class by calling the Send method of the net.Net endpoint. */
request dst=foo endpoint=net.Net method=Send { assert (message.port > 80) }

deny (Boolean) | ()

It returns the "denied" result if the true or () value is passed via the parameter. Otherwise it returns the
"granted" result.

Example:

/* A server of the foo class is not allowed to
 * respond to a client of the bar class. */
response src=foo dst=bar { deny () }

set_level (UInt8)

It sets the security audit runtime-level equal to the value passed via this parameter. It returns the "granted"
result. (For more details about the security audit runtime-level, see "Describing security audit pro�les".)

Example:

/* A process of the foo class will receive the "allowed" decision from the
 * Kaspersky Security Module if it calls the
 * SetAuditLevel security interface method to change the security audit runtime-

< >

< >

< >

279

Regex security model object

Regex security model methods

level. */
security src=foo method=SetAuditLevel { set_level (message.audit_level) }

Regex security model

The Regex security model implements text data validation based on statically de�ned regular expressions.

A PSL �le containing a description of the Regex security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/regex.psl

The regex.psl �le contains a declaration that creates a Regex security model object named re . Consequently,
inclusion of the regex.psl �le into the solution security policy description will create a Regex security model
object by default.

A Regex security model object does not have any parameters.

A Regex security model object can be covered by a security audit. In this case, you also need to de�ne the audit
conditions speci�c to the Regex security model. To do so, use the following constructs in the audit con�guration
description:

emit : ["match"] – the audit is performed if the match method is called.

emit : ["select"] – the audit is performed if the select method is called.

emit : ["match", "select"] – the audit is performed if the match or select method is called.

emit : [] – the audit is not performed.

It is necessary to create additional objects of the Regex security model in the following cases:

You need to con�gure a security audit di�erently for di�erent objects of the Regex security model (for
example, you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent
objects).

You need to distinguish between calls of methods provided by di�erent objects of the Regex security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

The Regex security model contains the following expressions:

match {text : Text , pattern : Text }

Returns a value of the Boolean type. If the speci�ed text matches the pattern regular expression, it returns
true . Otherwise it returns false .

Example:

< > < >

280

Syntax of regular expressions of the Regex security model

When writing a regular expression as a text literal, all backslash instances must be doubled.

// Regular expression within the multi-line regex block
{ pattern:
    ```regex 
    Hello\ world\! 
    ``` 
, text: "Hello world!"
}
// Regular expression as a text literal (doubled backslash)
{ pattern: "Hello\\ world\\!"
, text: "Hello world!"
}

assert (re.match {text : message.text, pattern : "[0-9]*"})

select {text : Text }

It is intended to be used as an expression that veri�es ful�llment of the conditions in the choice construct (for
details on the choice construct, see "Binding methods of security models to security events"). It checks
whether the speci�ed text matches regular expressions. Depending on the results of this check, various
options for security event handling can be performed.

Example:

choice (re.select {text : "hello world"}) {
 "hello\ .*": grant ()
 ".*world" : grant ()
 _ : deny ()
 }

< >

A regular expression for the match method of the Regex security model can be written in two ways: within the
multi-line regex block or as a text literal.

For example, the following two regular expressions are identical:

Regular expressions for the select method of the Regex security model are written as text literals with a double
backslash.

A regular expression is de�ned as a template string and may contain the following:

Literals (ordinary characters)

Metacharacters (characters with special meanings)

White-space characters

Character sets

281

Literals and metacharacters in regular expressions

Character groups

Operators for working with characters

Regular expressions are case sensitive.

A literal can be any ASCII character except the metacharacters .()*&|!?+[]\ and a white-space character.
(Unicode characters are not supported.)

For example, the regular expression KasperskyOS corresponds to the text KasperskyOS .

Metacharacters have special meanings that are presented in the table below.

Special meanings of metacharacters

Metacharacter Special meaning

[] Square brackets (braces) denote the beginning and end of a set of characters.

() Round brackets (parentheses) denote the beginning and end of a group of characters.

* An asterisk denotes an operator indicating that the character preceding it can repeat
zero or more times.

+ A plus sign denotes an operator indicating that the character preceding it can repeat
one or more times.

? A question mark denotes an operator indicating that the character preceding it can
repeat zero or one time.

! An exclamation mark denotes an operator excluding the subsequent character from
the list of valid characters.

| A vertical line denotes an operator for selection between characters (logically close to
the "OR" conjunction).

& An ampersand denotes an operator for overlapping of multiple conditions (logically
close to the "AND" conjunction).

. A dot denotes any character.

For example, the regular expression K.S corresponds to the sequences of characters
KOS , KoS , KES and a multitude of other sequences consisting of three characters that
begin with K and end with S , and in which the second character can be any character:
literal, metacharacter, or dot.

\ \ metaSymbol

A backslash indicates that the metacharacter that follows it will lose its special
meaning and instead be interpreted as a literal. A backslash placed before a
metacharacter is known as an escape character.

For example, a regular expression that consists of a dot metacharacter (.)
corresponds to any character. However, a regular expression that consists of a
backslash with a dot (\.) corresponds to only a dot character.

Accordingly, a backslash also escapes another subsequent backslash. For example, the
regular expression C:\\Users corresponds to the sequence of characters C:\Users .

The ^ and $ characters are not used to designate the start and end of a line.

< >

282

White-space characters in regular expressions

De�nition of a character based on its octal or hexadecimal code in regular expressions

Sets of characters in regular expressions

A space character has an ASCII code of 20 in a hexadecimal number system and has an ASCII code of 40 in an
octal number system. Although a space character does not infer any special meaning, it must be escaped to
avoid any ambiguous interpretation by the regular expression interpreter.

For example, the regular expression Hello\ world corresponds to the sequence of characters Hello world .

\r

Carriage return character.

\n

Line break character.

\t

Horizontal tab character.

\x{ hex }

De�nition of a character using its hex code from the ASCII character table. The character code must be less
than 0x100 .

For example, the regular expression Hello\x{20}world corresponds to the sequence of characters Hello
world .

\o{ octal }

De�nition of a character using its octal code from the ASCII character table. The character code must be less
than 0o400 .

For example, the regular expression \o{75} corresponds to the = character.

< >

< >

A character set is de�ned within square brackets [] as a list or range of characters. A character set tells the
regular expression interpreter that only one of the characters listed in the set or range of characters can be at this
speci�c location in a sequence of characters. A character set cannot be left blank.

[BracketSpec] – character set.

One character corresponds to any character from the BracketSpec character set.

For example, the regular expression K[OE]S corresponds to the sequences of characters KOS and KES .

[^ BracketSpec] – inverted character set.

One character corresponds to any character that is not in the BracketSpec character set.

For example, the regular expression K[^OE]S corresponds to the sequences of characters KAS , K8S and any
other sequences consisting of three characters that begin with K and end with S , excluding KOS and KES .

< >

< >

The BracketSpec character set can be listed explicitly or can be de�ned as a range of characters. When de�ning
a range of characters, the �rst and last character in the set must be separated with a hyphen.

[Digit1 - DigitN]

Any number from the range Digit1 , Digit2 , ... ,DigitN .

< > < >

283

Groups of characters and operators in regular expressions

For example, the regular expression [0-9] corresponds to any numerical digit. The regular expressions [0-9]
and [0123456789] are identical.

Please note that a range is de�ned by one character before a hyphen and one character after the hyphen. The
regular expression [1-35] corresponds only to the characters 1 , 2 , 3 and 5 , and does not represent the range
of numbers from 1 to 35 .

[Letter1 - LetterN]

Any English letter from the range Letter1 , Letter2 , ... , LetterN (these letters must be in the same case).

For example, the regular expression [a-zA-Z] corresponds to all letters in uppercase and lowercase from the
ASCII character table.

< > < >

The ASCII code for the upper boundary character of a range must be higher than the ASCII code for the lower
boundary character of the range.

For example, the regular expressions [5-2] or [z-a] are invalid.

The hyphen (minus) - character is interpreted as a special character only within a set of characters. Outside of a
character set, a hyphen is a literal. For this reason, the \ metacharacter does not have to precede a hyphen. To use
a hyphen as a literal within a character set, it must be indicated �rst or last in the set.

Examples:

The regular expressions [-az] and [az-] correspond to the characters a , z and - .

The regular expression [a-z] corresponds to any of the 26 English letters from a to z in lowercase.

The regular expression [-a-z] corresponds to any of the 26 English letters from a to z in lowercase and - .

The circum�ex (caret character) ^ is interpreted as a special character only within a character set when it is
located directly after an opening square bracket. Outside of a character set, a circum�ex is a literal. For this reason,
the \ metacharacter does not have to precede a circum�ex. To use a circum�ex as a literal within a character set, it
must be indicated in a location other than �rst in the set.

Examples:

The regular expression [0^9] correspond to the characters 0 , 9 and ^ .

The regular expression [^09] corresponds to any character except 0 and 9 .

Within a character set, the metacharacters *.&|!?+ lose their special meaning and are instead interpreted as
literals. Therefore, they do not have to be preceded by the \ metacharacter. The backslash \ retains its special
meaning within a character set.

For example, the regular expressions [a.] and [a\.] are identical and correspond to the character a and a dot
interpreted as a literal.

A character group uses parentheses () to distinguish its portion (subexpression) within a regular expression.
Groups are normally used to allocate subexpressions as operands. Groups can be embedded into each other.

284

Operators are applied to more than one character in a regular expression only if they are immediately before or
after the de�nition of a set or group of characters. If this is the case, the operator is applied to the entire group
or set of characters.

The syntax contains de�nitions of the following operators (listed in descending order of their priority):

! Expression , where Expression can be a character, set or group of characters.

This operator excludes the Expression from the list of valid expressions.

Examples:

The regular expression K!OS corresponds to the sequences of characters KoS , KES , and a multitude of other
sequences that consist of three characters and begin with K and end with S , excluding KOS .

The regular expression K!(OS) corresponds to the sequences of characters Kos , KES , KOT , and a multitude of
other sequences that consist of three characters and begin with K , excluding KOS .

The regular expression K![OE]S corresponds to the sequences of characters KoS , KeS , K;S , and a multitude
of other sequences that consist of three characters and begin with K and end with S , excluding KOS and KES .

Expression * , where Expression can be a character, set or group of characters.

This operator means that the Expression may occur in the speci�c position zero or more times.

Examples:

The regular expression 0-9* corresponds to the sequences of characters 0- , 0-9 , 0-99 ,

The regular expression (0-9)* corresponds to the empty sequence "" and the sequences of characters 0-9 ,
0-90-9 ,

The regular expression [0-9]* corresponds to the empty sequence "" and any non-empty sequence of
numbers.

Expression + , where Expression can be a character, set or group of characters.

This operator means that the Expression may occur in the speci�c position one or more times.

Examples:

The regular expression 0-9+ corresponds to the sequences of characters 0-9 , 0-99 , 0-999 ,

The regular expression (0-9)+ corresponds to the sequences of characters 0-9 , 0-90-9 ,

The regular expression [0-9]+ corresponds to any non-empty sequence of numbers.

Expression ? , where Expression can be a character, set or group of characters.

This operator means that the Expression may occur in the speci�c position zero or one time.

Examples:

The regular expression https?:// corresponds to the sequences of characters http:// and https:// .

The regular expression K(aspersky)?OS corresponds to the sequences of characters KOS and KasperskyOS .

Expression1 Expression2 – concatenation. Expression1 and Expression2 can be characters, sets
or groups of characters.

This operator does not have a speci�c designation. In the resulting expression, Expression2 follows
Expression1 .

For example, concatenation of the sequences of characters micro and kernel will result in the sequence of
characters microkernel .

Expression1 | Expression2 – disjunction. Expression1 and Expression2 can be characters, sets or
groups of characters.

This operator selects either Expression1 or Expression2 .

< >

< >

< >

< >

< >< >

< > < >

285

HashSet security model object

Examples:

The regular expression KO|ES corresponds to the sequences of characters KO and ES , but not KOS or KES
because the concatenation operator has a higher priority than the disjunction operator.

The regular expression Press (OK|Cancel) corresponds to the sequences of characters Press OK or
Press Cancel .

The regular expression [0-9]|() corresponds to numbers from 0 to 9 or an empty string.

Expression1 & Expression2 – conjunction. Expression1 and Expression2 can be characters, sets or
groups of characters.

This operator intersects the result of Expression1 with the result of Expression2 .

Examples:

The regular expression [0-9]&[^3] corresponds to numbers from 0 to 9 , excluding 3 .

The regular expression [a-zA-Z]&() corresponds to all English letters and an empty string.

< > < >

HashSet security model

The HashSet security model associates resources with one-dimensional tables of unique values of the same type,
adds or deletes these values, and checks whether a de�ned value is in the table. For example, a process of the
network server can be associated with the set of ports that this server is allowed to open. This association can be
used to check whether the server is allowed to initiate the opening of a port.

A PSL �le containing a description of the HashSet security model is located in the KasperskyOS SDK at the
following path:

toolchain/include/nk/hashmap.psl

To use the HashSet security model, you need to create an object or objects of this model.

A HashSet security model object contains a pool of one-dimensional tables of the same size intended for storing
the values of one type. A resource can be associated with only one table from the tables pool of each HashSet
security model object.

A HashSet security model object has the following parameters:

type Entry – type of values in tables (these can be integer types, Boolean type, and dictionaries and tuples
based on integer types and the Boolean type).

config – con�guration of the pool of tables:

set_size – size of the table.

pool_size – number of tables in the pool.

All parameters of a HashSet security model object are required.

Example:

286

policy object s : HashSet {
 type Entry = UInt32

 config =
 { set_size : 5
 , pool_size : 2
 }
}

HashSet security model init rule

init {sid : <Sid>}

/* A process of the Server class will be allowed to start if,
 * at startup initiation, an association will be created
 * between this process and the table. Otherwise the startup of a process of the
 * Server class will be denied. */
execute dst=Server {
 s.init {sid : dst_sid}
}

A HashSet security model object can be covered by a security audit. There are no audit conditions speci�c to the
HashSet security model.

It is necessary to create multiple objects of the HashSet security model in the following cases:

You need to con�gure a security audit di�erently for di�erent objects of the HashSet security model (for
example, you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent
objects).

You need to distinguish between calls of methods provided by di�erent objects of the HashSet security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

You need to use tables of di�erent sizes and/or with di�erent types of values.

It associates a free table from the tables pool with the sid resource. If the free table contains values after its
previous use, these values are deleted.

It returns the "allowed" result if an association was created between the table and the sid resource.

It returns the "denied" result in the following cases:

There are no free tables in the pool.

The sid resource is already associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

Example:

287

HashSet security model �ni rule

fini {sid : <Sid>}

HashSet security model add rule

add {sid : <Sid>, entry : <Entry>}

/* A process of the Server class will receive the "allowed" decision from
 * the Kaspersky Security Module by calling the
 * Add security interface method if, when this method is called, the value
 * 5 will be added to the table associated with this
 * process, or is already in the table. Otherwise
 * a process of the Server class will receive the "denied" decision from the
 * security module by calling the
 * Add security interface method. */
security src=Server, method=Add {

It deletes the association between the table and the sid resource (the table becomes free).

It returns the "allowed" result if the association between the table and the sid resource was deleted.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

It adds the entry value to the table associated with the sid resource.

It returns the "allowed" result in the following cases:

The rule added the entry value to the table associated with the sid resource.

The table associated with the sid resource already contains the entry value.

It returns the "denied" result in the following cases:

The table associated with the sid resource is completely full.

The sid resource is not associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

Example:

288

 s.add {sid : src_sid, entry : 5}
}

HashSet security model remove rule

remove {sid : <Sid>, entry : <Entry>}

HashSet security model contains expression

contains {sid : <Sid>, entry : <Entry>}

/* A process of the Server class will receive the "allowed" decision from
 * the Kaspersky Security Module by calling the
 * Check security interface method if the value 42 is in the table
 * associated with this process. Otherwise a process of the
 * Server class will receive the "denied" decision from the security module

It deletes the entry value from the table associated with the sid resource.

It returns the "allowed" result in the following cases:

The rule deleted the entry value from the table associated with the sid resource.

The table associated with the sid resource does not contain the entry value.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

It checks whether the entry value is in the table associated with the sid resource.

It returns a value of the Boolean type. If the entry value is in the table associated with the sid resource, it
returns true . Otherwise it returns false .

It runs incorrectly in the following cases:

The sid resource is not associated with a table from the tables pool of the HashSet security model object
being used.

The sid value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Example:

289

 /* by calling the Check security interface method. */
security src=Server, method=Check {
 assert(s.contains {sid : src_sid, entry : 42})
}

StaticMap security model object

policy object m : StaticMap {
 type Value = UInt16

 config =

StaticMap security model

The StaticMap security model associates resources with two-dimensional "key–value" tables, reads and modi�es
the values of keys. For example, a process of the driver can be associated with the MMIO memory region that this
driver is allowed to use. This will require two keys whose values de�ne the base address and the size of the MMIO
memory region. This association can be used to check whether the driver can query the MMIO memory region that
it is attempting to access.

Keys in the table have the same type but are unique and immutable. The values of keys in the table have the same
type.

There are two simultaneous instances of the table: base instance and working instance. Both instances are
initialized by the same data. Changes are made �rst to the working instance and then can be added to the base
instance, or vice versa: the working instance can be changed by using previous values from the base instance. The
values of keys can be read from the base instance or working instance of the table.

A PSL �le containing a description of the StaticMap security model is located in the KasperskyOS SDK at the
following path:

toolchain/include/nk/staticmap.psl

To use the StaticMap security model, you need to create an object or objects of this model.

A StaticMap security model object contains a pool of two-dimensional "key–value" tables that have the same size.
A resource can be associated with only one table from the tables pool of each StaticMap security model object.

A StaticMap security model object has the following parameters:

type Value – type of values of keys in tables (integer types are supported).

config – con�guration of the pool of tables:

keys – table containing keys and their default values (keys have the Key = Text | List<UInt8> type).

pool_size – number of tables in the pool.

All parameters of a StaticMap security model object are required.

Example:

290

 { keys:
 { "k1" : 0
 , "k2" : 1
 }
 , pool_size : 2
 }
}

StaticMap security model init rule

init {sid : <Sid>}

/* A process of the Server class will be allowed to start if,
 * at startup initiation, an association will be created
 * between this process and the table. Otherwise the startup of a process of the
 * Server class will be denied. */
execute dst=Server {
 m.init {sid : dst_sid}
}

A StaticMap security model object can be covered by a security audit. There are no audit conditions speci�c to
the StaticMap security model.

It is necessary to create multiple objects of the StaticMap security model in the following cases:

You need to con�gure a security audit di�erently for di�erent objects of the StaticMap security model (for
example, you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent
objects).

You need to distinguish between calls of methods provided by di�erent objects of the StaticMap security
model (audit data includes the name of the security model method and the name of the object that provides
this method, so you can verify that the method of a speci�c object was called).

You need to use tables with di�erent sets of keys and/or di�erent types of key values.

It associates a free table from the tables pool with the sid resource. Keys are initialized by the default values.

It returns the "allowed" result if an association was created between the table and the sid resource.

It returns the "denied" result in the following cases:

There are no free tables in the pool.

The sid resource is already associated with a table from the tables pool of the StaticMap security model
object being used.

The sid value is outside of the permissible range.

Example:

291

StaticMap security model �ni rule

fini {sid : <Sid>}

StaticMap security model set rule

set {sid : <Sid>, key : <Key>, value : <Value>}

/* A process of the Server class will receive the "allowed" decision from
 * the Kaspersky Security Module by calling the
 * Set security interface method if, when this method is called, the value 2
 * will be assigned to key k1 in the working instance of the table
 * associated with this process. Otherwise a process of the
 * Server class will receive the "denied" decision from the security module
 /* by calling the Set security interface method. */
security src=Server, method=Set {
 m.set {sid : src_sid, key : "k1", value : 2}
}

It deletes the association between the table and the sid resource (the table becomes free).

It returns the "allowed" result if the association between the table and the sid resource was deleted.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

It assigns the speci�ed value to the speci�ed key in the working instance of the table associated with the sid
resource.

It returns the "allowed" result if the speci�ed value was assigned to the speci�ed key in the working instance of
the table associated with the sid resource. (The current value of the key will be overwritten even if it is equal to
the new value.)

It returns the "denied" result in the following cases:

The speci�ed key is not in the table associated with the sid resource.

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

Example:

292

StaticMap security model commit rule

commit {sid : <Sid>}

StaticMap security model rollback rule

rollback {sid : <Sid>}

StaticMap security model get expression

get {sid : <Sid>, key : <Key>}

It copies the values of keys from the working instance to the base instance of the table associated with the sid
resource.

It returns the "allowed" result if the values of keys were copied from the working instance to the base instance of
the table associated with the sid resource.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

It copies the values of keys from the base instance to the working instance of the table associated with the sid
resource.

It returns the "allowed" result if the values of keys were copied from the base instance to the working instance of
the table associated with the sid resource.

It returns the "denied" result in the following cases:

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

It returns the value of the speci�ed key from the base instance of the table associated with the sid resource.

It returns a value of the Value type.

It runs incorrectly in the following cases:

293

/* A process of the Server class will receive the "allowed" decision from
 * the Kaspersky Security Module by calling the
 * Get security interface method if the value of key k1 in the base
 * instance of the table associated with this process
 * is not zero. Otherwise a process of the Server class will receive
 * the "denied" decision from the security module
 * by calling the Get security interface method. */
security src=Server, method=Get {
 assert(m.get {sid : src_sid, key : "k1"} != 0)
}

StaticMap security model get_uncommitted expression

get_uncommitted {sid: <Sid>, key: <Key>}

The speci�ed key is not in the table associated with the sid resource.

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Example:

It returns the value of the speci�ed key from the working instance of the table associated with the sid resource.

It returns a value of the Value type.

It runs incorrectly in the following cases:

The speci�ed key is not in the table associated with the sid resource.

The sid resource is not associated with a table from the tables pool of the StaticMap security model object
being used.

The sid value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Flow security model

The Flow security model associates resources with �nite-state machines, receives and modi�es the states of
�nite-state machines, and checks whether the state of the �nite-state machine is within the de�ned set of states.
For example, a process can be associated with a �nite-state machine to allow or prohibit this process from using
storage and/or the network depending on the state of the �nite-state machine.

A PSL �le containing a description of the Flow security model is located in the KasperskyOS SDK at the following
path:

294

Flow security model object

policy object service_flow : Flow {
 type State = "sleep" | "started" | "stopped" | "finished"

 config = { states : ["sleep", "started", "stopped", "finished"]
 , initial : "sleep"
 , transitions : { "sleep" : ["started"]
 , "started" : ["stopped", "finished"]
 , "stopped" : ["started", "finished"]
 }
 }
}

Diagram of �nite-state machine states in the example

toolchain/include/nk/flow.psl

To use the Flow security model, you need to create an object or objects of this model.

One Flow security model object associates a set of resources with a set of �nite-state machines that have the
same con�guration. A resource can be associated with only one �nite-state machine of each Flow security model
object.

A Flow security model object has the following parameters:

type State – type that determines the set of states of the �nite-state machine (variant type that combines
text literals).

config – con�guration of the �nite-state machine:

states – set of states of the �nite-state machine (must match the set of states de�ned by the State
type).

initial – initial state of the �nite-state machine.

transitions – description of the permissible transitions between states of the �nite-state machine.

All parameters of a Flow security model object are required.

Example:

A Flow security model object can be covered by a security audit. You can also de�ne the audit conditions speci�c
to the Flow security model. To do so, use the following construct in the audit con�guration description:

omit : ["state 1" , ...] – the audit is not performed if the �nite-state machine is in one of the listed
states.

< >[]

It is necessary to create multiple objects of the Flow security model in the following cases:

295

Flow security model init rule

init {sid : <Sid>}

/* A process of the Server class will be allowed to start
 * if, at startup initiation, an association will be created
 * between this process and the finite-state machine.
 * Otherwise the startup of the Server-class process will be denied. */
execute dst=Server {
 service_flow.init {sid : dst_sid}
}

Flow security model �ni rule

fini {sid : <Sid>}

You need to con�gure a security audit di�erently for di�erent objects of the Flow security model (for example,
you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent objects).

You need to distinguish between calls of methods provided by di�erent objects of the Flow security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

You need to use �nite-state machines with di�erent con�gurations.

It creates a �nite-state machine and associates it with the sid resource. The created �nite-state machine has the
con�guration de�ned in the settings of the Flow security model object being used.

It returns the "granted" result if an association was created between the �nite-state machine and the sid
resource.

It returns the "denied" result in the following cases:

The sid resource is already associated with a �nite-state machine of the Flow security model object being
used.

The sid value is outside of the permissible range.

Example:

It deletes the association between the �nite-state machine and the sid resource. The �nite-state machine that is
no longer associated with the resource is destroyed.

It returns the "granted" result if the association between the �nite-state machine and the sid resource was
deleted.

It returns the "denied" result in the following cases:

296

Flow security model enter rule

enter {sid : <Sid>, state : <State>}

/* Any client in the solution will be allowed to query
 * a server of the Server class if the finite-state machine
 * associated with this server will be switched to
 * the "started" state when initiating the query. Otherwise
 * any client in the solution will be denied to query
 * a server of the Server class. */
request dst=Server {
 service_flow.enter {sid : dst_sid, state : "started"}
}

Flow security model allow rule

allow {sid : <Sid>, states : <Set<State>>}

The sid resource is not associated with a �nite-state machine of the Flow security model object being used.

The sid value is outside of the permissible range.

It switches the �nite-state machine associated with the sid resource to the speci�ed state .

It returns the "granted" result if the �nite-state machine associated with the sid resource was switched to the
speci�ed state .

It returns the "denied" result in the following cases:

The transition to the speci�ed state from the current state is not permitted by the con�guration of the �nite-
state machine associated with the sid resource.

The sid resource is not associated with a �nite-state machine of the Flow security model object being used.

The sid value is outside of the permissible range.

Example:

It veri�es that the state of the �nite-state machine associated with the sid is in the set of de�ned states .

It returns the "granted" result if the state of the �nite-state machine associated with the sid resource is in the set
of de�ned states .

It returns the "denied" result in the following cases:

The state of the �nite-state machine associated with the sid resource is not in the set of de�ned states .

297

/* Any client in the solution is allowed to query a server
 * of the Server class if the finite-state machine associated with this server
 * is in the started or stopped state. Otherwise any client
 * in the solution will be prohibited from querying a server of the Server class. */
request dst=Server {
 service_flow.allow {sid : dst_sid, states : ["started", "stopped"]}
}

Flow security model query expression

query {sid : <Sid>}

/* Any client in the solution is allowed to query
 * a server of the ResourceDriver class if the finite-state machine
 * associated with this server is in the
 * "started" or "stopped" state. Otherwise any client in the solution
 * is prohibited from querying a server of the ResourceDriver class. */
request dst=ResourceDriver {
 choice (service_flow.query {sid : dst_sid}) {
 "started" : grant ()
 "stopped" : grant ()
 _ : deny ()
 }
}

The sid resource is not associated with a �nite-state machine of the Flow security model object being used.

The sid value is outside of the permissible range.

Example:

It is intended to be used as an expression that veri�es ful�llment of the conditions in the choice construct (for
details on the choice construct, see "Binding methods of security models to security events"). It checks the state
of the �nite-state machine associated with the sid resource. Depending on the results of this check, various
options for security event handling can be performed.

It runs incorrectly in the following cases:

The sid resource is not associated with a �nite-state machine of the Flow security model object being used.

The sid value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Example:

Mic security model

298

In Mic security model terminology, processes and the kernel are called subjects while resources are called
objects. However, the information provided in this section slightly deviates from the terminology of the Mic
security model. In this section, the term "object" is not used to refer to a "resource".

The Mic security model implements mandatory integrity control. In other words, this security model provides the
capability to manage data streams between di�erent processes and between processes and the KasperskyOS
kernel by controlling the integrity levels of processes, the kernel, and resources that are used via IPC.

Data streams are generated between subjects when the subjects interact via IPC.

The integrity level of a subject/resource is the level of trust a�orded to the subject/resource. The degree of trust
in a subject depends on whether the subject interacts with untrusted external software/hardware systems or
whether the subject has a proven quality level, for example. (The kernel has a high level of integrity.) The degree of
trust in a resource depends on whether this resource was created by a trusted subject within a software/hardware
system running KasperskyOS or if it was received from an untrusted external software/hardware system, for
example.

The Mic security model is characterized by the following provisions:

By default, data streams from subjects with less integrity to subjects with higher integrity are prohibited. You
have the option of permitting such data streams if you can guarantee that the subjects with higher integrity will
not be compromised.

A resource consumer is prohibited from writing data to a resource if the integrity level of the resource is higher
than the integrity level of the resource consumer.

By default, a resource consumer is prohibited from reading data from a resource if the integrity level of the
resource is lower than the integrity level of the resource consumer. You have the option to allow the resource
consumer to perform such an operation if you can guarantee that the resource consumer will not be
compromised.

Methods of a Mic security model let you perform the following operations:

Assign integrity levels to subjects and resources.

Unassign the integrity level from resources.

Verify the permissibility of data streams based on a comparison of integrity levels.

Increase the integrity levels of resources.

A PSL �le containing a description of the Mic security model is located in the KasperskyOS SDK at the following
path:

toolchain/include/nk/mic.psl

For an example of using the Mic security model, we can examine a secure software update for a software/hardware
system running KasperskyOS. Four processes are involved in the update:

Downloader is a low-integrity process that downloads a low-integrity update image from a remote server on
the Internet.

Verifier is a high-integrity process that veri�es the digital signature of the low-integrity update image (high-
integrity process that can read data from a low-integrity resource).

299

1. The Downloader downloads an update image and saves it to a �le by transferring the contents of the image to
the FileSystem . A low integrity level is assigned to this �le.

2. The Verifier receives the update image from the FileSystem by reading the high-integrity �le, and veri�es
its digital signature. If the signature is correct, the Verifier queries the FileSystem so that the
FileSystem creates a copy of the �le containing the update image. A high integrity level is assigned to the
new �le.

3. The Updater receives the update image from the FileSystem by reading the high-integrity �le, and applies
the update.

Mic security model object

policy object mic : Mic {
 config = ["LOW", "MEDIUM", "HIGH"]
}

policy object mic_po : Mic {
 config =
 { degrees : ["low", "high"]
 , categories : ["net", "log"]
 }
}

FileSystem is a high-integrity process that manages the �le system.

Updater is a high-integrity process that applies an update.

A software update is performed according to the following scenario:

In this example, the Mic security model ensures that the high-integrity Updater process can read data only from a
high-integrity update image. As a result, the update can be applied only after the digital signature of the update
image is veri�ed.

To use the Mic security model, you need to create an object or objects of this model. You also need to assign a set
of integrity levels for subjects and resources.

A Mic security model object has the following parameters:

config – set of integrity levels or con�guration of a set of integrity levels:

degrees – set of gradations for generating a set of integrity levels.

categories – set of categories for generating a set of integrity levels.

Examples:

A set of integrity levels is a partially ordered set that is linearly ordered or contains incomparable elements. The set
{LOW, MEDIUM, HIGH} is linearly ordered because all of its elements are comparable to each other. Incomparable
elements arise when a set of integrity levels is de�ned through a set of gradations and a set of categories. In this
case, the set of integrity levels L is a Cartesian product of the Boolean set of categories C multiplied by the set of
gradations D:

300

For subjects and resources that have incomparable integrity levels, the Mic security model provides conditions
that are analogous to the conditions that the security model provides for subjects and resources that have
comparable integrity levels.
By default, data streams between subjects that have incomparable integrity levels are prohibited. However, you
have the option to allow such data streams if you can guarantee that the subjects receiving data will not be
compromised. A resource consumer is prohibited from writing data to a resource and read data from a resource
if the integrity level of the resource is incomparable to the integrity level of the resource consumer. You have the
option to allow the resource consumer to read data from a resource if you can guarantee that the resource
consumer will not be compromised.

The degrees and categories parameters in this example de�ne the following set:

{

{}/low, {}/high,

{net}/low, {net}/high,

{log}/low, {log}/high,

{net,log}/low, {net,log}/high

}

In this set, {} means an empty set.

The order relation between elements of the set of integrity levels L is de�ned as follows:

According to this order relation, the jth element exceeds the ith element if the subset of categories E includes the
subset of categories A, and gradation F is greater than or equal to gradation A. Examples of comparing elements
of the set of integrity levels L:

The {net,log}/high element exceeds the {log}/low element because the "high" gradation is greater than the
"low" gradation, and the subset of categories {net,log} includes the subset of categories {log}.

The {net,log}/low element exceeds the {log}/low element because the levels of gradations for these elements
are equal, and the subset of categories {net,log} includes the subset of categories {log}.

The {net,log}/high element is the highest because it exceeds all other elements.

The {}/low element is the lowest because all other elements exceed this element.

The {net}/low and {log}/high elements are incomparable because the "high" gradation is greater than the "low"
gradation but the subset of categories {log} does not include the subset of categories {net}.

The {net,log}/low and {log}/high elements are incomparable because the "high" gradation is greater than the
"low" gradation but the subset of categories {log} does not include the subset of categories {net,log}.

A Mic security model object can be covered by a security audit. There are no audit conditions speci�c to the Mic
security model.

301

Mic security model create rule

create { source : <Sid>
 , target : <Sid>
 , container : <Sid | ()>
 , driver : <Sid>
 , level : <Level | ... | ()>
 }

type Level = LevelFull | LevelNoCategory

type LevelFull =
 { degree : Text | ()
 , categories : List<Text> | ()
 }

type LevelNoCategory = Text

It is necessary to create multiple objects of the Mic security model in the following cases:

You need to con�gure a security audit di�erently for di�erent objects of the Mic security model (for example,
you can apply di�erent audit pro�les or di�erent audit con�gurations of the same pro�le for di�erent objects).

You need to distinguish between calls of methods provided by di�erent objects of the Mic security model
(audit data includes the name of the security model method and the name of the object that provides this
method, so you can verify that the method of a speci�c object was called).

You need to use multiple variants of mandatory integrity control that may have di�erent sets of integrity levels
for subjects and resources, for example.

Assign the speci�ed integrity level to the target resource in the following situation:

The source process initiates creation of the target resource.

The target resource is managed by the driver subject, which is the resource provider or the KasperskyOS
kernel.

The container resource is a container for the target resource (for example, a directory is a container for
�les and/or other directories).

If the container �eld has the value () , the target resource is considered to be the root resource, which means
that it has no container.

To de�ne the integrity level , values of the Level type are used:

The rule returns the "granted" result if a speci�c integrity level was assigned to the target resource.

The rule returns the "denied" result in the following cases:

The level value exceeds the integrity level of the source process, driver subject or container resource.

302

/* A server of the updater.Realmserv class will be allowed to respond to
 * queries of any client in the solution calling the resolve method
 * of the realm.Reader endpoint if the resource whose creation is requested
 * by the client will be assigned the LOW integrity level during response initiation.
 * Otherwise a server of the updater.Realmserv class will be prohibited from
responding to
 * queries of any client calling the resolve method of the realm.Reader endpoint. */
response src=updater.Realmserv,
 endpoint=realm.Reader {
 match method=resolve {
 mic.create { source : dst_sid
 , target : message.handle.handle
 , container : ()
 , driver : src_sid
 , level : "LOW"
 }
 }
}

Mic security model delete rule

delete { source : <Sid>
 , target : <Sid>
 , container : <Sid | ()>
 , driver : <Sid>
 }

The level value is incomparable to the integrity level of the source process, driver subject or container
resource.

An integrity level was not assigned to the source process, driver subject, or container resource.

The value of source , target , container or driver is outside of the permissible range.

Example:

Unassigns the integrity level from the target resource in the following situation:

The source process initiates deletion of the target resource.

The target resource is managed by the driver subject, which is the resource provider or the KasperskyOS
kernel.

The container resource is a container for the target resource (for example, a directory is a container for
�les and/or other directories).

If the container �eld has the value () , the target resource is considered to be the root resource, which means
that it has no container.

The rule returns the "granted" result if it unassigned the integrity level from the target resource.

The rule returns the "denied" result in the following cases:

303

/* Any client in the solution will be allowed to query a server of the foo class
 * updater.Realmserv class by calling the del method of the realm.Reader endpoint if
the
 * integrity level will be unassigned from the resource whose deletion is requested by
the client.
 * Otherwise, any client in the solution will be prohibited from querying a server of
the
 * updater.Realmserv class by calling the del method of the realm.Reader endpoint. */
request dst=updater.Realmserv,
 endpoint=realm.Reader {
 match method=del {
 mic.delete { source : src_sid
 , target : message.handle.handle
 , container : ()
 , driver : dst_sid
 }
 }
}

Mic security model execute rule

execute <ExecuteImage | ExecuteLevel>

type ExecuteImage =
 { image : Sid
 , target : Sid
 , level : Level | ... | ()
 , levelR : Level | ... | ()
 }

type ExecuteLevel =
 { image : Sid | ()
 , target : Sid
 , level : Level | ...
 , levelR : Level | ... | ()
 }

The integrity level of the target resource exceeds the integrity level of the source process or driver
subject.

The integrity level of the target resource is incomparable to the integrity level of the source process or
driver subject.

An integrity level was not assigned to the source process, driver subject, target resource or container
resource.

The value of source , target , container or driver is outside of the permissible range.

Example:

This assigns the speci�ed integrity level to the target subject and de�nes the minimum integrity level of
subjects and resources from which this subject can receive data (levelR). The code of the target subject is in
the image executable �le.

304

/* A process of the updater.Manager class will be allowed to start
 * if, at startup initiation, this process will be assigned
 * the integrity level LOW, and the minimum
 * integrity level will be defined for the processes and resources from which this
 * process can received data (LOW). Otherwise the startup of a process
 * of the updater.Manager class will be denied. */
execute src=Einit, dst=updater.Manager, method=main {
 mic.execute { target : dst_sid
 , image : ()
 , level : "LOW"
 , levelR : "LOW"
 }
}

Mic security model upgrade rule

upgrade { source : <Sid>
 , target : <Sid>
 , container : <Sid | ()>
 , driver : <Sid>
 , level : <Level | ...>
 }

If the level �eld has the value () , the integrity level of the image executable �le is assigned to the target
subject. If the image �eld has the value () , the level �eld must have a value other than () .

If the levelR �eld has the value () , the levelR integrity level is assumed to be equal to the integrity level of the
target subject.

To de�ne the integrity level and levelR , values of the Level type are used. For the de�nition of the Level
type, see "Mic security model create rule".

The rule returns the "granted" result if it assigned the speci�ed integrity level to the target subject and de�ned
the minimum integrity level of subjects and resources from which this subject can receive data (levelR).

The rule returns the "denied" result in the following cases:

The level value exceeds the integrity level of the image executable �le.

The level value is incomparable to the integrity level of the image executable �le.

The value of levelR exceeds the value of level .

The level and levelR values are incomparable.

An integrity level was not assigned to the image executable �le.

The image or target value is outside of the permissible range.

Example:

305

Mic security model call rule

call {source : <Sid>, target : <Sid>}

This elevates the previously assigned integrity level of the target resource to the speci�ed level in the
following situation:

The source process initiates elevation of the integrity level of the target resource.

The target resource is managed by the driver subject, which is the resource provider or the KasperskyOS
kernel.

The container resource is a container for the target resource (for example, a directory is a container for
�les and/or other directories).

If the container �eld has the value () , the target resource is considered to be the root resource, which means
that it has no container.

To de�ne the integrity level , values of the Level type are used. For the de�nition of the Level type, see "Mic
security model create rule".

The rule returns the "granted" result if it elevated the previously assigned integrity level of the target resource to
the level value.

The rule returns the "denied" result in the following cases:

The level value does not exceed the integrity level of the target resource.

The level value exceeds the integrity level of the source process, driver subject or container resource.

The integrity level of the target resource exceeds the integrity level of the source process.

An integrity level was not assigned to the source process, driver subject, or container resource.

The value of source , target , container or driver is outside of the permissible range.

This veri�es the permissibility of data streams from the target subject to the source subject.

It returns the "allowed" result in the following cases:

The integrity level of the source subject does not exceed the integrity level of the target subject.

The integrity level of the source subject exceeds the integrity level of the target subject, but the minimum
integrity level of subjects and resources from which the source subject can receive data does not exceed the
integrity level of the target subject.

The integrity level of the source subject is incomparable to the integrity level of the target subject, but the
minimum integrity level of subjects and resources from which the source subject can receive data does not
exceed the integrity level of the target subject.

It returns the "denied" result in the following cases:

306

/* Any client in the solution is allowed to query
 * any server (kernel) if data streams from
 * the server (kernel) to the client are permitted by the
 * Mic security model. Otherwise any client in the solution
 * is prohibited from querying any server (kernel). */
request {
 mic.call { source : src_sid
 , target : dst_sid
 }
}

Mic security model invoke rule

invoke {source : <Sid>, target : <Sid>}

The integrity level of the source subject exceeds the integrity level of the target subject, and the minimum
integrity level of subjects and resources from which the source subject can receive data exceeds the integrity
level of the target subject.

The integrity level of the source subject exceeds the integrity level of the target subject, and the minimum
integrity level of subjects and resources from which the source subject can read data is incomparable to the
integrity level of the target subject.

The integrity level of the source subject is incomparable to the integrity level of the target subject, and the
minimum integrity level of subjects and resources from which the source subject can receive data exceeds the
integrity level of the target subject.

The integrity level of the source subject is incomparable to the integrity level of the target subject, and the
minimum integrity level of subjects and resources from which the source subject can receive data is
incomparable to the integrity level of the target subject.

An integrity level was not assigned to the source subject or to the target subject.

The source or target value is outside of the permissible range.

Example:

This veri�es the permissibility of data streams from the source subject to the target subject.

It returns the "granted" result if the integrity level of the target subject does not exceed the integrity level of the
source subject.

It returns the "denied" result in the following cases:

The integrity level of the target subject exceeds the integrity level of the source subject.

The integrity level of the target subject is incomparable to the integrity level of the source subject.

An integrity level was not assigned to the source subject or to the target subject.

The source or target value is outside of the permissible range.

307

Mic security model read rule

read {source : <Sid>, target : <Sid>}

/* Any client in the solution is allowed to query a server of
 * the updater.Realmserv class by calling the read method of the
 * realm.Reader service if the Mic security model permits
 * this client to read data from the resource needed by
 * this client. Otherwise any client in the solution is prohibited from
 * querying a server of the updater.Realmserv class by calling
 * the read method of the realm.Reader endpoint. */
request dst=updater.Realmserv,
 endpoint=realm.Reader {

This veri�es that the source resource consumer is allowed to read data from the target resource.

It returns the "allowed" result in the following cases:

The integrity level of the source resource consumer does not exceed the integrity level of the target
resource.

The integrity level of the source resource consumer exceeds the integrity level of the target resource, but
the minimum integrity level of subjects and resources from which the source resource consumer can receive
data does not exceed the integrity level of the target resource.

The integrity level of the source resource consumer is incomparable to the integrity level of the target
resource, but the minimum integrity level of subjects and resources from which the source resource consumer
can receive data does not exceed the integrity level of the target resource.

It returns the "denied" result in the following cases:

The integrity level of the source resource consumer exceeds the integrity level of the target resource, and
the minimum integrity level of subjects and resources from which the source resource consumer can receive
data exceeds the integrity level of the target resource.

The integrity level of the source resource consumer exceeds the integrity level of the target resource, and
the minimum integrity level of subjects and resources from which the source resource consumer can receive
data is incomparable to the integrity level of the target resource.

The integrity level of the source resource consumer is incomparable to the integrity level of the target
resource, and the minimum integrity level of subjects and resources from which the source resource consumer
can receive data exceeds the integrity level of the target resource.

The integrity level of the source resource consumer is incomparable to the integrity level of the target
resource, and the minimum integrity level of subjects and resources from which the source resource consumer
can receive data is incomparable to the integrity level of the target resource.

An integrity level was not assigned to the source resource consumer or to the target resource.

The source or target value is outside of the permissible range.

Example:

308

 match method=read {
 mic.read { source : src_sid
 , target : message.handle.handle
 }
 }
}

Mic security model write rule

write {source : <Sid>, target : <Sid>}

Mic security model query_level expression

query_level {source : <Sid>}

This veri�es that the source resource consumer is allowed to write data to the target resource.

It returns the "granted" result if the integrity level of the target resource does not exceed the integrity level of
the source resource consumer.

It returns the "denied" result in the following cases:

The integrity level of the target resource exceeds the integrity level of the source resource consumer.

The integrity level of the target resource is incomparable to the integrity level of the source resource
consumer.

An integrity level was not assigned to the source resource consumer or to the target resource.

The source or target value is outside of the permissible range.

It is intended to be used as an expression that veri�es ful�llment of the conditions in the choice construct (for
details on the choice construct, see "Binding methods of security models to security events"). It checks the
integrity level of the source resource or subject. Depending on the results of this check, various options for
security event handling can be performed.

It runs incorrectly in the following cases:

An integrity level was not assigned to the subject or source resource.

The source value is outside of the permissible range.

When the expression runs incorrectly, the Kaspersky Security Module returns the "denied" decision.

Methods of KasperskyOS core endpoints

309

1. Access to a secure method must be granted only to the solution components that require this method.

2. Access to a potentially dangerous method must be granted only to the trusted solution components that
require this method.

3. Access to a potentially dangerous method must be granted to untrusted solution components that require this
method only if the veri�able access conditions limit the possibilities of malicious use of this method, or if the
impact from malicious use of this method is acceptable from a security perspective.

For example, an untrusted component may be allowed to use a limited set of I/O ports that do not allow this
component to take control of I/O devices. In another example, covert data transfer between untrusted
components may be acceptable from a security perspective.

Methods of the vmm.VMM endpoint (kl.core.VMM interface)

Method Method purpose and parameters Potential danger of the method

Allocate

From the perspective of the Kaspersky Security Module, the KasperskyOS kernel is a container of components
that provide endpoints. The list of kernel components is provided in the Core.edl �le located in the sysroot-*-
kos/include/kl/core directory of the KasperskyOS SDK. This directory also contains the CDL and IDL �les for
the formal speci�cation of the kernel.

Methods of core endpoints can be divided into secure methods and potentially dangerous methods. Potentially
dangerous methods could be used by a cybercriminal in a compromised solution component to cause a denial of
service, set up covert data transfer, or hijack an I/O device. Secure methods cannot be used for these purposes.

Access to methods of core endpoints must be restricted as much as possible by the solution security policy
(according to the Least Privilege principle). For that, the following requirements must be ful�lled:

Virtual memory endpoint

This endpoint is intended for managing virtual memory.

Information about methods of the endpoint is provided in the table below.

Purpose

Allocates (reserves and optionally
commits) a virtual memory region.

Parameters

[in] addr – preferred base address
of the virtual memory region, or 0
for the base address to be selected
automatically.

[in] size – size of the virtual
memory region in bytes.

[in] flags – �ags de�ning the
parameters of the virtual memory
region.

[out] va – base address of the
allocated virtual memory region.

Allows the following:

Exhaust the kernel memory by creating a
multitude of objects within it.

Exhaust the RAM.

310

Commit Exhausts RAM.

Decommit N/A

Protect N/A

Free N/A

[out] rc – return code.

Purpose

Commits a virtual memory region that
was reserved by the Allocate
method.

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[in] flags – �ctitious parameter.

[out] rc – return code.

Purpose

Decommits a virtual memory region.

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[out] rc – return code.

Purpose

Modi�es the access rights to the
virtual memory region.

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[in] flags – �ags de�ning the
access rights to the virtual memory
region.

[out] rc – return code.

Purpose

311

Query N/A

MdlCreate

Allows the following:

MdlCreateFromVm Allows the following:

Frees up the virtual memory region.

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[out] rc – return code.

Purpose

Gets information about a virtual
memory page.

Parameters

[in] va – address included in the
virtual memory page.

[out] info – sequence containing
information about a virtual memory
page.

[out] rc – return code.

Purpose

Creates an MDL bu�er.

Parameters

[in] size – size of the MDL bu�er
in bytes.

[in] prot – �ags de�ning the
access rights to the MDL bu�er.

[out] handle – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er.

[out] rc – return code.

Exhaust the kernel memory by creating a
multitude of objects within it.

Exhaust the RAM.

Purpose

Creates an MDL bu�er from physical
memory that is mapped to the de�ned
virtual memory region and maps the
created MDL bu�er to this region.

Exhaust the kernel memory by creating a
multitude of objects within it.

Exhaust the RAM.

312

MdlGetSize N/A

MdlMap Allows the following:

Parameters

[in] va – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[in] flags – �ags de�ning the
access rights to the MDL bu�er.

[out] handle – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er.

[out] rc – return code.

Purpose

Gets the size of the MDL bu�er.

Parameters

[in] handle – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er.

[out] size – size of the MDL
bu�er in bytes.

[out] rc – return code.

Purpose

Reserves a virtual memory region and
maps the MDL bu�er to it.

Parameters

[in] handle – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the MDL bu�er.

[in] offset – o�set (in bytes) in
the MDL bu�er where mapping
should start.

[in] length – size (in bytes) of the
part of the MDL bu�er that needs
to be mapped.

Create shared memory for interprocess
communication concealed from the
security module if multiple processes
own the handles of one MDL bu�er (the
handle permissions masks must allow
mapping of the MDL bu�er).

Exhaust the kernel memory by creating a
multitude of objects within it.

313

MdlClone Allows the kernel memory to be used up by
creating a multitude of objects within it.

[in] hint – preferred base address
of the virtual memory region, or 0
for the base address to be selected
automatically.

[in] prot – �ags de�ning the
parameters of the virtual memory
region.

[out] address – base address of
the virtual memory region.

[out] rc – return code.

Purpose

Creates an MDL bu�er based on an
existing one.

The MDL bu�er is created from the
same regions of physical memory as
the original bu�er.

Parameters

[in] originHandle – value whose
binary representation consists of
multiple �elds, including a handle
�eld and a handle permissions mask
�eld. The handle identi�es the
original MDL bu�er.

[in] offset – o�set (in bytes) in
the original MDL bu�er where
duplication should start.

[in] length – size (in bytes) of the
part of the original MDL bu�er that
needs to be duplicated.

[out] cloneHandle – value whose
binary representation consists of
multiple �elds, including a handle
�eld and a handle permissions mask
�eld. The handle identi�es the
created MDL bu�er.

[out] rc – return code.

I/O endpoint

This endpoint is intended for working with I/O ports, MMIO, DMA, and interrupts.

314

Methods of the io.IO endpoint (kl.core.IO interface)

Method Method purpose and parameters Potential danger of the
method

RegisterPort

Allows the following:

RegisterMmio
Allows the kernel memory to
be used up by creating a
multitude of objects within it.

RegisterDma Allows the following:

Information about methods of the endpoint is provided in the table below.

Purpose

Registers a sequence of I/O ports.

Parameters

[in] base – address of the �rst I/O port in the
sequence.

[in] size – number of I/O ports in the sequence.

[out] resource – value whose binary
representation consists of multiple �elds, including
a handle �eld and a handle permissions mask �eld.
The handle identi�es the sequence of I/O ports.

[out] rc – return code.

Hijack I/O ports (it is
recommended to monitor
the address of the �rst
I/O port and the number
of I/O ports in the
sequence).

Exhaust the kernel
memory by creating a
multitude of objects
within it.

Purpose

Registers an MMIO memory region.

Parameters

[in] base – base address of the MMIO memory
region.

[in] size – size of the MMIO memory region in
bytes.

[out] resource – value whose binary
representation consists of multiple �elds, including
a handle �eld and a handle permissions mask �eld.
The handle identi�es the MMIO memory region.

[out] rc – return code.

Purpose

Creates a DMA bu�er.

Parameters

[in] size – size of the DMA bu�er in bytes.

[in] flags – �ags de�ning the DMA bu�er
parameters.

Exhaust the kernel
memory by creating a
multitude of objects
within it.

Exhaust the RAM.

315

RegisterIrq
Allows the kernel memory to
be used up by creating a
multitude of objects within it.

MapMem

Allows the following:

PermitPort Allows the following:

[in] order – parameter de�ning the minimum
number of memory pages (2^order) in a block.

[out] resource – value whose binary
representation consists of multiple �elds, including
a handle �eld and a handle permissions mask �eld.
The handle identi�es the DMA bu�er.

[out] rc – return code.

Purpose

Registers an interrupt.

Parameters

[in] irq – interrupt number.

[out] resource – value whose binary
representation consists of multiple �elds, including
a handle �eld and a handle permissions mask �eld.
The handle identi�es the interrupt.

[out] rc – return code.

Purpose

Reserves the virtual memory region and maps the
MMIO memory region to it.

Parameters

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the MMIO memory region.

[in] prot – �ags de�ning the access rights to the
virtual memory region.

[in] attr – �ags de�ning the parameters of the
virtual memory region (for example, use of caching).

[out] address – base address of the virtual
memory region.

[out] mapping – value whose binary
representation consists of multiple �elds, including
a handle �eld and a handle permissions mask �eld.
The handle is used to free the virtual memory
region.

[out] rc – return code.

Take control of a device
when mapping an MMIO
memory region to a virtual
memory region (it is
recommended to monitor
the base address and size
of the MMIO memory
region when the
RegisterMmio method is
called).

Create shared memory
for interprocess
communication concealed
from the security module
if multiple processes own
the handles of one MMIO
memory region (the
handle permissions masks
must allow mapping of the
MMIO memory region).

Exhaust the kernel
memory by creating a
multitude of objects
within it.

Purpose

316

AttachIrq

Allows the following:

DetachIrq

Opens access to I/O ports.

Parameters

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the sequence of I/O ports.

[out] access – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle is
used to close access to I/O ports.

[out] rc – return code.

Take control of a device (it
is recommended to
monitor the address of
the �rst I/O port and the
number of I/O ports in the
sequence when the
RegisterPort method is
called).

Exhaust the kernel
memory by creating a
multitude of objects
within it.

Purpose

Attaches the calling thread to an interrupt.

Parameters

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the interrupt.

[in] flags – �ags de�ning the interrupt
parameters.

[out] delivery – value whose binary
representation consists of multiple �elds, including
a handle �eld and a handle permissions mask �eld.
The handle is the client IPC handle that is used by
the interrupt handler.

[out] rc – return code.

Take CPU time from all
other threads, including
from other processes (the
thread that attached to
the interrupt will become
a real-time thread).

Make it impossible to
terminate a process from
another process (the
process whose thread
was attached to the
interrupt cannot be
terminated from another
process).

Stop the operating
system (if an unhandled
exception occurs in the
thread handling an
interrupt, the operating
system stops).

Lock, delay, or incorrectly
handle an interrupt (it is
recommended to monitor
the interrupt number
when the RegisterIrq
method is called).

Exhaust the kernel
memory by creating a
multitude of objects
within it.

Purpose

Sends a request to a thread. When this request is
ful�lled, the thread must detach from the interrupt.

Stops interrupt handling in
another process.

317

EnableIrq

Purpose

Allows (unmasks) an interrupt.

Parameters

DisableIrq

Purpose

Denies (masks) an interrupt.

Parameters

ModifyDma

MapDma Allows the following:

Parameters

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the interrupt.

[out] rc – return code.

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the interrupt.

[out] rc – return code.

Allows an interrupt at the
system level.

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the interrupt.

[out] rc – return code.

Denies an interrupt at the
system level.

Purpose

Modi�es the DMA bu�er cache settings.

Parameters

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the DMA bu�er.

[in] flags – �ags de�ning the DMA bu�er caching
parameters.

[out] rc – return code.

N/A

Purpose

Reserves a virtual memory region and maps the DMA
bu�er to it.

Parameters

Create shared memory
for interprocess
communication concealed
from the security module
if multiple processes own
the handles of one DMA

318

DmaGetInfo N/A

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the DMA bu�er.

[in] offset – o�set (in bytes) in the DMA bu�er
where mapping should start.

[in] length – size (in bytes) of the part of the DMA
bu�er that needs to be mapped.

[in] hint – preferred base address of the virtual
memory region, or 0 for the base address to be
selected automatically.

[in] prot – �ags de�ning the access rights to the
virtual memory region.

[out] address – base address of the virtual
memory region.

[out] mapping – value whose binary
representation consists of multiple �elds, including
a handle �eld and a handle permissions mask �eld.
The handle is used to free the virtual memory
region.

[out] rc – return code.

bu�er (the handle
permissions masks must
allow mapping of the DMA
bu�er).

Exhaust the kernel
memory by creating a
multitude of objects
within it.

Purpose

Gets information about a DMA bu�er.

Parameters

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the DMA bu�er.

[out] flags – �ags indicating the DMA
parameters.

[out] order – parameter indicating the minimum
number of memory pages (2^order) in a block.

[out] size – size of the DMA bu�er in bytes.

[out] count – number of blocks.

[out] frames – sequence containing the
addresses and sizes of blocks.

[out] rc – return code.

319

DmaGetPhysInfo N/A

BeginDma
Allows the kernel memory to
be used up by creating a
multitude of objects within it.

Methods of the thread.Thread endpoint (kl.core.Thread interface)

Method Method purpose and parameters Potential danger of the method

Create Allows the following:

Purpose

Gets information about the physical memory that was
used to create a DMA bu�er.

Parameters

[in] handle – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the DMA bu�er.

[out] count – number of blocks.

[out] frames – sequence containing the
addresses and sizes of blocks.

[out] rc – return code.

Purpose

Opens access to a DMA bu�er for a device.

Parameters

[in] resource – value whose binary representation
consists of multiple �elds, including a handle �eld
and a handle permissions mask �eld. The handle
identi�es the DMA bu�er.

[out] iomapping – value whose binary
representation consists of multiple �elds, including
a handle �eld and a handle permissions mask �eld.
The handle identi�es the kernel object that
contains the addresses and sizes of blocks required
by the device to use the DMA bu�er. The memory
addresses used by the device can be physical
addresses or virtual addresses depending on
whether the IOMMU is enabled.

[out] rc – return code.

Threads endpoint

This endpoint is intended for managing threads.

Information about methods of the endpoint is provided in the table below.

Purpose

320

OpenCurrent

Suspend

Creates a thread.

Parameters

[out] thread – value whose
binary representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the thread.

[out] tid – thread ID (TID).

[in] priority – thread priority.

[in] stackSize – thread stack
limit (in bytes), or 0 to use the
default size that was de�ned when
the process was created.

[in] routine – pointer to the
function that is called when the
thread starts.

[in] context – pointer to the
function executed by the thread.

[in] context2 – pointer to the
parameters passed to the
function de�ned via the context
parameter.

[in] flags – �ags de�ning the
parameters for creating the
thread.

[out] rc – return code.

Create a real-time thread that takes up all
the CPU time from other threads, including
from other processes (it is recommended
to monitor thread creation parameters).

Create a multitude of threads (including
with high priority) to reduce the CPU time
available to the threads of other processes
(it is recommended to monitor thread
priority).

Exhaust the RAM.

Exhaust the kernel memory by creating a
multitude of objects within it.

Purpose

Creates the handle of the calling
thread.

Parameters

[out] thread – value whose
binary representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the thread.

[out] rc – return code.

N/A

Purpose Locks a thread that has captured a
synchronization object that was created in

321

Resume

Terminate

Exit N/A

Wait N/A

Locks the calling thread.

Parameters

[out] rc – return code.

shared memory and is anticipated by a thread
of another process. As a result, the thread of
the other process may be locked inde�nitely.

Purpose

Resumes execution of a locked
thread.

Parameters

[in] thread – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the thread.

[out] rc – return code.

N/A

Purpose

Terminates a thread.

Parameters

[in] thread – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the thread.

[in] code – thread exit code.

[out] rc – return code.

N/A

Purpose

Terminates the calling thread.

Parameters

[in] code – thread exit code.

[out] rc – return code.

Purpose

Locks the calling thread until the
de�ned thread is terminated.

Parameters

322

SetPriority

Allows the priority of a thread to be elevated
to reduce the CPU time available to all other
threads, including from other processes.

It is recommended to monitor thread priority.

SetTls N/A

Sleep N/A

[in] thread – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the thread.

[in] msec – thread termination
timeout (in milliseconds).

[out] code – thread exit code.

[out] rc – return code.

Purpose

De�nes the priority of a thread.

Parameters

[in] thread – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the thread.

[in] priority – thread priority.

[out] rc – return code.

Purpose

De�nes the base address of the
Thread Local Storage (TLS) for the
calling thread.

Parameters

[in] va – pointer to the local
memory of the thread.

[out] rc – return code.

Purpose

Locks the calling thread for the
speci�ed duration.

Parameters

[in] mdelay – thread lockout
duration (in milliseconds).

[out] rc – return code.

323

GetInfo N/A

DetachIrq N/A

GetAffinity N/A

SetAffinity N/A

Purpose

Gets information about a thread.

Parameters

[in] thread – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the thread.

[out] info is the structure
containing the base address of the
thread stack and its size (in bytes),
and the thread identi�er (TID).

[out] rc – return code.

Purpose

Detaches the calling thread from the
interrupt handled in its context.

Parameters

[out] rc – return code.

Purpose

Gets a thread a�inity mask.

Parameters

[in] thread – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the thread.

[out] mask – thread a�inity mask.

[out] rc – return code.

Purpose

De�nes a thread a�inity mask.

Parameters

[in] thread – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the thread.

324

SetSchedPolicy

Allows the following:

GetSchedPolicy N/A

[in] mask – thread a�inity mask.

[out] rc – return code.

Purpose

De�nes the scheduler class and
priority of the thread.

Parameters

[in] thread – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the thread.

[in] policy – thread scheduler
class.

[in] priority – thread priority.

[in] param – union containing
parameters of a thread scheduler
class.

[out] rc – return code.

Convert a thread into a real-time thread
that takes up all the CPU time from all
other threads, including from other
processes (it is recommended to monitor
the thread scheduler class).

Elevate the priority of a thread to reduce
the CPU time available to all other threads,
including from other processes (it is
recommended to monitor thread priority).

Purpose

Gets information about the scheduler
class and priority of a thread.

Parameters

[in] thread – value whose binary
representation consists of multiple
�elds, including a handle �eld and a
handle permissions mask �eld. The
handle identi�es the thread.

[out] policy – thread scheduler
class.

[out] priority – thread priority.

[out] param – union containing
parameters of a thread scheduler
class.

[out] rc – return code.

325

Methods of the handle.Handle endpoint (kl.core.Handle interface)

Method Method purpose and parameters

Potential
danger
of the

method

Copy

Allows
the
kernel
memory
to be
used up
by
creating
a
multitude
of
objects
within it.

CreateUserObject Allows
the
kernel
memory
to be
used up
by
creating
a
multitude
of
objects
within it.

Handles endpoint

This endpoint is intended for performing operations with handles.

Information about methods of the endpoint is provided in the table below.

Purpose

Duplicates a handle.

As a result of duplication, the calling process receives the handle
descendant.

Parameters

[in] inHandle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions mask
�eld. The handle �eld contains the original handle.

[in] newRightsMask – permissions mask of the handle descendant.

[in] copyBadge – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions mask
�eld. The handle identi�es the resource transfer context object.

[out] outHandle – value whose binary representation consists of
multiple �elds, including a �eld for the handle descendant and a �eld
for the permissions mask of the handle descendant.

[out] rc – return code.

Purpose

Creates a handle.

Parameters

[in] type – handle type.

[in] rights – handle permissions mask.

[in] context – pointer to the data that should be associated with
the handle.

[in] ipcChannel – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions mask
�eld. The handle is the server IPC handle.

326

Close N/A

Connect

Allows
the
kernel
memory
to be
used up
by
creating
a
multitude
of
objects
within it.

SecurityConnect Allows a
multitude
of
possible

[in] riid – endpoint ID (RIID).

[out] handle – value whose binary representation consists of
multiple �elds, including a �eld for the created handle and a �eld for
the permissions mask of the created handle.

[out] rc – return code.

Purpose

Closes a handle.

Parameters

[in] handle – value whose binary representation consists of multiple
�elds, including a handle �eld and a handle permissions mask �eld.

[out] rc – return code.

Purpose

Creates and connects the client, server, and listener IPC handles.

Parameters

[in] server – value whose binary representation consists of multiple
�elds, including a handle �eld and a handle permissions mask �eld.
The handle identi�es the server process.

[in] srListener – listener handle from the handle space of the
server process, or the value 0xFFFFFFFF to create it.

[in] createSrEndpoint – value that de�nes whether or not to
create a server IPC handle in the handle space of the server process
(0 means no, and any other number means yes).

[in] client – value whose binary representation consists of multiple
�elds, including a handle �eld and a handle permissions mask �eld.
The handle identi�es the client process.

[out] outSrListener – listener handle from the handle space of the
server process.

[out] outSrEndpoint – server IPC handle from the handle space of
the server process.

[out] outClEndpoint – client IPC handle from the handle space of
the client process.

[out] rc – return code.

Purpose

327

kernel
process
handle
values to
be used
up.

GetSidByHandle N/A

Revoke N/A

RevokeSubtree N/A

Creates a client IPC handle for querying the Kaspersky Security Module
through the security interface.

Parameters

[out] client – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle permissions mask
�eld.

[out] rc – return code.

Purpose

Receives a security ID (SID) based on a handle.

Parameters

[in] handle – value whose binary representation consists of multiple
�elds, including a handle �eld and a handle permissions mask �eld.

[out] sid – security ID (SID).

[out] rc – return code.

Purpose

Closes a handle and revokes its descendants.

Parameters

[in] handle – value whose binary representation consists of multiple
�elds, including a handle �eld and a handle permissions mask �eld.

[out] rc – return code.

Purpose

Revokes the handles that make up the inheritance subtree of the
speci�ed handle.

Parameters

[in] handle – value whose binary representation consists of multiple
�elds, including a handle �eld and a handle permissions mask �eld.
The handles forming the inheritance subtree of this handle are
revoked.

[in] badge – value whose binary representation consists of multiple
�elds, including a handle �eld and a handle permissions mask �eld.
The handle identi�es the resource transfer context object that
de�nes the inheritance subtree of the handles to revoke. The root
node of this subtree is the handle that was generated by the transfer
or duplication of the handle that is de�ned through the handle
parameter and is associated with the resource transfer context
object.

328

CreateBadge

Allows
the
kernel
memory
to be
used up
by
creating
a
multitude
of
objects
within it.

Methods of the task.Task endpoint (kl.core.Task interface)

Method Method purpose and parameters Potential danger of the
method

Create Allows the following:

[out] rc – return code.

Purpose

Creates a resource transfer context object and con�gures a noti�cation
mechanism for monitoring the life cycle of this object.

Parameters

[in] notify – value whose binary representation consists of multiple
�elds, including a handle �eld and a handle permissions mask �eld.
The handle identi�es the noti�cation receiver.

[in] notifyContext – ID of the "resource–event mask" entry in the
noti�cation receiver.

[in] badgeContext – pointer to the data that should be associated
with the handle transfer.

[out] badge – value whose binary representation consists of multiple
�elds, including a handle �eld and a handle permissions mask �eld.
The handle identi�es the resource transfer context object.

[out] rc – return code.

Processes endpoint

This endpoint is intended for managing processes.

Information about methods of the endpoint is provided in the table below.

Purpose

Creates a process.

Parameters

[in] name – process name.

[in] eiid – process class name.

[in] path – name of the
executable �le in ROMFS.

[in] stackSize – thread stack
limit (in bytes) used by default
when creating process threads.

Create a process that will
be privileged from the
perspective of the solution
security policy (indicating
the name of the process
class with privileges).

Reserve a process name so
that another process with
this name cannot be
created.

Create a process that will
cause the operating
system to stop if an
unhandled exception
occurs.

329

LoadSeg

Allows code to be loaded into
process memory for
subsequent execution of that
code.

VmReserve

[in] priority – priority of the
initial thread.

[in] flags – �ags de�ning the
parameters for creating the
process.

[out] child – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the created process.

[out] rc – return code.

Load code from an
executable �le into process
memory for subsequent
execution of that code.

Exhaust RAM by creating a
multitude of processes.

Exhaust the kernel memory
by creating a multitude of
objects within it.

Purpose

Loads an ELF image segment into
process memory from the MDL
bu�er.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] mdl – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the MDL bu�er containing the
ELF image segment.

[in] segAttr – structure
containing the parameters for
loading the ELF image segment.

[out] rc – return code.

[out] retaddr – base address of
the virtual memory region of the
process where the ELF image
segment is loaded.

Purpose

Reserves the virtual memory region
in a process that was created as an
empty process.

Allows the following:

Exhaust the kernel memory
by creating a multitude of
objects within it.

330

VmFree

Frees virtual memory regions
in another process that was
created as an empty process
and has not yet been started
(if its handle is available). (The
handle permissions mask must
allow freeing of virtual
memory.)

SetEntry Creates conditions for
executing code loaded into
process memory.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] addr – preferred base
address of the virtual memory
region, or 0 for the address to be
selected automatically.

[in] size – size of the virtual
memory region in bytes.

[in] flags – �ags de�ning the
parameters of the virtual memory
region.

[out] outAddr – base address of
the reserved virtual memory
region.

[out] rc – return code.

Reserve virtual memory
regions in another process
that was created as an
empty process and has not
yet been started (if its
handle is available). (The
handle permissions mask
must allow reservation of
virtual memory.)

Purpose

Frees the virtual memory region that
was reserved by calling the
VmReserve method in a process
that was created as an empty
process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] addr – base address of the
virtual memory region.

[in] size – size of the virtual
memory region in bytes.

[out] rc – return code.

Purpose

De�nes the program entry point and
the ELF image load o�set.

331

LoadElfSyms N/A

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] state – structure containing
the address of the program entry
point and the ELF image load
o�set (in bytes).

[out] rc – return code.

Purpose

Loads the symbol table .symtab
and string table .strtab from MDL
bu�ers into the memory of a process
that was created as an empty
process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] symMdl – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the MDL bu�er containing the
symbol table .symtab .

[in] symSegAttr – structure
containing the parameters for
loading the symbol table
.symtab .

[in] symSize – size of the symbol
table .symtab (in bytes).

[in] strMdl – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the MDL bu�er containing the
string table .strtab .

332

LoadElfHdr N/A

SetEnv
Allows the kernel memory to
be used up by creating a
multitude of objects within it.

FreeSelfEnv N/A

[in] strSegAttr – structure
containing the parameters for
loading the string table .strtab .

[in] strSize – size of the string
table .strtab (in bytes).

[out] rc – return code.

Purpose

Writes the ELF image header to the
PCB of a process that was created
as an empty process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] hdrData – sequence
containing the ELF image header.

[out] rc – return code.

Purpose

Writes data to the SCP of a child
process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the child process.

[in] env – sequence containing
data to be written to the SCP.

[out] rc – return code.

Purpose

Deletes the SCP of the calling
process.

Parameters

333

Resume

Allows the following:

Exit N/A

Terminate

Allows another process to be
terminated if its handle is
available. (The handle
permissions mask must allow
termination of the process.)

GetExitInfo N/A

[out] rc – return code.

Purpose

Starts a process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[out] rc – return code.

Execute code loaded into
process memory.

Start a multitude of
previously created
processes to reduce the
computing resources
available to other
processes (it is
recommended to monitor
the priority of the initial
thread when the Create
method is called).

Purpose

Terminates the calling process.

Parameters

[in] status – exit code of the
process.

[out] rc – return code.

Purpose

Terminates a process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[out] rc – return code.

Purpose

Gets information about a terminated
process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions

334

GetThreadContext

Enables disrupted isolation of
a process that is in a frozen
state. For example, the thread
context may contain the
values of variables.

GetNextVmRegion Enables disrupted isolation of
a process that is in a frozen
state. Process isolation is
disrupted due to the opened
access to the process
memory region.

mask �eld. The handle identi�es
the terminated process.

[out] status – value indicating
the reason for process
termination.

[out] info – union containing
information about the terminated
process.

[out] rc – return code.

Purpose

Gets the context of a thread that is
part of a frozen process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process that is in a frozen
state.

[in] index – thread index. It is
used to enumerate threads.
Enumeration starts with zero. A
thread in which an unhandled
exception occurred has a zero
index.

[out] context – structure
containing the thread ID (TID) and
thread context.

[out] rc – return code.

Purpose

Gets information about the virtual
memory region that belongs to a
frozen process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process that is in a frozen
state.

335

TerminateAfterFreezing

Enables termination of a
frozen process. This does not
allow collection of data about
this process for diagnostic
purposes.

GetName N/A

GetPath N/A

[in] after – address that is
followed by the virtual memory
region.

[out] next – base address of the
virtual memory region.

[out] size – size of the virtual
memory region in bytes.

[out] flags – �ags indicating the
parameters of the virtual memory
region.

[out] handle – value whose
binary representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the MDL bu�er mapped to a
virtual memory region.

[out] rc – return code.

Purpose

Terminates a frozen process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process that is in a frozen
state.

[out] rc – return code.

Purpose

Gets the name of a calling process.

Parameters

[out] name – process name.

[out] rc – return code.

Purpose

Gets the name of the executable �le
(in ROMFS) that was used to create
the calling process.

336

GetInitialThreadPriority N/A

SetInitialThreadPriority

Allows the priority of the initial
thread of a process to be
elevated to reduce the CPU
time available to all other
threads, including from other
processes.

It is recommended to monitor
the priority of an initial thread.

GetTasksList Allows the kernel memory to
be used up by creating a
multitude of objects within it.

Parameters

[out] path – name of the
executable �le.

[out] rc – return code.

Purpose

Gets the priority of the initial thread
of a process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[out] priority – priority of the
initial thread.

[out] rc – return code.

Purpose

De�nes the priority of the initial
thread of a process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] priority – priority of the
initial thread.

[out] rc – return code.

Purpose

Gets information about existing
processes.

Parameters

[out] notice – value whose
binary representation consists of
multiple �elds, including a handle

337

SetInitialThreadSchedPolicy

Allows the following:

ReseedAslr N/A

�eld and a handle permissions
mask �eld. The handle identi�es
the noti�cation receiver that is
con�gured to receive
noti�cations regarding the
termination of processes.

[out] strings – sequence
containing the parameters of
processes.

[out] pids – sequence
containing the identi�ers of
processes (the PID of each
process).

[out] rc – return code.

Purpose

De�nes the scheduler class and
priority of the initial thread of a
process.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] policy – scheduler class of
the initial thread of the process.

[in] priority – priority of the
initial thread of a process.

[in] params – union containing
the parameters of the scheduler
class of the initial thread of the
process.

[out] rc – return code.

Convert the initial thread
of a process into a real-
time thread that takes up
all the CPU time from all
other threads, including
from other processes (it is
recommended to monitor
the scheduler class of the
initial thread of the
process).

Elevate the priority of the
initial thread of a process
to reduce the CPU time
available to all other
threads, including from
other processes (it is
recommended to monitor
the priority of the initial
thread of the process).

Purpose

De�nes the seed value for ASLR
support.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle

338

GetElfSyms N/A

TransferHandle Allows the kernel memory to
be used up by creating a
multitude of objects within it.

�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] seed – sequence containing
the seed value.

[out] rc – return code.

Purpose

Gets the address and size of the
symbol table .symtab and string
table .strtab for the calling
process.

Parameters

[out] relocBase – ELF image
load o�set (in bytes).

[out] syms – address of the
symbol table .symtab .

[out] symsCnt – size (in bytes) of
the symbol table .symtab .

[out] strs – address of the
string table .strtab .

[out] strsSize – size (in bytes)
of the string table .strtab .

[out] rc – return code.

Purpose

Transfers a handle to a process that
is not yet running.

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[in] srcHandle – value whose
binary representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle �eld
contains the transferred handle.

339

GetPid N/A

Methods of the sync.Sync endpoint (kl.core.Sync interface)

Method Method purpose and parameters Potential danger of the
method

Wait N/A

[in] srcBadge – value whose
binary representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the resource transfer context
object.

[in] dstRights – permissions
mask of the descendant of the
transferred handle.

[out] dstHandle – value of the
descendant of the transferred
handle (from the handle space of
the process that received the
handle).

[out] rc – return code.

Purpose

Gets the process ID (PID).

Parameters

[in] task – value whose binary
representation consists of
multiple �elds, including a handle
�eld and a handle permissions
mask �eld. The handle identi�es
the process.

[out] pid – process ID.

[out] rc – return code.

Synchronization endpoint

This endpoint is intended for working with futexes.

Information about methods of the endpoint is provided in the table below.

Purpose

Locks execution of the calling thread if the futex value is equal to the
expected value.

Parameters

340

Wake N/A

Methods of the fs.FS endpoint (kl.core.FS interface)

Method Method purpose and parameters Potential danger of the
method

Open

Allows the kernel memory
to be used up by creating a
multitude of objects within
it.

[in] ptr – pointer to the futex.

[in] val – expected value of the futex.

[in] delay – maximum lockout duration in milliseconds.

[out] outDelay – actual lockout duration in milliseconds.

[out] rc – return code.

Purpose

Resumes execution of threads that were blocked by a Wait method call
with the de�ned futex.

Parameters

[in] ptr – pointer to the futex.

[in] nThreads – maximum number of threads whose execution can
be resumed.

[out] wokenCnt – actual number of threads whose execution was
resumed.

[out] rc – return code.

File system endpoints

These endpoints are intended for working with the ROMFS �le system used by the KasperskyOS kernel.

Information about methods of endpoints is provided in the tables below.

Purpose

Opens a �le.

Parameters

[in] name – name of the �le.

[out] handle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the opened �le.

[out] rc – return code.

341

Close N/A

Read N/A

GetSize N/A

GetId N/A

Purpose

Closes a �le.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the opened �le.

[out] rc – return code.

Purpose

Reads data from a �le.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the opened �le.

[in] sectorNumber – data block number. Enumeration
starts with zero.

[out] read – size of the read data in bytes.

[out] data – sequence containing the read data.

[out] rc – return code.

Purpose

Gets the size of a �le.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the opened �le.

[out] size – �le size in bytes.

[out] rc – return code.

Purpose

Gets the unique ID of a �le.

Parameters

[in] handle – value whose binary representation consists of
multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the opened �le.

342

Count N/A

GetInfo N/A

GetFsSize N/A

Methods of the fs.FSUnsafe endpoint (kl.core.FSUnsafe interface)

Method Method purpose and parameters Potential danger of the
method

Change Allows the following:

[out] id – unique ID of the �le.

[out] rc – return code.

Purpose

Gets the number of �les in the �le system.

Parameters

[out] count – number of �les in the �le system.

[out] rc – return code.

Purpose

Gets the name and unique ID of a �le based on the �le index.

Parameters

[in] index – �le index. Enumeration starts with zero.

[in] nameLenMax – bu�er size for saving the �le name.

[out] name – name of the �le.

[out] id – unique ID of the �le.

[out] rc – return code.

Purpose

Gets the size of the �le system.

Parameters

[out] fsSize – size of the �le system in bytes.

[out] rc – return code.

Purpose

Changes the �le system image.

A di�erent ROMFS image loaded into process memory will be
used instead of the ROMFS image that was created during the
solution build.

Parameters

Use an ROMFS image
containing arbitrary
programs and data.

Gain read-access to
some kernel objects.

343

Methods of the time.Time endpoint (kl.core.Time interface)

Method Method purpose and parameters

Potential
danger of

the
method

SetSystemTime

Allows the
system
time to be
set.

SetSystemTimeAdj

Allows the
system
time to be
changed.

GetSystemTimeAdj N/A

[in] base – pointer to the �le system image.

[in] size – size of the �le system image in bytes.

[out] rc – return code.

Time endpoint

This endpoint is intended for setting the system time.

Information about methods of the endpoint is provided in the table below.

Purpose

Sets the system time.

Parameters

[in] secs – time (in seconds) that has elapsed since January 1, 1970.

[in] nsecs – additional time (in nanoseconds) added to the time
de�ned through the secs parameter.

[out] rc – return code.

Purpose

Starts gradual adjustment of the system time.

Parameters

[in] adj – structure containing the amount of time by which the
system time must be adjusted (sec*10^9+nsec nanoseconds).

[in] slew – rate of system time adjustment (microseconds per
second).

[out] prev – structure containing the correction time value that
remained for system time adjustment to be completed for the
previous gradual time adjustment (sec*10^9+nsec nanoseconds).

[out] rc – return code.

Purpose

344

Methods of the hal.HAL endpoint (kl.core.HAL interface)

Method Method purpose and parameters Potential danger of the method

GetEnv Gets values of HAL parameters that could
contain critical system information.

GetPrivReg

Sets up a data transfer channel with a process
that has access to the SetPrivReg or
SetPrivRegRange method.

It is recommended to monitor the name of a
register.

SetPrivReg Allows the following:

Gets the correction time value remaining for system time adjustment
so that gradual adjustment can be fully completed.

Parameters

[out] adj – structure containing the correction time value
remaining for system time adjustment so that the gradual
adjustment can be fully completed (sec*10^9+nsec nanoseconds).

[out] rc – return code.

Hardware abstraction layer endpoint

This endpoint is intended for receiving the values of HAL parameters, working with privileged registers, clearing the
processor cache, providing diagnostic output, and receiving hardware-generated random numbers.

Information about methods of the endpoint is provided in the table below.

Purpose

Gets the value of a HAL parameter.

Parameters

[in] name – name of the
parameter.

[out] value – value of the
parameter.

[out] rc – return code.

Purpose

Gets the value of a privileged
register.

Parameters

[in] reg – name of the register.

[out] val – value of the register.

[out] rc – return code.

Purpose

Sets the value of a privileged
register.

Set the value of a privileged register.

345

GetPrivRegRange

Sets up a data transfer channel with a process
that has access to the SetPrivReg or
SetPrivRegRange method.

It is recommended to monitor the name of the
registers range and the register o�set in this
range.

SetPrivRegRange

Allows the following:

FlushCache Allows the processor cache to be cleared.

Parameters

[in] reg – name of the register.

[in] val – value of the register.

[out] rc – return code.

Set up a data transfer channel with a
process that has access to the
GetPrivReg or GetPrivRegRange
method.

It is recommended to monitor the name of a
register.

Purpose

Gets the value of a privileged
register.

Parameters

[in] regRange – name of the
registers range.

[in] offset – register o�set in
the registers range.

[out] val – value of the register.

[out] rc – return code.

Purpose

Sets the value of a privileged
register.

Parameters

[in] regRange – name of the
registers range.

[in] offset – register o�set in
the registers range.

[in] val – value of the register.

[out] rc – return code.

Set the value of a privileged register.

Set up a data transfer channel with a
process that has access to the
GetPrivReg or GetPrivRegRange
method.

It is recommended to monitor the name of the
registers range and the register o�set in this
range.

Purpose

Clears the processor cache.

Parameters

[in] type – value de�ning the
cache type (data cache,
instructions cache, or joint data
and instructions cache).

346

DebugWrite Populates diagnostic output with �ctitious
(uninformative) data.

GetEntropy

Creates a load on the hardware-based random
number generator with frequent method calls
so that other processes are unable to receive
random numbers using this generator.

Methods of the xhcidbg.XHCIDBG endpoint (kl.core.XHCIDBG interface)

Method Method purpose and
parameters

Potential danger of the method

[in] va – base address of the
virtual memory region. The
cache corresponding to this
region is cleared.

[in] size – size of the virtual
memory region. The cache
corresponding to this region is
cleared.

[out] rc – return code.

Purpose

Puts data into the diagnostic
output that is written, for example,
to a COM port or USB port (version
3.0 or later, with DbC support).

Parameters

[in] data – sequence containing
the data to be put into the
diagnostic output.

[out] rc – return code.

Purpose

Gets hardware-generated random
numbers.

Parameters

[out] buffer—sequence
containing random byte values.

[in] size—number of random
byte values.

[out] rc – return code.

XHCI controller management endpoint

This endpoint is intended for disabling and re-enabling debug mode for the XHCI controller (with DbC support)
when it is restarted.

Information about methods of the endpoint is provided in the table below.

347

Start Con�gures the XHCI controller to sends diagnostic output
through a USB port (version 3.0 or later).

Stop Con�gures the XHCI controller to not send diagnostic output
through a USB port (version 3.0 or later).

Methods of the audit.Audit endpoint (kl.core.Audit interface)

Method Method purpose and parameters Potential danger of the method

Open N/A

Close N/A

Purpose

Enables debug mode of the
XHCI controller.

Parameters

[out] rc – return code.

Purpose

Disables debug mode of the
XHCI controller.

Parameters

[out] rc – return code.

Audit endpoint

This endpoint is intended for reading messages from KasperskyOS kernel logs. There are two kernel logs: kss and
core . The kss log contains security audit data. The core log contains diagnostic output. (Diagnostic output
includes kernel output and the output of programs.)

Information about methods of the endpoint is provided in the table below.

Purpose

Opens the kernel log to read data from it.

Parameters

[in] name – name of the kernel log (kss or core).

[out] handle – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
kernel log.

[out] rc – return code.

Purpose

Closes the kernel log.

Parameters

348

Read

Extracts messages from the
kernel log so that these
messages are not received by
another process.

Methods of the pro�ler.Pro�ler endpoint (kl.core.Pro�ler interface)

Method Method purpose and parameters Potential danger
of the method

GetCoverageData N/A

[in] handle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the kernel log.

[out] rc – return code.

Purpose

Receives a message from a kernel log.

Parameters

[in] handle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the kernel log.

[out] msg – sequence containing a message.

[out] outDropMsgs – number of messages that were not
included in the kernel log due to an over�ow of the bu�er
where this log is stored.

[out] rc – return code.

Pro�ling endpoint

This endpoint is intended for pro�ling and collecting code coverage, and for receiving the values of performance
counters.

Information about methods of the endpoint is provided in the table below.

Purpose

Gets information about code coverage.

Parameters

[in] index – index for enumerating object �les
containing instrumented code for receiving coverage
data. Enumeration starts with zero.

[out] buf – sequence containing information about the
code coverage of an object �le (in gcda format).

[out] size – size (in bytes) of data containing
information about the code coverage of an object �le.

349

FlushGcov N/A

FlushGcovFile N/A

GetCounters N/A

ObjectGetStat N/A

[out] name – name of the *.gcda �le that was assigned
during compilation.

[out] rc – return code.

Purpose

Output of data on code coverage in gcda format via UART.

Parameters

[out] rc – return code.

Purpose

Output of data on code coverage in gcda format via UART.

Parameters

[in] name – name of the *.gcda �le that was assigned
during compilation.

[in] buf – pointer to the bu�er containing information
about code coverage in gcda format.

[in] size – size of data containing code coverage
information.

[out] rc – return code.

Purpose

Gets the values of performance counters.

Parameters

[in] prefix – pre�x for names of performance counters.

[in] names – sequence containing the names of
performance counters.

[out] values – sequence containing the values of
performance counters.

[out] rc – return code.

Purpose

Gets the values of performance counters for a system
resource (process or thread).

Parameters

350

SamplingStart N/A

SamplingStop N/A

SamplingRead Gets the
addresses and
names of
functions of
other processes.

[in] handle – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
system resource.

[in] names – sequence containing the names of
performance counters.

[out] values – sequence containing the values of
performance counters.

[out] rc – return code.

Purpose

Starts sample code pro�ling.

Sample pro�ling results in code execution statistics that
re�ect the duration of code section execution.

Parameters

[in] conf—�ags that de�ne the pro�ling settings.

[in] cpus – value de�ning the CPUs (processor cores)
for pro�ling.

[in] contSize – size (in bytes) of the container used to
store data containing the code execution statistics
obtained from pro�ling. The container is automatically
created in the kernel memory.

[in] interval – �ctitious parameter.

[out] rc – return code.

Purpose

Stops sample code pro�ling.

Parameters

[out] rc – return code.

Purpose

Gets data containing the code execution statistics received
from sample pro�ling.

Parameters

[in] unsafeBuffer – pointer to the bu�er used to save
the container storing the code execution statistics
obtained from pro�ling.

351

SamplingAddPidToList N/A

SamplingClearPidList N/A

LoadSegInfo Allows the kernel
memory to be
used up by
creating a
multitude of
objects within it.

[in] size – size of the bu�er whose pointer is de�ned
through the unsafeBuffer parameter.

[out] realSize – size of the saved container.

[in] timeout – container �lling timeout (in milliseconds).

[out] rc – return code.

Purpose

Adds a process to the list of pro�led processes.

Parameters

[in] pid – process ID (PID).

[out] rc – return code.

Purpose

Clears the list of pro�led processes.

Parameters

[out] rc – return code.

Purpose

Saves information about the loaded ELF image segment in
the kernel. (This is necessary so that the code execution
statistics received from sample pro�ling can contain
additional information that lets you associate these
statistics with the source code.)

Parameters

[in] task – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the
process.

[in] addr – segment address in process memory.

[in] size – segment size (in bytes).

[in] offset – o�set of the segment in the ELF �le (in
bytes).

[in] flags – �ags de�ning the access rights to the
segment.

[in] buildId – build ID. The linker writes this ID to the
ELF �le.

352

UnloadSegInfo N/A

KcovAlloc Exhausts RAM.

KcovFree N/A

N/A

[out] rc – return code.

Purpose

Deletes information about the loaded ELF image segment
that was saved in the kernel using the LoadSegInfo
method.

Parameters

[in] task – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the
process.

[in] addr – segment address in process memory.

[in] size – segment size (in bytes).

[out] rc – return code.

Purpose

Allocates the resources required for collecting kernel code
coverage data when handling system calls executed by the
calling process.

Parameters

[in] numThreads—maximum number of threads for
which code coverage data will be collected.

[in] maxPoints—maximum number of coverage points
for one thread.

[out] rc – return code.

Purpose

Frees the resources required for collecting kernel code
coverage data when handling system calls executed by the
calling process.

Parameters

[out] rc – return code.

KcovStart Purpose

Starts the collection of kernel code coverage data when
handling system calls executed by the calling thread.

Parameters

353

KcovStop N/A

Methods of the iommu.IOMMU endpoint (kl.core.IOMMU interface)

Method Method purpose and parameters Potential danger of the method

Attach

Attaches a device on a PCIe bus managed by another
process to an IOMMU domain associated with the calling
process, which leads to failure of the device.

It is recommended to monitor the address of a device on a
PCIe bus.

Detach N/A

[out] rc – return code.

Purpose

Stops the collection of kernel code coverage data when
handling system calls executed by the calling thread. Also
gets information about kernel code coverage.

Parameters

[in] points—pointer to the bu�er used to store kernel
code coverage data.

[in] maxPoints—maximum number of coverage points
that can be stored in the bu�er de�ned via the points
parameter.

[out] numPoints—actual number of coverage points
stored in the bu�er de�ned via the points parameter.

[out] rc – return code.

I/O memory isolation management endpoint

This endpoint is intended for managing the isolation of physical memory regions used by devices on a PCIe bus for
DMA. (Isolation is provided by the IOMMU.)

Information about methods of the endpoint is provided in the table below.

Purpose

Attaches a device on a PCIe bus to
the IOMMU domain associated with
the calling process.

Parameters

[in] bdf – address of the device
on the PCIe bus in BDF format.

[out] rc – return code.

Purpose

Detaches a device on a PCIe bus
from the IOMMU domain
associated with the calling process.

Parameters

354

Methods of the cm.CM endpoint (kl.core.CM interface)

Method Method purpose and parameters Potential danger of the
method

Connect

Creates a load on a server by
sending a large number of
requests to create an IPC
channel.

Listen N/A

[in] bdf – address of the device
on the PCIe bus in BDF format.

[out] rc – return code.

Connections endpoint

This endpoint is intended for dynamic creation of IPC channels.

Information about methods of the endpoint is provided in the table below.

Purpose

Requests to create an IPC channel with a server for use of the
de�ned endpoint.

Parameters

[in] server – name of the server.

[in] service – quali�ed name of the endpoint.

[in] msecs – request ful�llment timeout, in milliseconds.

[out] handle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle is the client IPC handle.

[out] id – endpoint ID (RIID).

[out] rc – return code.

Purpose

Receives a client request to create an IPC channel for use of an
endpoint.

Parameters

[in] filter – �ctitious parameter.

[in] msecs – client request timeout, in milliseconds.

[out] client – client name.

[out] service – quali�ed name of the endpoint.

[out] rc – return code.

355

Drop N/A

Accept N/A

Methods of the pm.PM endpoint (kl.core.PM interface)

Method Method purpose and parameters Potential danger of the method

Request Allows the computer power
mode to be changed.

Purpose

Rejects a client request to create an IPC channel for use of the
de�ned endpoint.

Parameters

[in] client – client name.

[in] service – quali�ed name of the endpoint.

[out] rc – return code.

Purpose

Accepts a client request to create an IPC channel for use of
the de�ned endpoint.

Parameters

[in] client – client name.

[in] service – quali�ed name of the endpoint.

[in] id – endpoint ID.

[in] listener – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle is the listener
handle.

[out] handle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle is the server IPC handle.

[out] rc – return code.

Power management endpoint

This endpoint is intended for changing the power management mode of a computer (for example, shutting down or
restarting the computer), and for enabling and disabling processors (processor cores).

Information about methods of the endpoint is provided in the table below.

Purpose

Requests to change the power mode of a computer.

356

SetCpusOnline Disables and enables
processors.

GetCpusOnline N/A

Methods of the notice.Notice endpoint (kl.core.Notice interface)

Method Method purpose and parameters
Potential

danger of the
method

Create Allows the
kernel memory
to be used up
by creating a
multitude of
objects within
it.

Parameters

[in] request – value de�ning the necessary power
mode of the computer.

[out] rc – return code.

Purpose

Requests to enable and/or disable processors.

Parameters

[in] request – value de�ning a large number of
processors in the active state.

[in] timeout – request ful�llment timeout, in
milliseconds.

[out] rc – return code.

Purpose

Gets information regarding which processors are in
the active state.

Parameters

[out] online – value indicating the set of
processors in the active state.

[out] rc – return code.

Noti�cations endpoint

This endpoint is intended for working with noti�cations about events that occur with resources.

Information about methods of the endpoint is provided in the table below.

Purpose

Creates a noti�cation receiver.

Parameters

[out] notify – value whose binary representation
consists of multiple �elds, including a handle �eld and a

357

SubscribeToObject

Allows the
kernel memory
to be used up
by creating a
multitude of
objects within
it.

UnsubscribeFromEvent N/A

UnsubscribeFromObject N/A

handle permissions mask �eld. The handle identi�es the
noti�cation receiver.

[out] rc – return code.

Purpose

Adds a "resource–event mask" entry to the noti�cation
receiver so that it can receive noti�cations about events
that occur with the de�ned resource and match the
de�ned event mask.

Parameters

[in] notify – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] object – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
resource.

[in] evMask – event mask.

[in] evId – ID of the "resource–event mask" entry.

[out] rc – return code.

Purpose

Removes from the noti�cation receiver "resource—event
mask" entries with the speci�ed identi�er to prevent the
receiver from getting noti�cations about events that
match these entries.

Parameters

[in] notify – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] evId – ID of the "resource–event mask" entry.

[out] rc – return code.

Purpose

Removes from the noti�cation receiver "resource—event
mask" entries that match the speci�ed resource to prevent
the receiver from getting noti�cations about events that
match these entries.

358

GetEvent N/A

DropAndWake N/A

Parameters

[in] notify – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] object – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
resource.

[out] rc – return code.

Purpose

Extracts noti�cations from the receiver.

Parameters

[in] notify – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] mdelay – timeout for noti�cations to appear in the
receiver, in milliseconds.

[out] events – sequence of noti�cations comprised of
structures containing a "resource–event mask" entry ID
and a mask of events occurring with the resource.

[out] rc – return code.

Purpose

Removes from the speci�ed noti�cation receiver all
"resource—event mask" entries, resumes all threads waiting
for noti�cations to appear in the speci�ed receiver;
optionally prohibits adding of "resource—event mask"
entries to the speci�ed noti�cation receiver.

Parameters

[in] notify – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
noti�cation receiver.

[in] finish – value de�ning whether or not the addition
of "resource–event mask" entries will be prohibited (0 –
will not be prohibited, 1 – will be prohibited).

[out] rc – return code.

359

SetObjectEvent N/A

Methods of the tee.TEE endpoint (kl.core.TEE interface)

Method Method purpose and parameters Potential danger of the method

Dispatch Allows a process in a REE to receive
a response from a TEE regarding a
request from another process in
the REE.

Purpose

Signals that events from the de�ned event mask occurred
with the de�ned user resource.

Parameters

[in] object – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
user resource.

[in] evMask – mask of events to be signaled.

[out] rc – return code.

Hypervisor endpoint

This endpoint is intended for working with a hypervisor.

Methods of the hypervisor.Hypervisor endpoint (kl.core.Hypervisor interface) are potentially dangerous.
Access to these methods can be granted only to the specialized vmapp program.

Trusted Execution Environment endpoints

These endpoints are intended for transferring data between a Trusted Execution Environment (TEE) and a Rich
Execution Environment (REE), and for obtaining access to the physical memory of the REE from the TEE.

Information about methods of endpoints is provided in the tables below.

Purpose

Sends and receives messages transferred between a
TEE and a REE.

This method is used in the TEE and in the REE.

Parameters

[in] msgIn – structure containing a request for the
TEE (when the method is called in the REE) or a
response for the REE (when the method is called in
the TEE).

[out] msgOut – structure containing a response
from the TEE (when the method is called in the REE)
or a request from the REE (when the method is
called in the TEE).

360

FreeToken

Frees the values used by other
processes in a REE as unique IDs of
messages transferred between a
TEE and a REE.

Methods of the tee.TEEVMM endpoint (kl.core.TEEVMM interface)

Method Method purpose and parameters Potential danger of the
method

MdlAllocate

Allows the kernel memory
to be used up by creating
a multitude of objects
within it.

MdlAddFrame Allows access to an
arbitrary region of the
physical memory of a REE
from a TEE.

[out] rc – return code.

Purpose

Frees the values of unique IDs of messages transferred
between a TEE and a REE. (These values must be freed
so that they can become available for re-use.)

This method is used in REE.

Parameters

[in] token – value of the unique ID of a message.

[out] rc – return code.

Purpose

Creates a blank MDL bu�er so that physical memory from an
REE can be subsequently added to it.

This method is used in TEE.

Parameters

[in] size – size of the MDL bu�er in bytes.

[in] prot – �ags de�ning the access rights to the MDL
bu�er.

[out] handle – value whose binary representation
consists of multiple �elds, including a handle �eld and a
handle permissions mask �eld. The handle identi�es the
MDL bu�er.

[out] rc – return code.

Purpose

Adds a REE physical memory region to the blank MDL bu�er
created by the MdlAllocate method.

This method is used in TEE.

Parameters

[in] handle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the MDL
bu�er.

361

Methods of the ipc.IPC endpoint (kl.core.IPC interface)

Method Method purpose and parameters
Potential

danger of the
method

CreateSyncObject

Allows the
kernel memory
to be used up
by creating a
multitude of
objects within
it.

SetInterrupt N/A

[in] pa – base address of the physical memory region.

[in] pages – size of the physical memory region, in
memory pages.

[out] rc – return code.

IPC interrupt endpoint

This endpoint is intended for interrupting the Call() and Recv() locking system calls. (For example, this may be
required to correctly terminate a process.)

Information about methods of the endpoint is provided in the table below.

Purpose

Creates an IPC synchronization object.

An IPC synchronization object is used to interrupt Call() and
Recv() locking system calls in threads of the calling process. A
Call() can be interrupted only when it is awaiting a Recv() call
by the server. Recv() can be interrupted only when it is waiting to
receive an IPC request from a client.

The handle of an IPC synchronization object cannot be transferred
to another process because the necessary �ag for this operation
is not set in the permissions mask of this handle.

Parameters

[out] syncHandle – value whose binary representation
consists of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the IPC
synchronization object.

[out] rc – return code.

Purpose

Switches the de�ned IPC synchronization object to a state in
which the Call() and Recv() system calls are interrupted.

Parameters

[in] syncHandle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the IPC
synchronization object.

362

ClearInterrupt N/A

Methods of the cpufreq.CpuFreq endpoint (kl.core.CpuFreq interface)

Method Method purpose and parameters

Potential
danger of

the
method

GetLayout N/A

GetCurOppId N/A

[out] rc – return code.

Purpose

Switches the de�ned IPC synchronization object to a state in
which the Call() and Recv() system calls are not interrupted.

Parameters

[in] syncHandle – value whose binary representation consists
of multiple �elds, including a handle �eld and a handle
permissions mask �eld. The handle identi�es the IPC
synchronization object.

[out] rc – return code.

CPU frequency management endpoint

This endpoint is intended for changing the frequency of processors (processor cores).

Information about methods of the endpoint is provided in the table below.

Purpose

Allows you to receive information about processor groups.

Processor group information lists the existing processor groups while
indicating the possible values of the performance parameter for each of them.
This parameter is a combination of the matching frequency and voltage
(Operating Performance Point, or OPP). The frequency is indicated in kiloherz
(kHz) and the voltage is indicated in microvolts (µV).

Parameters

[out] layout – sequence containing information about processor groups.

[out] rc – return code.

Purpose

Gets the index of the current OPP for the de�ned processor group.

Parameters

[in] cpuGroupId – index of the processor group. Enumeration starts with
zero.

363

SetOppId

Changes
the
frequency
of a
processor
group.

Source code of the program

einit/src/klog_entity.c

#include <klog/system_audit.h>
#include <klog_storage/client.h>
#include <ping/KlogEntity.edl.h>

int main(int argc, char *argv[])
{
 /* This function call creates a thread
 * that receives audit data from the kernel, decodes it and forwards it
 * via IPC to the KlogStorage program.
 * (The constant ping_KlogEntity_klog_audit_iid is defined in the header
 * file KlogEntity.edl.h, which contains the automatically generated
 * transport code.) */
 return klog_system_audit_run(KLOG_SERVER_CONNECTION_ID ":
 " KLOG_STORAGE_SERVER_CONNECTION_ID,

[out] oppId – index of the current OPP. Enumeration starts with zero.

[out] rc – return code.

Purpose

Sets the de�ned OPP for the de�ned processor group.

Parameters

[in] GroupId – index of the processor group. Enumeration starts with zero.

[in] oppId – OPP index. Enumeration starts with zero.

[out] rc – return code.

Using the system programs Klog and KlogStorage to perform a security
audit

To perform a security audit, the system program Klog receives audit data from the KasperskyOS kernel by using
the libkos library, decodes this data and forwards it via IPC to the system program KlogStorage , which acts as
the server in this IPC interaction. The KlogStorage program sends audit data to standard output (or standard
error) or saves it to a �le by using VFS. The KlogStorage program can also forward �le-written audit data to
other programs via IPC.

The executable �les of the Klog and KlogStorage programs are not provided in the KasperskyOS SDK. You will
need to create them based on the provided static libraries.

Example of adding the system program Klog to a solution

364

 ping_KlogEntity_klog_audit_iid);
}

Building a program

einit/CMakeLists.txt

...
Import Klog libraries from the
KasperskyOS SDK
find_package (klog REQUIRED)
include_directories (${klog_INCLUDE})

Generate transport code based on the formal specification of the
Klog program
nk_build_edl_files (klog_edl_files
 NK_MODULE "ping"
 # The KlogEntity.edl file and other files
 # in the formal specification of the Klog program
 # are provided in the KasperskyOS SDK.
 EDL "${RESOURCES}/edl/KlogEntity.edl")

Create the executable file of the Klog program for the hardware platform
add_executable (KlogEntityHw "src/klog_entity.c")
target_link_libraries (KlogEntityHw ${klog_SYSTEM_AUDIT_LIB})
add_dependencies (KlogEntityHw klog_edl_files)

Create the executable file of the Klog program for QEMU.
(Identical to creating the executable file of the Klog program for
the hardware platform, except for the build target name.
Requires two build targets for the executable file of the
Klog program with different names because the KLOG_ENTITY parameter of the
CMake commands build_kos_hw_image() and build_kos_qemu_image()
must specify different build targets.)
add_executable (KlogEntityQemu "src/klog_entity.c")
target_link_libraries (KlogEntityQemu ${klog_SYSTEM_AUDIT_LIB})
add_dependencies (KlogEntityQemu klog_edl_files)

The Klog program does not need to be specified together with other programs
to be included in the solution image. To include the Klog program
in a solution, you must define the name of the build target for the executable file
of this
program via the KLOG_ENTITY parameter of the CMake commands
build_kos_hw_image() and build_kos_qemu_image().
set (ENTITIES Client Server KlogStorageEntity FileVfs)
...
The INIT_KlogEntity_PATH variable is used in the init.yaml.in file
to define the name of the Klog program executable file. (The executable
files of the Klog program for QEMU and for the hardware platform have
different names that match the names of the build targets
of these files by default.)
set (INIT_KlogEntity_PATH "KlogEntityHw")

You must define the KLOG_ENTITY parameter
build_kos_hw_image (kos-image
 EINIT_ENTITY EinitHw
 ...
 KLOG_ENTITY KlogEntityHw
 IMAGE_FILES ${ENTITIES})

365

The INIT_KlogEntity_PATH variable is used in the init.yaml.in file
to define the name of the Klog program executable file. (The executable
files of the Klog program for QEMU and for the hardware platform have
different names that match the names of the build targets
of these files by default.)
set (INIT_KlogEntity_PATH "KlogEntityQemu")

You must define the KLOG_ENTITY parameter
build_kos_qemu_image (kos-qemu-image
 EINIT_ENTITY EinitQemu
 ...
 KLOG_ENTITY KlogEntityQemu
 IMAGE_FILES ${ENTITIES})

Program process dictionary in the init description template

einit/src/init.yaml.in

...
- name: ping.KlogEntity
 # The variable INIT_KlogEntity_PATH is defined in the file einit/CMakeLists.txt.
 path: @INIT_KlogEntity_PATH@
 connections:
 - target: ping.KlogStorageEntity
 id: {var: KLOG_STORAGE_SERVER_CONNECTION_ID, include: klog_storage/client.h}
...

Policy description for the program

einit/src/security.psl.in

...
use nk.base._
...
use EDL kl.core.Core
...
use EDL ping.KlogEntity
use EDL ping.KlogStorageEntity
...
use audit_profile._
use core._
...
/* Interaction with the KlogStorage program */

request dst=ping.KlogStorageEntity {
 match endpoint=klogStorage.storage {
 match method=write {
 match src=ping.KlogEntity { grant () }
 }
 }
}

response src=ping.KlogStorageEntity {
 match endpoint=klogStorage.storage {
 match method=write {

366

 match dst=ping.KlogEntity { grant () }
 }
 }
}

error src=ping.KlogStorageEntity {
 match endpoint=klogStorage.storage {
 match method=write {
 match dst=ping.KlogEntity { grant () }
 }
 }
}
...

einit/src/core.psl

...
/* Interaction with the kernel */

request dst=kl.core.Core {
 match endpoint=sync.Sync {
 match method=Wake {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=Wait {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 }
 match endpoint=task.Task {
 match method=FreeSelfEnv {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=GetPath {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=GetName {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=Exit {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 }
 match endpoint=vmm.VMM {
 match method=Allocate {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=Commit {

367

 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=Protect {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=Free {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 }
 match endpoint=thread.Thread {
 match method=SetTls {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=Create {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=Resume {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=Attach {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=Exit {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=GetSchedPolicy {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=SetSchedPolicy {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 }
 match endpoint=hal.HAL {
 match method=GetEntropy {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 match method=DebugWrite {
 ...
 match src=ping.KlogEntity { grant () }
 ...

368

 }
 match method=GetEnv {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 }
 match endpoint=handle.Handle {
 match method=Close {
 ...
 match src=ping.KlogEntity { grant () }
 ...
 }
 }
 match endpoint=audit.Audit {
 match src=ping.KlogEntity { grant () }
 }
}

response src=kl.core.Core {
 ...
 match dst=ping.KlogEntity { grant () }
 ...
}

error src=kl.core.Core {
 ...
 match dst=ping.KlogEntity { grant () }
 ...
}
...

Source code of the program

klog_storage/src/klog_storage_entity.c

#include <klog_storage/server.h>
#include <ping/KlogStorageEntity.edl.h>
#include <stdio.h>

/* Define the data type for a fictitious context.
 * Required for defining functions that implement
 * interface methods, and for dispatcher configuration. */
struct Context
{
 int some_data;
};

/* Define the function that forwards audit data to
 * standard error. (Use of the ctx parameter is not required, but a
 * void* type parameter must be the first parameter in the function signature to
 * match the type of pointer that is used by the dispatcher
 * to call this function.) */

Example of adding the system program KlogStorage to a solution to forward
audit data to standard error

369

static int _write(struct Context *ctx, const struct kl_KlogStorage_Entry *entry)
{
 fprintf(stderr, "%s\n", entry->msg);
 return 0;
}

/* Define a fictitious function for reading audit data.
 * (Required for dispatcher configuration to avoid errors
 * if the interface method for reading audit data is called.) */
static int _read_range(struct Context *ctx, nk_uint64_t first_id,
nk_uint64_t last_id, struct kl_KlogStorage_Entry *entries)
{
 return 0;
}

/* Define a fictitious function for reading audit data.
 * (Required for dispatcher configuration to avoid errors
 * if the interface method for reading audit data is called.) */
static int _read(struct Context *ctx, nk_uint32_t num_entries,
struct kl_KlogStorage_Entry *entries)
{
 return 0;
}

int main(int argc, char *argv[])
{
 /* Declaration of a fictitious context */
 static struct Context ctx;

 /* Configure the dispatcher so that when IPC requests
 * containing audit data are received from the Klog program, the dispatcher calls
the function that forwards
 * this data to standard error. (The functions for reading audit data
 * and the context are fictitious. However, you can create your own
 * implementations of the _write(), _read() and _read_range() functions for
working with
 * audit data storage. In this case, the context may be
 * used to store the storage state.) */
 struct kl_KlogStorage *iface =
 klog_storage_IKlog_storage_dispatcher(&ctx,
 (kl_KlogStorage_write_func)_write,
 (kl_KlogStorage_read_func)_read,

(kl_KlogStorage_read_range_func)_read_range);
 struct kl_KlogStorage_component *comp =klog_storage_storage_component(iface);

 /* This function call starts the IPC request processing loop.
 * (The constants ping_KlogStorageEntity_klogStorage_iidOffset and
 * ping_KlogStorageEntity_klogStorage_storage_iid are defined in the header file
 * KlogStorageEntity.edl.h, which contains the automatically generated
 * transport code.) */
 return klog_storage_run(KLOG_STORAGE_SERVER_CONNECTION_ID,
 ping_KlogStorageEntity_klogStorage_iidOffset,
 ping_KlogStorageEntity_klogStorage_storage_iid,
 comp);
}

Building a program

370

klog_storage/CMakeLists.txt

Import KlogStorage libraries from the
KasperskyOS SDK
find_package (klog_storage REQUIRED)
include_directories (${klog_storage_INCLUDE})

Generate transport code based on the formal specification of the
KlogStorage program
nk_build_edl_files (klog_storage_edl_files
 NK_MODULE "ping"
 # The KlogStorageEntity.edl file and other files
 # in the formal specification of the KlogStorage program
 # are provided in the KasperskyOS SDK.
 EDL "${RESOURCES}/edl/KlogStorageEntity.edl")

Create the executable file of the KlogStorage program
add_executable (KlogStorageEntity "src/klog_storage_entity.c")
target_link_libraries (KlogStorageEntity ${klog_storage_SERVER_LIB})
add_dependencies (KlogStorageEntity klog_edl_files klog_storage_edl_files)

Program process dictionary in the init description template

einit/src/init.yaml.in

...
- name: ping.KlogStorageEntity
...

Policy description for the program

einit/src/security.psl.in

...
use nk.base._
...
use EDL kl.core.Core
...
use EDL ping.KlogEntity
use EDL ping.KlogStorageEntity
...
use audit_profile._
use core._
...
/* Interaction with the Klog program */

request dst=ping.KlogStorageEntity {
 match endpoint=klogStorage.storage {
 match method=write {
 match src=ping.KlogEntity { grant () }
 }
 }
}

response src=ping.KlogStorageEntity {
 match endpoint=klogStorage.storage {

371

 match method=write {
 match dst=ping.KlogEntity { grant () }
 }
 }
}

error src=ping.KlogStorageEntity {
 match endpoint=klogStorage.storage {
 match method=write {
 match dst=ping.KlogEntity { grant () }
 }
 }
}
...

einit/src/core.psl

...
/* Interaction with the kernel */

request dst=kl.core.Core {
 match endpoint=sync.Sync {
 match method=Wake {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=Wait {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 }
 match endpoint=task.Task {
 match method=FreeSelfEnv {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=GetPath {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=GetName {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=Exit {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 }
 match endpoint=vmm.VMM {
 match method=Allocate {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }

372

 match method=Commit {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=Protect {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=Free {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 }
 match endpoint=thread.Thread {
 match method=SetTls {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=Create {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=Resume {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 }
 match endpoint=hal.HAL {
 match method=GetEntropy {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=DebugWrite {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 match method=GetEnv {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 }
 match endpoint=handle.Handle {
 match method=Close {
 ...
 match src=ping.KlogStorageEntity { grant () }
 ...
 }
 }
}

response src=kl.core.Core {
 ...
 match dst=ping.KlogStorageEntity { grant () }

373

 ...
}

error src=kl.core.Core {
 ...
 match dst=ping.KlogStorageEntity { grant () }
 ...
}
...

Source code of the program

klog_storage/src/klog_storage_entity.c

#include <klog_storage/server.h>
#include <klog_storage/file_storage.h>
#include <ping/KlogStorageEntity.edl.h>

int main(int argc, char *argv[])
{
 /* This function call starts the IPC request processing loop.
 * The audit data will be written to the file /etc/klog_storage.log, which can
 * hold no more than 100 entries. When the file is completely full, the previous
 * entries will be replaced by new entries starting at the beginning of the file.
If the last parameter
 * of the function has a value other than 1, the KlogStorage program at startup
 * opens the existing file and begins to write audit data at the specific position
 * that was set in the file after the previous write operation. If the last
 * parameter of the function has a value of 1, a new empty file will be created.
 * (The constants ping_KlogStorageEntity_klogStorage_iidOffset and
 * ping_KlogStorageEntity_klogStorage_storage_iid are defined in the header
 * file KlogStorageEntity.edl.h, which contains the automatically generated
 * transport code.) */
 return klog_storage_file_storage_run(KLOG_STORAGE_SERVER_CONNECTION_ID,
 "/etc/klog_storage.log",
 ping_KlogStorageEntity_klogStorage_iidOffset,

ping_KlogStorageEntity_klogStorage_storage_iid,
 100,
 0);
}

Building a program

klog_storage/CMakeLists.txt

Example of adding the system program KlogStorage to a solution to write
audit data to a �le

The di�erence between the CMake commands for building the KlogStorage program that writes audit data to a
�le and the CMake commands for building the version of this program that sends audit data to standard error
comprises the following modi�cation:

374

...
When creating the executable file of the KlogStorage program, you must
link it to the klog_storage_file_storage library.
target_link_libraries (KlogStorageEntity ${klog_storage_FILE_STORAGE_LIB})
...

Program process dictionary in the init description template

einit/src/init.yaml.in

...
- name: ping.KlogStorageEntity
 connections:
 - target: file_vfs.FileVfs
 id: {var: _VFS_CONNECTION_ID, include: vfs/defs.h}
...

Security policy description for the program

einit/src/security.psl.in

...
use EDL file_vfs.FileVfs
...
use vfs._
...

einit/src/vfs.psl

...
/* Interaction with the VFS program */

request dst=file_vfs.FileVfs {
 match src=ping.KlogStorageEntity { grant () }
}

response src=file_vfs.FileVfs {
 match dst=ping.KlogStorageEntity { grant () }
}

error src=file_vfs.FileVfs {
 match dst=ping.KlogStorageEntity { grant () }
}
...

Forwarding audit data to other programs

The di�erence between a policy description for a KlogStorage program that writes audit data to a �le and a
policy description for a version of this program that sends audit data to standard error comprises the following
addition:

375

klog_reader/CMakeLists.txt

Import KlogStorage libraries from the
KasperskyOS SDK
find_package (klog_storage REQUIRED)
include_directories (${klog_storage_INCLUDE})
...
Create the executable file of the program that needs to
receive audit data from the KlogStorage program.
add_executable (KlogReader "src/klog_reader.c")
target_link_libraries (KlogReader ${klog_storage_CLIENT_LIB})
...

klog_reader/src/klog_reader.c

#include <klog_storage/client.h>
...
int main(int argc, char *argv[])
{
...
 struct Klog_storage_ctx *storage =
 klog_storage_init(KLOG_STORAGE_SERVER_CONNECTION_ID);

 struct kl_KlogStorage_Entry first_entries[10], latest_entries [10];

 /* Read the first ten entries */
 int f_count = klog_storage_read_range(klog_storage_IKlog_storage(storage),
 1,
 10,
 first_entries);

 /* Read the last ten entries */
 int l_count = klog_storage_read(klog_storage_IKlog_storage(storage),
 10,
 latest_entries);
...
}

To forward �le-written audit data via IPC, the KlogStorage program provides the read and readRange interface
methods de�ned in the �le sysroot-*-kos/include/kl/KlogStorage.idl from the KasperskyOS SDK.

The executable �le of the program that needs to receive the audit data must be linked to the client library of the
KlogStorage program:

Source code for receiving audit data from the KlogStorage program:

376

Security patterns are described in a multitude of information security resources. Each pattern is accompanied
by a list of the resources that were used to prepare its description.

Description

Alternate names

Context

Security patterns for development under KasperskyOS

Each KasperskyOS-based solution has speci�c usage scenarios and is designed to counteract speci�c security
threats. Nonetheless, there are some typical scenarios and threats encountered in many di�erent solutions. This
section describes the typical risks and threats, and contains a description of architectural patterns that can be
employed to increase the security of a solution.

A security pattern (or template) describes a speci�c recurring security issue that arises in certain known contexts,
and provides a well-proven, general scheme for resolving this kind of security issue. A pattern is not a �nished
project that can be converted directly into code. Instead, it is a solution to a general problem encountered in
various projects.

A security pattern system is a set of security patterns together with instructions on their implementation,
combination, and practical use when designing secure software systems.

Security patterns resolve security issues at di�erent levels, beginning with patterns at the architectural level,
including high-level design of the system, and ending with implementation-level patterns that contain
recommendations on how to implement functions or methods.

This section describes the set of security patterns whose implementation examples are provided in KasperskyOS
Community Edition.

Distrustful Decomposition pattern

When using a monolithic application, a single process must be granted all the privileges necessary for the
application to operate. This issue is resolved by the Distrustful Decomposition pattern.

The purpose of the Distrustful Decomposition pattern is to divide application functionality among individual
processes that require di�erent levels of privileges, and to control the interaction between these processes
instead of creating a monolithic application.

Using the Distrustful Decomposition pattern reduces the following:

Attack surface for each process.

Functionality and data that a hacker will be able to access if one of the processes is compromised.

Privilege Reduction .

377

Problem

Solution

Structure

Operation

Implementation recommendations

Di�erent functions of an application require di�erent levels of privileges.

An unsophisticated implementation of an application combines many functions requiring di�erent privileges into
one component. This component would need to be run with the maximum level of privileges required for any one of
these many functions.

The Distrustful Decomposition pattern divides functionality among individual processes and isolates
potential vulnerabilities within a small subset of the system. A cybercriminal who conducts a successful attack will
be able to use only the functionality and data of a single compromised component instead of the entire
application.

This pattern divides one monolithic application into multiple applications that are run as individual processes that
could potentially have di�erent privileges. Each process implements a small, clearly de�ned set of functions of the
application. Processes use interprocess communication mechanism to exchange data.

In KasperskyOS, an application is divided into processes.

Processes can exchange messages via IPC.

A user or remote system connects to the process that provides the necessary functionality with the level of
privileges su�icient to perform the requested functions.

378

Specialized implementation in KasperskyOS

Linked patterns

Implementation examples

Sources of information

Interaction between processes can be unidirectional or bidirectional. It is recommended to always use
unidirectional interaction whenever possible. Otherwise, the potential attack surface of individual components
increases, which reduces the overall security of the entire system. If bidirectional IPC is used, processes should not
trust bidirectional data exchange. For example, if a �le system is used for IPC, �le contents cannot be trusted.

In universal operating systems such as Linux or Windows, this pattern does not use anything except the standard
process/privileges model that already exists in these operating systems. Each program is run in its own process
space with potentially di�erent privileges of the speci�c user in each process. However, an attack on the OS kernel
would reduce the e�ectiveness of this pattern.

Use of this pattern when developing for KasperskyOS means that control over processes and IPC is entrusted to
the microkernel, which is di�icult to successfully attack. The Kaspersky Security Module is used for IPC control.

Use of KasperskyOS mechanisms ensures a high level of reliability of the software system with the same or less
e�ort required from the developer when compared to the use of this pattern in programs running under universal
operating systems.

In addition, KasperskyOS provides the capability for �exible con�guration of security policies. Moreover, the
process of de�ning and editing security policies is potentially independent of the process of developing the
applications.

Use of the Distrustful Decomposition pattern involves use of the Defer to Kernel and Policy Decision Point
patterns.

Examples of an implementation of the Distrustful Decomposition pattern:

Secure Logger

Separate Storage

The Distrustful Decomposition pattern is described in detail in the following resources:

Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, Kazuya Togashi (JPCERT/CC), "Secure Design
Patterns" (March-October 2009). Software Engineering Institute.
https://resources.sei.cmu.edu/asset_�les/TechnicalReport/2009_005_001_15110.pdf

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Secure Logger example

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2009_005_001_15110.pdf
https://dc.etsu.edu/etd/1119

379

Example architecture

The Secure Logger example demonstrates use of the Distrustful Decomposition pattern for separating event
log read/write functionality.

The security goal of the Secure Logger example is to prevent any possibility of distortion or deletion of
information from the event log. This example utilizes the capabilities provided by KasperskyOS to achieve this
security goal.

A logging system can be examined by distinguishing the following functional steps:

Generate information to be written to the log.

Save information to the log.

Read entries from the log.

Provide entries in a convenient format for the consumer.

Accordingly, the logging subsystem can be divided into four processes depending on the required functional
capabilities of each process.

For this purpose, the Secure Logger example contains the following four programs: Application , Logger ,
Reader and LogViewer .

The Application program initiates the creation of entries in the event log maintained by the Logger
program.

The Logger program creates entries in the log and writes them to the disk.

The Reader program reads entries from the disk to send them to the LogViewer program.

The LogViewer program sends entries to the user.

The IPC interface provided by the Logger program is intended only for writing to storage. The IPC interface of the
Reader program is intended only for reading from storage. The example architecture looks as follows:

380

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/secure_logger

Building and running example

Example architecture

The Application program uses the interface of the Logger program to save log entries.

The LogViewer program uses the interface of the Reader program to read the log entries and present them
to a user.

The LogViewer program normally has external channels for interacting with a user (for example, to receive data
write commands and to provide data to a user). Naturally, this program is an untrusted component of the system,
and therefore could potentially be used to conduct an attack. However, even if a successful attack results in the
in�ltration of unauthorized executable code into the LogViewer program, information in the log cannot be
distorted through this program. This is because the program can only utilize the data read interface, which cannot
actually be used to distort or delete data. Moreover, the LogViewer program does not have the capability to gain
access to other interfaces because this access is controlled by the security module.

A security policy in the Secure Logger example has the following characteristics:

The Application program has the capability to query the Logger program to create a new entry in the event
log.

The LogViewer program has the capability to query the Reader program to read entries from the event log.

The Application program does not have the capability to query the Reader program to read entries from
the event log.

The LogViewer program does not have the capability to query the Logger program to create a new entry in
the event log.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

Separate Storage example

The Separate Storage example demonstrates use of the Distrustful Decomposition pattern to separate data
storage for trusted and untrusted applications.

The Separate Storage example contains two user programs: UserManager and CertificateManager .

These programs work with data located in the corresponding �les:

The UserManager program works with data from the userlist.txt �le.

381

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/separate_storage

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in

The CertificateManager program works with data from the certificate.cer �le.

Each of these programs uses its own instance of the VFS program to access a separate �le system. Each VFS
program includes a block device driver linked to an individual logical drive partition. The UserManager program
does not have access to the �le system of the CertificateManager program, and vice versa.

This architecture guarantees that if there is an attack or error in any of the UserManager or
CertificateManager programs, this program will not be able to access any �le that was not intended for the
speci�c program's operations.

A security policy in the Separate Storage example has the following characteristics:

The UserManager program has access to the �le system only through the VfsUser program.

The CertificateManager program has access to the �le system only through the VfsCertificate
program.

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

382

the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -sd
sdcard0.img -kernel kos-qemu-image

Preparing an SD card to run on Raspberry Pi 4 B

To run the Separate Storage example on Raspberry Pi 4 B, you can use an SD card prepared for running the
vfs_extfs example on Raspberry Pi 4 B after copying the userlist.txt and certificate.cer �les to the
appropriate partitions.

Description

Alternate names

Context

See also Building and running examples section.

To run the Separate Storage example on Raspberry Pi 4 B, the following additional actions are necessary:

Create a /lib directory in the SD card boot sector unless one already exists.

Copy the contents of the build/hdd/part1/lib directory that was generated while building the example to
the /lib directory in the SD card boot sector.

The SD card must contain both a bootable partition with the solution image as well as 2 additional partitions
with the ext2 or ext3 �le systems.

The �rst additional partition must contain the userlist.txt �le from the ./resources/files/ directory.

The second additional partition must contain the certificate.cer �le from the ./resources/files/
directory.

Defer to Kernel pattern

The Defer to Kernel pattern takes advantage of permission control at the OS kernel level.

The purpose of this pattern is to utilize mechanisms available at the OS kernel level to clearly separate the
functionality requiring elevated privileges from the functionality that does not require elevated privileges. By using
kernel mechanisms, we do not have to implement new tools for arbitrating security decisions at the user level.

Policy Enforcement Point (PEP) , Protected System , Enclave .

The Defer to Kernel pattern is applicable if the system has the following characteristics:

383

Problem

Solution

Structure

Operation

Implementation recommendations

The system has processes that run without elevated privileges, including user processes.

Some system functions require elevated privileges that must be veri�ed before processes are granted access
to data.

You need to verify not only the privileges of the requesting process, but also the overall permissibility of the
requested operation within the operational context of the entire system and its overall security.

When functionality is divided among various processes with di�erent levels of privileges, these privileges must be
veri�ed when a request is made from one process to another. These veri�cations must be carried out and their
resulting permissions must be granted by trusted code that has a minimal risk of being compromised. The
trustworthiness of application code is almost always questionable due to its sheer volume and due to its primary
orientation toward implementation of functional requirements.

Clearly separate privileged functionality and data from non-privileged functionality and data at the process level,
and give the OS kernel control of interprocess communication (IPC), including veri�cation of access rights when
there is a request for functionality or data requiring elevated privileges, and veri�cation of the overall state of the
system and the states of individual processes at the time of the request.

Functionality and management of data with various privileges are compartmentalized among processes.

The OS kernel ensures isolation of processes.

Process-1 wants to request privileged functionality or data from Process-2 using IPC.

The kernel controls IPC and allows or denies communication based on security policies and based on the
available information regarding the operational context and state of Process-1 .

To ensure that a speci�c implementation of a pattern operates securely and reliably, the following is required:

Isolation

384

Specialized implementation in KasperskyOS

Linked patterns

Impacts

Implementation examples

Sources of information

Complete and guaranteed isolation of processes must be ensured.

Absolutely all IPC interactions must be controlled by the kernel.

The trustworthiness of the kernel must be ensured through its own means of protection against compromise.

The kernel requires a certain level of guaranteed security and reliability.

Access permissions must be computed at the OS level, and must not be implemented in application code.

For this purpose, tools must be provided for describing access policies so that security policies are detached
from the business logic.

Inability to bypass the kernel

Kernel self-defense

Provability

Capability for external computation of access permissions

The KasperskyOS kernel guarantees isolation of processes and serves as a Policy Enforcement Point (PEP).

The Defer to Kernel pattern is a special case of the Distrustful Decomposition and Policy Decision Point
patterns. The Policy Decision Point pattern de�nes the abstraction process that intercepts all requests to
resources and veri�es that they comply with the de�ned security policy. The distinctive feature of the Defer to
Kernel pattern is that the veri�cation process is performed by the OS kernel, which is a more reliable and portable
solution that reduces the time spent on development and testing.

By making the OS kernel responsible for applying the access policy, you separate the security policy from the
business logic (which may be very complicated) and thereby simplify development and improve portability through
the use of OS kernel functions.

This also makes it possible to prove the overall security of a solution by simply demonstrating that the kernel is
operating correctly. The di�iculty in proving correct execution of code grows nonlinearly as the size of the code
increases. The Defer to Kernel pattern minimizes the amount of trusted code, provided that the OS kernel
itself is not too large.

Example of a Defer to Kernel pattern implementation: Defer to Kernel example.

The Defer to Kernel pattern is described in detail in the following resources:

385

Dynamically created IPC channels

Example �les

Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, Kazuya Togashi (JPCERT/CC), "Secure Design
Patterns" (March-October 2009). Software Engineering Institute.
https://resources.sei.cmu.edu/asset_�les/TechnicalReport/2009_005_001_15110.pdf

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Schumacher, Markus, Fernandez-Buglioni, Eduardo, Hybertson, Duane, Buschmann, Frank, and Sommerlad,
Peter. "Security Patterns: Integrating Security and Systems Engineering" (2006)

Defer to Kernel example

The Defer to Kernel example demonstrates the use of Defer to Kernel and Policy Decision Point patterns.

The Defer to Kernel example contains three user programs: PictureManager , ValidPictureClient and
NonValidPictureClient .

In this example, the ValidPictureClient and NonValidPictureClient programs query the PictureManager
program to receive information.

Only the ValidPictureClient program is allowed to interact with the PictureManager program.

The KasperskyOS kernel guarantees isolation of running programs (processes).

Control of interaction between programs in KasperskyOS is delegated to the Kaspersky Security Module. The
subsystem analyzes each sent request and response and decides whether to allow or deny delivery based on the
de�ned security policy.

A security policy in the Defer to Kernel example has the following characteristics:

The ValidPictureClient program is explicitly allowed to interact with the PictureManager program.

The NonValidPictureClient program is explicitly not allowed to interact with the PictureManager
program. This means that this interaction is denied (based on the Default Deny principle).

The example also demonstrates the capability to dynamically create IPC channels between processes. IPC
channels are dynamically created by using a name server, which is a special kernel service provided by the
NameServer program. The capability to dynamically create IPC channels allows you to change the topology of
interaction between programs on the �y.

Any program that is allowed to interact with NameServer via IPC can register its own interfaces in the name
server. Another program can request the registered interfaces from the name server, and then connect to the
relevant interface.

The security module is used to control interactions via IPC (even those that were created dynamically).

The code of the example and build scripts are available at the following path:

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2009_005_001_15110.pdf
https://dc.etsu.edu/etd/1119

386

/opt/KasperskyOS-Community-Edition-<version>/examples/defer_to_kernel

Building and running example

Description

Alternate names

Context

Problem

Solution

Structure

See Building and running examples section.

Policy Decision Point pattern

The Policy Decision Point pattern encapsulates the computation of decisions based on security model
methods into a separate system component that ensures that these security methods are performed in their full
scope and correct sequence.

Check Point , Access Decision Function .

The system has functions with di�erent levels of privileges, and the security policy is complex (contains many
security model methods bound to security events).

If security policy checks are divided among di�erent system components, the following issues arise:

You have to carefully make sure that all necessary checks are performed in all required cases.

It is di�icult to ensure that all checks are performed in the correct order.

It is di�icult to prove that the veri�cation system is operating correctly, has no con�icts, and its integrity has
not been compromised.

The security policy is linked to the business logic. This means that any modi�cation of the security policy
requires changes to the business logic, which complicates support and increases the likelihood of errors.

All veri�cations of security policy compliance are conducted in a separate component called a Policy Decision
Point (PDP). This component is responsible for ensuring that veri�cations are conducted in their correct sequence
and scope. Policy checks are separated from the code that implements the business logic.

387

Operation

Implementation recommendations

Specialized implementation in KasperskyOS

Impacts

A Policy Enforcement Point (PEP) receives a request to access functionality or data.

For example, the PEP may be the OS kernel. For more details, refer to Defer to Kernel pattern.

The PEP gathers the request attributes required for making decisions on access control.

The PEP requests an access control decision from the Policy Decision Point (PDP).

The PDP computes a decision on whether to grant access based on the security policy and based on the
information received in the request from the PEP.

The PEP denies or allows interaction based on the decision of the PDP.

Implementations must take into account the problem of "Veri�cation time vs. Usage time". For example, if a security
policy depends on the quickly changing status of a speci�c system object, a computed decision loses its relevance
as quickly as the status changes. In a system that utilizes the pattern, you must take care to
minimize the time interval between the access decision and the time when the request based on this decision is
ful�lled.

Policy Decision Point

The KasperskyOS kernel guarantees isolation of processes and serves as a Policy Enforcement Point (PEP).

Control of interaction between processes in KasperskyOS is delegated to the Kaspersky Security Module. This
module analyzes each sent request and response and decides whether to allow or deny delivery based on the
de�ned security policy. Therefore, the Kaspersky Security Module performs the role of the Policy Decision Point
(PDP).

This pattern con�gures a security policy without making any modi�cations to the code that implements the
business logic, and delegates system support involving information security.

388

Linked patterns

Implementation examples

Sources of information

Description

Example

Context

Use of the Policy Decision Point pattern involves use of the Distrustful Decomposition and Defer to Kernel
patterns.

Example of a Policy Decision Point pattern implementation: Defer to Kernel example.

The Policy Decision Point pattern is described in detail in the following resources:

Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, Kazuya Togashi (JPCERT/CC), "Secure Design
Patterns" (March-October 2009). Software Engineering Institute.
https://resources.sei.cmu.edu/asset_�les/TechnicalReport/2009_005_001_15110.pdf

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Schumacher, Markus, Fernandez-Buglioni, Eduardo, Hybertson, Duane, Buschmann, Frank, and Sommerlad,
Peter. "Security Patterns: Integrating Security and Systems Engineering" (2006)

Bob Blakley, Craig Heath, and members of The Open Group Security Forum. "Security Design Patterns" (April
2004). The Open Group. https://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf

Privilege Separation pattern

The Privilege Separation pattern involves the use of non-privileged isolated system modules for interaction
with clients (other modules or users) that do not have any privileges. The purpose of the Privilege Separation
pattern is to reduce the amount of code that is executed with special privileges without impacting or restricting
application functionality.

The Privilege Separation pattern is a special case of the Distrustful Decomposition pattern.

An unauthenticated user connects to a system that has functions requiring elevated privileges.

The system has components with a large attack surface due to their high number of connections with unsafe
sources and/or a complicated, potentially error-prone implementation.

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2009_005_001_15110.pdf
https://dc.etsu.edu/etd/1119
https://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf

389

Problem

Solution

Operation

Recommendations on implementation in KasperskyOS

Impacts

Implementation examples

Sources of information

When a client with unknown privileges interacts with a privileged component of the system, there are risks that the
data and functionality accessible to that component could be compromised.

Interactions with unsafe clients must be conducted only through specially allocated components that have no
privileges. The Privilege Separation pattern does not modify system functionality. Instead, it merely
separates functionality into components with di�erent privileges.

Pattern operations can be divided into two phases:

 The client is not yet authenticated. It sends a request to a privileged master process. The
master process creates a child process with no privileges (and no access to the �le system). This child process
performs client authentication.

 The client is authenticated and authorized. The privileged master process creates a new
child process that has privileges corresponding to the permissions of the client. This process is responsible for
all subsequent interaction with the client.

Pre-Authentication.

Post-Authentication.

At the phase, the master process can save the state of each non-privileged process in the
form of a �nite-state machine and change the state of the �nite-state machine during authentication.

Pre-Authentication

Requests from child processes to the master process are performed using standard IPC mechanisms. However,
interaction control is conducted using the Kaspersky Security Module.

If attackers gain control of a non-privileged process, they will not gain access to any privileged functions or data. If
attackers gain control of an authorized process, they will obtain only the privileges of this process.

In addition, code that is organized in this manner is easier to check and test. You just have to pay special attention
to the functionality that operates with elevated privileges.

Example of a Privilege Separation pattern implementation: Device Access example.

The Privilege Separation pattern is described in detail in the following resources:

Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, Kazuya Togashi (JPCERT/CC), "Secure Design
Patterns" (March-October 2009). Software Engineering Institute.

390

Example architecture

https://resources.sei.cmu.edu/asset_�les/TechnicalReport/2009_005_001_15110.pdf

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Device Access example

The Device Access example demonstrates use of the Privilege Separation pattern.

The example contains the following three programs: Device , LoginManager and Storage .

In this example, the Device program queries the Storage program to receive information and queries the
LoginManager program for authorization.

The Device program obtains access to the Storage program after successful authorization.

This example demonstrates the capability to separate the authorization logic and the data access logic into
independent components. This separation guarantees that data access can be opened only after successful
authorization. The security module monitors whether authorization was successfully completed. This architecture
also enables independent development and testing of the authorization logic and the data access provision logic.

A security policy in the Device Access example has the following characteristics:

The Device program has the capability to query the LoginManager program for authorization.

Calls of the GetInfo() method of the Storage program are managed by methods of the Flow security model:

The �nite-state machine described in the session object con�guration has two states: unauthenticated
and authenticated .

The initial state is unauthenticated .

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2009_005_001_15110.pdf
https://dc.etsu.edu/etd/1119

391

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/device_access

Building and running example

Description

Context

Problem

Solution

Only transitions from unauthenticated to authenticated and vice versa are allowed.

The session object is created when the Device program is started.

When the Device program successfully calls the Login() method of the LoginManager program, the
state of the session object changes to authenticated .

When the Device program successfully calls the Logout() method of the LoginManager program, the
state of the session object changes to unauthenticated .

When the Device program calls the GetInfo() method of the Storage program, the current state of the
session object is veri�ed. The call is allowed only if the current state of the object is authenticated .

The code of the example and build scripts are available at the following path:

See Building and running examples section.

Information Obscurity pattern

The purpose of the Information Obscurity pattern is to encrypt con�dential data in otherwise unsafe
environments and thereby protect against data theft.

This pattern should be used when data is frequently transferred between parts of a system and/or between the
system and other (external) systems.

Con�dential data may be transmitted through an untrusted environment within one system (through untrusted
components) or between di�erent systems (through untrusted networks). If this environment is compromised,
con�dential data could be intercepted by a cybercriminal.

392

Implementation examples

Sources of information

Example architecture

1. Con�gure interaction between the data source and the device over the HTTPS protocol. This helps prevent
unauthorized surveillance of HTTP tra�ic and MITM (man-in-the-middle) attacks.

2. Generate a shared secret between the data source and the information processing subsystem.

Data must be separated based on its speci�c level of con�dentiality so that you can determine which data should
be encrypted and which encryption algorithms should be used. Encryption and decryption may take a lot of time,
therefore their use should be limited whenever possible. The Information Obscurity pattern resolves this issue
by utilizing a speci�c con�dentiality level to determine what exactly must be concealed with encryption.

Example of an Information Obscurity pattern implementation: Secure Login example.

The Information Obscurity pattern is described in detail in the following resources:

Dangler, Jeremiah Y., "Categorization of Security Design Patterns" (2013). Electronic Theses and Dissertations.
Paper 1119. https://dc.etsu.edu/etd/1119

Schumacher, Markus, Fernandez-Buglioni, Eduardo, Hybertson, Duane, Buschmann, Frank, and Sommerlad,
Peter. "Security Patterns: Integrating Security and Systems Engineering" (2006)

Secure Login (Civetweb, TLS-terminator) example

The Secure Login example demonstrates use of the Information Obscurity pattern. This example demonstrates
the capability to transmit critical system information through an untrusted environment.

This example simulates the acquisition of remote access to an IoT device by sending user account credentials (user
name and password) to this device. The untrusted environment within the IoT device is the web server that
responds to requests from users. Practical experience has shown that this kind of web server is easy to detect and
frequently attacked successfully because IoT devices do not have built-in tools for protection against intrusion
and other attacks. Users also gain access to the IoT device through an untrusted network. Obviously, encryption
algorithms must be used in these types of conditions to protect user account credentials from being
compromised.

In terms of the architecture in these systems, the following objects can be distinguished:

Data source: user's browser.

Point of communication with the device: web server.

Subsystem for processing information from the user: authentication subsystem.

To employ cryptographic protection, the following steps must be completed:

https://dc.etsu.edu/etd/1119

393

3. Use this secret to encrypt information on the data source side and to decrypt the information on the
information processing subsystem side. This helps prevent data within the device from being compromised (at
the point of communication).

1. Using their browser, the user opens the page at https://localhost:1106 (when running the example on
QEMU) or at https://<Raspberry Pi IP address>:1106 (when running the example on Raspberry Pi 4 B).
HTTP tra�ic between the browser and TLS terminator will be transmitted in encrypted form, but the web
server will work only with unencrypted HTTP tra�ic.

This example uses a self-signed certi�cate, so most up-to-date browsers will warn you that the connection
is not secure. You need to agree to use this "insecure" connection, which will actually be encrypted despite
the warning. In some browsers, you may encounter the message "TLS: Error performing handshake:
-30592: errno = Success" .

2. The Civetweb web server running in the WebServer program displays the index.html page containing an
authentication prompt.

3. The user clicks the Log in button.

4. The WebServer program queries the AuthService program via IPC to get the page containing the user name
and password input form.

5. The AuthService program performs the following actions:

6. The Civetweb web server running in the WebServer program displays the auth.html page containing the
user name and password input form.

7. The user completes the form and clicks the Submit button (correct data for authentication is contained in the
�le secure_login/auth_service/src/authservice.cpp).

8. The auth.html page code executed by the browser performs the following actions:

The Secure Login example includes the following components:

Civetweb web server (untrusted component, WebServer program).

User authentication subsystem (trusted component, AuthService program).

TLS terminator (trusted component, TlsEntity program). This component supports the TLS (transport layer
security) mechanism. Together with the web server, the TLS terminator supports the HTTPS protocol on the
device side (the web server interacts with the browser through the TLS terminator).

The user authentication process occurs as follows:

Generates a private key and public settings, and calculates the public key based on the Di�ie-Hellman
algorithm.

Creates the auth.html page containing the user name and password input form (the page code contains
the public settings and the public key).

Transfers the received page to the WebServer program via IPC.

Generates a private key and calculates the public key and shared secret key based on the Di�ie-Hellman
algorithm.

394

9. The WebServer program queries the AuthService program via IPC to get the page containing the
authentication result by transmitting the user name, encrypted password and public key.

10. The AuthService program performs the following actions:

11. The Civetweb web server running in the WebServer program displays the result_err.html page or the
result_ok.html page.

Unit testing using the GoogleTest framework

1. Go to the directory with the Secure Login example.

2. Delete the build directory containing the results of the previous build by running the following command:

sudo rm -rf build/

3. Run the command to start testing:

$ RUN_TESTS=YES ./cross-build.sh

Encrypts the password by using the XOR operation with the shared secret key.

Transmits the user name, encrypted password and public key to the web server.

Calculates the shared secret key based on the Di�ie-Hellman algorithm.

Decrypts the password by using the shared secret key.

Returns the result_err.html page or result_ok.html page depending on the authentication result.

This way, con�dential data is transmitted only in encrypted form through the network and web server. In addition,
all HTTP tra�ic is transmitted through the network in encrypted form. Data is transferred between components via
IPC interactions controlled by the Kaspersky Security Module.

In addition to the Information Obscurity pattern, the Secure Login example demonstrates use of the GoogleTest
framework to conduct unit testing of applications developed for KasperskyOS (this framework is provided in
KasperskyOS Community Edition).

The source code of the tests is located at the following path:

/opt/KasperskyOS-Community-Edition-<version>/examples/secure_login/tests

These unit tests are designed for veri�cation of certain CPP modules of the authentication subsystem and web
server.

To start testing:

Tests are conducted in the TestEntity program. The AuthService and WebServer programs are not started in
this case. Therefore, the example cannot be used to demonstrate the Information Obscurity pattern when testing
is being conducted.

After testing is �nished, the results of the tests are displayed.

395

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/secure_login

Building and running example

$ cd build/einit
Before running the following command, be sure that the path to
the directory with the qemu-system-aarch64 executable file is saved in
the PATH environment variable. If it is not there,
add it to the PATH variable.
$ qemu-system-aarch64 -m 2048 -machine vexpress-a15 -nographic -monitor none -net
nic,macaddr=52:54:00:12:34:56 -net user,hostfwd=tcp::1106-:1106 -sd sdcard0.img -
kernel kos-qemu-image

The code of the example and build scripts are available at the following path:

To run an example on QEMU, go to the directory containing the example, build the example and run the following
commands:

See also Building and running examples section.

To ensure that the secure_login example will correctly run in Raspberry Pi, you must do the following after
building the example and preparing your bootable SD card:

Copy the certs and www directories located at the path /opt/KasperskyOS-Community-Edition-
<version>/examples/secure_login/resources/hdd to the root directory of the bootable SD card.

Create the /lib directory on the bootable SD card if this directory doesn't already exist.

Open the build/hdd/lib directory that was generated when building the example and copy the directory
contents to the /lib directory on the bootable SD card.

396

hello.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, const char *argv[])

{

 fprintf(stderr,"Hello world!\n");

 return EXIT_SUCCESS;

}

aarch64-kos-gcc -o hello hello.c

The program name (and, consequently, the name of the executable �le) must begin with an uppercase letter.

EDL description of the Hello process class

Appendices

This section provides additional information to supplement the primary text of the document.

Additional examples

This section provides descriptions of additional examples that are included in KasperskyOS Community Edition.

See also the descriptions of security pattern implementation examples:

Secure Logger example

Separate Storage example

Defer to Kernel example

Device Access example

Secure Login (Civetweb, TLS-terminator) example

hello example

The hello.c code looks familiar and simple to a developer that uses C, and is fully compatible with POSIX:

Compile this code using aarch64-kos-gcc , which is included in the development tools of KasperskyOS
Community Edition:

397

Hello.edl

/* The process class name follows the reserved word "entity". */
entity Hello

The process class name must begin with an uppercase letter. The name of an EDL �le must match the name of
the class that it describes.

Creating the Einit initializing program

When KasperskyOS is loaded, the kernel starts a program named Einit . The Einit program starts all other
programs included in the solution, which means that it serves as the initializing program.
The KasperskyOS Community Edition toolkit includes the einit tool, which generates the code of the initializing
program (einit.c) based on the init description. In the example provided below, the �le containing the init
description is named init.yaml , but it can have any name.
For more details, refer to "Starting processes".

init.yaml

entities:
Start the "Hello" application.
- name: Hello

Building the security module

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/hello

Building and running example

A static description of the Hello program consists of a single �le named Hello.edl that must indicate the name
of the process class:

If you want the Hello program to start after the operating system is loaded, all you need to do is specify its name
in the init.yaml �le and build an Einit program based on it.

The hello example contains a basic solution security policy (security.psl) that allows all interactions.

The security module (ksm.module) is built based on security.psl .

The code of the example and build scripts are available at the following path:

See Building and running examples section.

The general build scheme for the hello example looks as follows:

398

1. The Client program sends a number (value) to the Server program.

2. The Server program modi�es this number and sends the new number (result) to the Client program.

3. The Client program prints the result number to the screen.

1. Connect the Client and Server programs by using the init description.

2. On the server, implement an interface with a single Ping method that has one input argument (the original
number (value)) and one output argument (the modi�ed number (result)).

Description of the Ping method in the IDL language:

Ping(in UInt32 value, out UInt32 result);

echo example

The echo example demonstrates the use of IPC transport.

It shows how to use the main tools that let you implement interaction between programs.

The echo example describes a basic case of interaction between two programs:

To set up this interaction between programs:

399

3. Create static description �les in the EDL, CDL and IDL languages. Use the NK compiler to generate �les
containing transport methods and types (proxy object, dispatchers, etc.).

4. In the code of the Client program, initialize all required objects (transport, proxy object, request structure,
etc.) and call the interface method.

5. In the code of the Server program, prepare all the required objects (transport, component dispatcher and
program dispatcher, etc.), accept the request from the client, process it and send a response.

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/echo

Building and running example

The code of the example and build scripts are available at the following path:

The echo example consists of the following source �les:

client/src/client.c contains implementation of the Client program.

server/src/server.c contains implementation of the Server program.

resources/Server.edl , resources/Client.edl , resources/Responder.cdl ,
resources/Pingable.idl are static descriptions.

init.yaml contains the init description.

See Building and running examples section.

The build scheme for the echo example looks as follows:

400

Ping(in UInt32 value, out UInt32 result);
Pong(in UInt32 value, out UInt32 result);

The transport part of the ping example is virtually identical to its counterpart in the echo example. The only
di�erence is that the ping example uses two methods (Ping and Pong) instead of just one.

Solution security policy in the ping example

ping example

The ping example demonstrates the use of a solution security policy to control interactions between programs.

The ping example includes four programs: Client , Server , KlogEntity and KlogStorageEntity .

The Server program provides two identical Ping and Pong methods that receive a number and return a modi�ed
number:

The Client program calls both of these methods in a di�erent sequence. If the method call is denied by the
solution security policy, a message regarding the failed call attempt is displayed.

The system programs KlogEntity and KlogStorageEntity perform a security audit.

The solution security policy in this example allows startup of the KasperskyOS kernel and the Einit program, which
is allowed to start all programs in the solution. Queries to the Server program are managed by methods of the
Flow security model.

The �nite-state machine described in the con�guration of the request_state Flow security model object has
two states: not_sent and sent . The initial state is not_sent . Only transitions from not_sent to sent and vice
versa are allowed.

401

Fragment of the security.psl file

/* Solution security policy for demonstrating use of the
 * Flow security model in the ping example */

/* Include PSL files containing formal representations of
 * Base and Flow security models */
use nk.base._
use nk.flow._

/* Including EDL files */
use EDL Einit
use EDL ping.Client
use EDL ping.Server

/* Create Flow security model object */
policy object request_state : Flow {
 type States = "not_sent" | "sent"
 config = {
 states : ["not_sent", "sent"],
 initial : "not_sent",
 transitions : {
 "not_sent" : ["sent"],
 "sent" : ["not_sent"]
 }
 }
}

/* When the Einit program starts the Server program,
 * the initial state is set for the finite-state machine */
execute src=Einit dst=ping.Server method=main {
 request_state.init { sid: dst_sid }
}

/* When a client of the ping.Client class calls the Ping method of the
controlimpl.connectionimpl endpoint
 * of a server of the ping.Server class, the system checks whether the request_state
object is
 * in the "not_sent" state. If it is, receipt of the request is allowed and
 * the request_state object is set to the "sent" state. */
request src=ping.Client dst=ping.Server endpoint=controlimpl.connectionimpl
method=Ping {
 request_state.allow { sid: dst_sid, states: ["not_sent"] }
 request_state.enter { sid: dst_sid, state: "sent" }
}

/* When a client of the ping.Client class calls the Pong method of the
controlimpl.connectionimpl endpoint
 * of a server of the ping.Server class, the system checks whether the request_state
object is
 * in the "sent" state. If it is, receipt of the request is allowed and
 * the request_state object is set to the "not_sent" state. */
request src=ping.Client dst=ping.Server endpoint=controlimpl.connectionimpl
method=Pong {
 request_state.allow { sid: dst_sid, states: ["sent"] }

When the Ping and Pong methods are called, the current state of the request_state object is checked. In the
not_sent state, only a Ping call is allowed, in which case the state changes to sent . Likewise, in the sent state,
only a Pong call is allowed, in which case the state changes to not_sent .

Therefore, the Ping and Pong methods can be called only in succession.

402

 request_state.enter { sid: dst_sid, state: "not_sent" }
}
/* A server of the ping.Server class is allowed to respond to queries from a client of
the ping.Client class
 * that calls the Ping and Pong methods of the controlimpl.connectionimpl endpoint. */
response src=ping.Server dst=ping.Client endpoint=controlimpl.connectionimpl {
 match method=Ping { grant () }
 match method=Pong { grant () }
}

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/ping

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/net_with_separate_vfs

The security policy description in the ping example also contains a section for solution security policy tests.

For an example of such a policy, see the "Example 2" section in "Examples of tests for KasperskyOS-based solution
security policies".

The full security policy description for the ping example is located in the security.psl.in and core.psl �les at
the following path: /opt/KasperskyOS-Community-Edition-<version>/examples/ping/einit/src .

The code of the example and build scripts are available at the following path:

See Building and running examples section.

net_with_separate_vfs example

This example presents a basic case of network interaction using Berkeley sockets.

The example consists of Client and Server programs linked by a TCP socket using a loopback interface.
Standard POSIX functions are used in the code of the programs.

To connect programs using a socket through a loopback, they must use the same network stack instance. This
means that they must interact with a "shared" VFS program (in this example, this program is called NetVfs).

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

403

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/net2_with_separate_vfs

Building and running example

/opt/KasperskyOS-Community-Edition-
<version>/examples/net2_with_separate_vfs/build/host/server/

$ cd net2_with_separate_vfs/server/src/
$ gcc -o server server.c

See Building and running examples section.

net2_with_separate_vfs example

This example demonstrates the special features of a solution in which a program uses standard POSIX functions to
interact with an external server.

The net2_with_separate_vfs example is a modi�ed net_with_separate_vfs example. In contrast to the
net_with_separate_vfs example, in this example a program interacts over the network with an external server
rather than another program running in KasperskyOS.

This example consists of the Client program running in KasperskyOS on QEMU or Raspberry Pi and the Server
program running in a Linux host operating system. The Client program and Server program are bound by a TCP
socket. Standard POSIX functions are used in the code of the Client program.

To connect the Client program and the Server program using a socket, the Client program must interact with
the NetVfs program. During the build, the NetVfs program is linked to a network driver that supports interaction
with the Server program running in Linux.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

To ensure that an example runs correctly, you must run the Server program in a Linux host operating system or on
a computer connected to Raspberry Pi.

After performing the build, the server executable �le of the Server program is located in the following directory:

To independently build the executable �le of the Server program, you need to run the following commands:

404

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/embedded_vfs

Building and running example

Example �les

embedded_vfs example

This example demonstrates how to embed the virtual �le system (VFS) provided in KasperskyOS Community
Edition into a program being developed.

In this example, the Client program fully encapsulates the VFS implementation from KasperskyOS Community
Edition. This lets you eliminate the use of IPC for all the standard I/O functions (stdio.h , socket.h , etc.) for
debugging or performance improvement purposes, for example.

The Client program tests the following operations:

Create a folder.

Create and delete a �le.

Read from a �le and write to a �le.

The example includes the hdd.img image of a hard drive with the FAT32 �le system.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

vfs_extfs example

This example shows how to embed a new �le system into the virtual �le system (VFS) that is provided in
KasperskyOS Community Edition.

In this example, the Client program tests the operation of �le systems (ext2 , ext3 , ext4) on block devices. To
do so, the Client queries the virtual �le system (the FileVfs program) via IPC, and FileVfs in turn queries the
block device via IPC.

The ext2 and ext3 �le systems work with the default settings. The ext4 �le system works if you disable extent
(mkfs.ext4 -O ^64bit,^extent /dev/foo).

405

/opt/KasperskyOS-Community-Edition-<version>/examples/vfs_extfs

Building and running example

Preparing an SD card to run on Raspberry Pi 4 B

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/multi_vfs_ntpd

Building and running example

The code of the example and build scripts are available at the following path:

See Building and running examples section.

To run the vfs_extfs example on Raspberry Pi 4 B, the SD card must have a bootable partition with the solution
image as well as 3 additional partitions with the ext2 , ext3 and ext4 �le systems, respectively.

multi_vfs_ntpd example

This example shows how to use an external NTP server in KasperskyOS. The Ntpd program is included in
KasperskyOS Community Edition and is an implementation of an NTP client, which gets time parameters from
external NTP servers in the background and passes them to the KasperskyOS kernel.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution:

The VfsNet program is used for working with the network.

The VfsSdCardFs program is used to work with the �le system.

The Client program uses standard libc library functions for getting time data. These functions are converted
into queries to the VFS program via IPC.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The directory ./resources/edl contains the Client.edl �le, which contains a static description of the
Client program.

The directory ./resources/hdd/etc contains the con�guration �les for the VfsNet , Dhcpcd and Ntpd
programs: hosts , dhcpcd.conf and ntp.conf , respectively.

The code of the example and build scripts are available at the following path:

406

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/multi_vfs_dns_client

Building and running example

See Building and running examples section.

multi_vfs_dns_client example

This example shows how to use an external DNS server in KasperskyOS.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution:

The VfsNet program is used for working with the network.

The VfsSdCardFs program is used to work with the �le system.

The Client program uses standard libc library functions for contacting an external DNS service. These
functions are converted into queries to the VfsNet program via IPC.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The directory ./resources/edl contains the Client.edl �le, which contains a static description of the
Client program.

The directory ./resources/hdd/etc contains the con�guration �les for the VfsNet and Dhcpcd programs:
hosts and dhcpcd.conf , respectively.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

multi_vfs_dhcpcd example

Example use of the kl.rump.Dhcpcd program.

The Dhcpcd program is an implementation of a DHCP client, which gets network interface parameters from an
external DHCP server in the background and passes them to a virtual �le system (hereinafter referred to as a VFS).

The example also demonstrates the use of di�erent VFSes in a single solution. The example uses di�erent VFS to
access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

407

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/multi_vfs_dhcpcd

Building and running example

The VfsSdCardFs program is used to work with the �le system.

The Client program uses standard libc library functions for getting information on network interfaces (ioctl).
These functions are converted into queries to the VFS program via IPC.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The ./resources/hdd/etc directory contains con�guration �les for the VFS and Dhcpcd programs. The
standard syntax of dhcpcd.conf is used for the Dhcpcd program con�guration.

The CMakeLists.txt root �le de�nes the values of variables that determine the selected con�guration �le:

DHCPCD_FALLBACK

Dynamically receive the parameters of network interfaces from an external DHCP server but statically de�ne
the parameters if the DHCP server is not available. This value is used by default.

DHCPCD_DYNAMIC

Dynamically receive the parameters of network interfaces from an external DHCP server.

DHCPCD_STATIC

Statically de�ne the parameters of network interfaces.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

mqtt_publisher (Mosquitto) example

Example use of the MQTT protocol in KasperskyOS.

In this example, an MQTT subscriber must be started on the host operating system, and an MQTT publisher must
be started on KasperskyOS. The Publisher program is an implementation of an MQTT publisher that publishes
the current time with a 5-second interval.

When the example starts and runs successfully, an MQTT subscriber started on the host operating system prints a
"received PUBLISH" message with a "datetime" topic.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution:

The VfsNet program is used for working with the network.

408

Starting Mosquitto

$ sudo apt install mosquitto mosquitto-clients
$ sudo /etc/init.d/mosquitto start

$ mosquitto_sub -d -t "datetime"

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/mqtt_publisher

Building and running example

The VfsSdCardFs program is used to work with the �le system.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

To run this example, a Mosquitto MQTT broker must be installed and started on the host system. To install and start
Mosquitto, run the following commands:

To start an MQTT subscriber on the host system, run the following command:

The directory ./resources/edl contains the Publisher.edl �le, which contains a static description of the
Publisher program.

The directory ./resources/hdd/etc contains the con�guration �les for the VfsNet , Dhcpcd and Ntpd
programs: hosts , dhcpcd.conf and ntp.conf , respectively.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

mqtt_subscriber (Mosquitto) example

Example use of the MQTT protocol in KasperskyOS.

In this example, an MQTT publisher must be started on the host operating system, and an MQTT subscriber must
be started on KasperskyOS. The Subscriber program is an implementation of an MQTT subscriber.

When the example starts and runs successfully, an MQTT subscriber started on KasperskyOS prints a "Got
message with topic: my/awesome/topic, payload: hello" message.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution:

409

Starting Mosquitto

$ sudo apt install mosquitto mosquitto-clients
$ sudo /etc/init.d/mosquitto start

$ mosquitto_pub -t "my/awesome/topic" -m "hello"

Supplied resources

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/mqtt_subscriber

Building and running example

The VfsNet program is used for working with the network.

The VfsSdCardFs program is used to work with the �le system.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

To run this example, a Mosquitto MQTT broker must be installed and started on the host system. To install and start
Mosquitto, run the following commands:

To start an MQTT publisher on the host system, run the following command:

The directory ./resources/edl contains the Subscriber.edl �le, which contains a static description of
the Subscriber program.

The directory ./resources/hdd/etc contains the con�guration �les for the VfsNet , Dhcpcd and Ntpd
programs: hosts , dhcpcd.conf and ntp.conf , respectively.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

gpio_input example

Example use of the GPIO driver.

410

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/gpio_input

Building and running example

Example �les

This example lets you verify the functionality of GPIO input pins. The "gpio0" port is used. All pins except those
indicated in exceptionPinArr array are set for input by default. The voltage on the pins corresponds to the state
of the registers of the pull-up resistors. The state of all pins, starting from GPIO0 (accounting for the pins
indicated in the exceptionPinArr array), will be read in succession. Messages about the state of the pins will be
displayed on the console. The delay between the readings of adjacent pins is determined by the DELAY_S macro
(the time is indicated in seconds).

exceptionPinArr is an array of GPIO pin numbers that need to be excluded from the example. This may be
necessary if some pins are already being used for other functions, e.g. if pins are being used for a UART connection
during debugging.

If you build and run this example on QEMU, an error will occur. This is the expected behavior, because there is no
GPIO driver for QEMU.

If you build and run this example on Raspberry Pi 4 B, an error will occur.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

gpio_output example

Example use of the GPIO driver.

This example lets you verify the functionality of GPIO output pins. The "gpio0" port is used. The initial state of all
GPIO pins should correspond to a logical zero (no voltage on the pin). All pins other than those indicated in the
exceptionPinArr array are con�gured for output. Each pin, starting with GPIO0 (accounting for those indicated
in the exceptionPinArr array), will be sequentially changed to a logical one (voltage on the pin) and then to a
logical zero. The delay between the changes of pin state is determined by the DELAY_S macro (the time is
indicated in seconds). The pins are turned on/o� from GPIO0 to GPIO27 and then back against to GPIO0 .

exceptionPinArr is an array of GPIO pin numbers that need to be excluded from the example. This may be
necessary if some pins are already being used for other functions, e.g. if pins are being used for a UART connection
during debugging.

If you build and run this example on QEMU, an error will occur. This is the expected behavior, because there is no
GPIO driver for QEMU.

If you build and run this example on Raspberry Pi 4 B, an error will occur.

The code of the example and build scripts are available at the following path:

411

/opt/KasperskyOS-Community-Edition-<version>/examples/gpio_output

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/gpio_interrupt

Building and running example

See Building and running examples section.

gpio_interrupt example

Example use of the GPIO driver.

This example lets you verify the functionality of GPIO pin interrupts. The "gpio0" port is used. In the pinsBitmap
bitmask of the CallBackContext interrupt context, the pins from exceptionPinArr array are marked as
handled so that the example can properly terminate later. All pins other than those indicated in the
exceptionPinArr array are switched to the PINS_MODE state. An interrupt handler will be registered for all pins
other than those indicated in the exceptionPinArr array.

In an endless loop, the example checks whether the pinsBitmap bitmask from the CallBackContext interrupt
context is equal to the DONE_BITMASK bitmask (which corresponds to the condition when an interrupt has
occurred on each GPIO pin). Additionally, the handler function for the latest interrupted pin is removed in the loop.
When a pin is interrupted for the �rst time, the handler function is called, which marks the corresponding pin in the
pinsBitmap bitmask in the CallBackContext interrupt context. The handler function for this pin is removed
later.

Keep in mind how the example may be a�ected by the initial state of the registers of pull-up resistors for each pin.

Interrupts for the GPIO_EVENT_LOW_LEVEL and GPIO_EVENT_HIGH_LEVEL events are not supported.

exceptionPinArr is an array of GPIO pin numbers that need to be excluded from the example. This may be
necessary if some pins are already being used for other functions, e.g. if pins are being used for a UART connection
during debugging.

If you build and run this example on QEMU, an error will occur. This is the expected behavior, because there is no
GPIO driver for QEMU.

If you build and run this example on Raspberry Pi 4 B, an error will occur.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

412

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/gpio_echo

Building and running example

gpio_echo example

Example use of the GPIO driver.

This example makes it possible to verify the functionality of GPIO pins as well as the operation of GPIO interrupts.
The "gpio0" port is used. The output pin (GPIO_PIN_OUT) should be connected to the input pin (GPIO_PIN_IN).
The output pin (the pin number is de�ned in the GPIO_PIN_OUT macro) as well as the input pin (GPIO_PIN_IN) are
con�gured. Use of the input pin is con�gured in the IN_MODE macro. The interrupt handler for the input pin is
registered. The state of the output pin changes several times. If the example works correctly, then when the state
of the output pin changes the interrupt handler will be called and will display the state of the input pin. What's
more, the state of the output pin and the input pin must match.

If you build and run this example on QEMU, an error will occur. This is the expected behavior, because there is no
GPIO driver for QEMU.

If you build and run this example on Raspberry Pi 4 B, an error will occur.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

koslogger example

This example demonstrates use of the spdlog library in KasperskyOS using the KOSLogger wrapper library.

In this example, the Client program creates log entries that are saved on an SD card (when running the example
on Raspberry Pi) or in the image �le named build/einit/sdcard0.img (when running the example in QEMU).

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution. The example uses
di�erent VFS to access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

The VfsSdCardFs program is used to work with the �le system.

The kl.Ntpd program is included in KasperskyOS Community Edition and is an implementation of an NTP client,
which gets time parameters from external NTP servers in the background and passes them to the KasperskyOS
kernel.

The kl.rump.Dhcpcd program is included in KasperskyOS Community Edition and is an implementation of a
DHCP client, which gets the parameters of network interfaces from an external DHCP server in the background
and passes them to the virtual �le system.

413

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/koslogger

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/pcre

Building and running example

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

To ensure that the koslogger example will correctly run in Raspberry Pi, you must do the following after building
the example and preparing your bootable SD card:

Create the /lib directory on the bootable SD card if this directory doesn't already exist.

Open the build/hdd/lib directory that was generated when building the example and copy the directory
contents to the /lib directory on the bootable SD card.

pcre example

This example demonstrates use of the pcre library in KasperskyOS.

In this example, the Client program uses the pcre library and prints the results to the console.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

To ensure that the pcre example will correctly run in Raspberry Pi, you must do the following after building the
example and preparing your bootable SD card:

Create the /lib directory on the bootable SD card if this directory doesn't already exist.

Open the build/hdd/lib directory that was generated when building the example and copy the directory
contents to the /lib directory on the bootable SD card.

414

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/messagebus

Building and running example

messagebus example

This example demonstrates use of the MessageBus component in KasperskyOS.

In this example, the Publisher , SubscriberA and SubscriberB programs use the MessageBus component to
exchange messages.

The MessageBus component implements the message bus. The Publisher program is the publisher that
transfers messages to the bus. The SubscriberA and SubscriberB programs are the subscribers that receive
messages from the bus.

The example also demonstrates the use of various virtual �le systems (VFS) in a single solution. The example uses
di�erent VFS to access the functions for working with the �le system and functions for working with the network:

The VfsNet program is used for working with the network.

The VfsSdCardFs program is used to work with the �le system.

The kl.Ntpd program is included in KasperskyOS Community Edition and is an implementation of an NTP client,
which gets time parameters from external NTP servers in the background and passes them to the KasperskyOS
kernel.

The kl.rump.Dhcpcd program is included in KasperskyOS Community Edition and is an implementation of a
DHCP client, which gets the parameters of network interfaces from an external DHCP server in the background
and passes them to the virtual �le system.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

To ensure that the messagebus example will correctly run in Raspberry Pi, you must do the following after building
the example and preparing your bootable SD card:

Create the /lib directory on the bootable SD card if this directory doesn't already exist.

Open the build/hdd/lib directory that was generated when building the example and copy the directory
contents to the /lib directory on the bootable SD card.

I2c_ds1307_rtc example

415

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/i2c_ds1307_rtc

Building and running example

This example is intended to run only on Raspberry Pi. For the example to work correctly, you must connect a
DS1307Z real-time clock module to the i2c port.

This example demonstrates use of the i2c driver (Inter-Integrated Circuit) in KasperskyOS.

In this example, the I2cClient program uses the i2c driver interface.

The client library of the i2c driver is statically linked to the I2cClient program. The i2c driver implementation
uses a BSP (Board Support Platform) subsystem for con�guring clock frequencies (Clocks) and pins multiplexing
(PinMux). Therefore, to ensure correct operation of the driver, you need to do the following:

Link the I2cClient program to the i2c_CLIENT_LIB client library.

Link the I2cClient program to the bsp_CLIENT_LIB client library.

Create an IPC channel between the I2cClient program and the kl.drivers.I2C driver.

Create an IPC channel between the I2cClient program and the kl.drivers.BSP driver.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

iperf_separate_vfs example

This example demonstrates use of the iperf library in KasperskyOS.

In this example, the Server program uses the iperf library.

By default, the example uses network software emulation (SLIRP) in QEMU. If you con�gured TAP interfaces for
QEMU, you need to change the network settings for starting QEMU (QEMU_FLAGS variable) in the
einit/CMakeLists.txt �le to make sure that the example works correctly (for more details, see the comments
in the �le).

The example does not use DHCP, therefore the IP address of the network interface must be manually indicated in
the code of the Server program (server/src/main.cpp). SLIRP uses the default values.

The iperf library in the example is used in server mode. To connect to this server, install the iperf3 program on
the host machine and run it by using the iperf3 -c localhost command. If you con�gured TAP interfaces,
indicate the current IP address instead of localhost .

416

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/iperf_separate_vfs

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/uart

Building and running example

The �rst startup of the example may take a long time because the iperf client uses /dev/urandom to �ll packets
with random data. To avoid this, run the iperf client with the --repeating-payload parameter.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

Uart example

Example use of the UART driver.

This example shows how to print "Hello World!" to the appropriate port using the UART driver.

When running the example simulation in QEMU, -serial stdio is indicated in the QEMU �ags. This means that
the �rst UART port will be printed only to the standard stream of the host machine.

A full description of the UART driver interface is provided in the �le /opt/KasperskyOS-Community-Edition-
<version>/sysroot-aarch64-kos/include/uart/uart.h .

The code of the example and build scripts are available at the following path:

See Building and running examples section.

spi_check_regs example

This example demonstrates use of the SPI (Serial Peripheral Interface) driver in KasperskyOS.

The example shows how to work with the SPI interface on the Sense HAT add-on board for Raspberry Pi. In this
example, the Client program uses the SPI driver interface. The program opens an SPI channel, displays its
parameters and sets the necessary operating mode. Then the program sends a data sequence over this channel
and waits to receive the ID of the ATTiny controller installed on the Sense HAT board.

417

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/spi_check_regs

Building and running example

This example is intended to run only on Raspberry Pi. For the example to work correctly, you must connect the
Sense HAT module to the SPI port.

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/barcode_scanner

Building and running example

This example is intended to run only on Raspberry Pi. For the example to work correctly, you must connect a
barcode scanner running in keyboard emulation mode (such as Zebra Symbol LS2208) to the USB port.

The client library of the SPI driver is statically linked to the Client program. The Client program also uses the
gpio driver to set the controller operating mode and the BSP (Board Support Platform) subsystem for
con�guring clock frequencies (Clocks) and pins multiplexing (PinMux).

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

barcode_scanner example

This example demonstrates use of a USB (Universal Serial Bus) driver in KasperskyOS using the libevdev library.

In this example, the BarcodeScanner program uses the libevdev library for interaction with a barcode scanner
connected to the USB port of Raspberry Pi.

The program waits for signals from the barcode scanner and prints the obtained data to stderr .

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

418

If you build and run this example on QEMU, some performance counters may not function correctly.

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/perfcnt

Building and running example

Example �les

perfcnt example

This example demonstrates use of the performance counters in KasperskyOS.

The example includes two programs: Worker and Monitor .

The Worker program performs computations in a loop by periodically loading the processor and utilizing memory.

The Monitor program uses the KnProfilerGetCounter() function of the libkos library to get the values of
performance counters for the Worker program and prints them to the console.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

watchdog_system_reset example

This example demonstrates use of the Watchdog driver in KasperskyOS.

In this example, the Client program uses the Watchdog driver interface to interact with the Watchdog timer as
follows:

Receives the current parameters of the Watchdog driver and prints them to stderr .

Changes the default value of the timer to a new value and starts the timer.

Resets the timer several times.

Waits for the system to restart when the timer is triggered.

The client library of the Watchdog driver is statically linked to the Client program.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

419

/opt/KasperskyOS-Community-Edition-<version>/examples/watchdog_system_reset

Building and running example

Example �les

/opt/KasperskyOS-Community-Edition-<version>/examples/shared_libs

Building and running example

The code of the example and build scripts are available at the following path:

See Building and running examples section.

shared_libs example

This example demonstrates use of static and dynamic libraries in KasperskyOS.

In the example, the Client program performs the following actions:

Calls a function from the hello_s static library.

Calls a function from the hello_d1 dynamic library that is linked together with the program and loaded into
memory when the process is started.

Calls a function from the hello_d2 dynamic library that is loaded into memory when calling the dlopen()
function of the POSIX interface.

To ensure that dynamic libraries can be shared among di�erent processes, the system program named
BlobContainer is included in the example.

The CMake system, which is included with KasperskyOS Community Edition, is used to build and run the example.

The code of the example and build scripts are available at the following path:

See Building and running examples section.

To ensure that the shared_libs example will correctly run in Raspberry Pi, you must do the following after
building the example and preparing your bootable SD card:

Create the /lib directory on the bootable SD card if this directory doesn't already exist.

Open the build/hdd/lib directory that was generated when building the example and copy the directory
contents to the /lib directory on the bootable SD card.

420

Constants that set limits in the system

Subsystem Constants

POSIX

Information about certain limits set in the system

Header �les and IDL �les from the KasperskyOS SDK contain constants that set limits in the system (see table
below).

The constants in the sysroot-*-kos/include/limits.h �le.

BlobContainer

The constants in the sysroot-*-kos/include/kl/EntityLauncher.idl(.h)
�les:

MaxArgSize (kl_EntityLauncher_MaxArgSize) – maximum program
launch parameter and environment variable size in bytes.

MaxArgsCount (kl_EntityLauncher_MaxArgsCount) – maximum number
of launch parameters and environment variables for a program.

CertificateStorage

The constants in the sysroot-*-
kos/include/kl/CertificateStorage.idl(.h) �les:

MaxNumCerts (kl_CertificateStorage_MaxNumCerts) – maximum
number of certi�cates in a storage.

MaxCertSize (kl_CertificateStorage_MaxCertSize) – maximum
certi�cate size in bytes.

HashSize (kl_CertificateStorage_HashSize) – size of the certi�cate
storage hash, in bytes.

Tls The constants in the sysroot-*-
kos/include/kl/CertificatePolicy.idl(.h) �les:

MaxDERCertDataSize
(kl_CertificatePolicy_MaxDERCertDataSize) – maximum DER
certi�cate size in bytes.

MaxHostAddressBufferSize
(kl_CertificatePolicy_MaxHostAddressBufferSize) – maximum host
address bu�er size in bytes.

The constants in the sysroot-*-
kos/include/kl/crypto/tls/TlsEvent.idl(.h) �les:

FunctionNameSize (kl_crypto_tls_TlsEvent_FunctionNameSize) –
 maximum function name size in bytes.

IdSize (kl_crypto_tls_TlsEvent_IdSize) – session identi�er size in
bytes.

HostnameSize (kl_crypto_tls_TlsEvent_HostnameSize) – maximum
host name size in bytes.

421

PkiEntrySize (kl_crypto_tls_TlsEvent_PkiEntrySize) – maximum
PKI certi�cate size in bytes.

MaxCertificatesInChain
(kl_crypto_tls_TlsEvent_MaxCertificatesInChain) – maximum
number of certi�cates in a chain.

MaxCertificatesInTrustedSet
(kl_crypto_tls_TlsEvent_MaxCertificatesInTrustedSet) –
 maximum number of trusted certi�cates.

KeyFingerprintLength
(kl_crypto_tls_TlsEvent_KeyFingerprintLength) – key �ngerprint
size in bytes.

MbedTlsDescriptionSize
(kl_crypto_tls_TlsEvent_MbedTlsDescriptionSize) – maximum
MbedTLS error description size in bytes.

VfsDescriptionSize
(kl_crypto_tls_TlsEvent_VfsDescriptionSize) – maximum VFS error
description size in bytes.

DescriptionSize (kl_crypto_tls_TlsEvent_DescriptionSize) –
 maximum event description size in bytes.

ExecutionManager The constants in the sysroot-*-
kos/include/kl/execution_manager/Types.idl(.h) �les:

NkAppNameMaxSize
(kl_execution_manager_Types_NkAppNameMaxSize) – maximum
program name size in bytes.

NkPathMaxSize (kl_execution_manager_Types_NkPathMaxSize) –
 maximum executable �le path size in bytes.

NkEntityNameMaxSize
(kl_execution_manager_Types_NkEntityNameMaxSize) – maximum
process name size in bytes.

NkEiidMaxSize (kl_execution_manager_Types_NkEiidMaxSize) –
 maximum process class name size in bytes.

NkTaskNameMaxSize
(kl_execution_manager_Types_NkTaskNameMaxSize) – maximum
process name size in bytes.

NkArgMaxLen (kl_execution_manager_Types_NkArgMaxLen) – maximum
program launch parameter size in bytes.

NkEnvMaxLen (kl_execution_manager_Types_NkEnvMaxLen) – maximum
environment variable size in bytes.

NkArgsArrayMaxSize
(kl_execution_manager_Types_NkArgsArrayMaxSize) – maximum
number of program launch parameters.

422

NkEnvsArrayMaxSize
(kl_execution_manager_Types_NkEnvsArrayMaxSize) – maximum
number of environment variables for a program.

KlogStorage

The constants in the sysroot-*-kos/include/kl/KlogStorage.idl(.h)
�les:

StringSize (kl_KlogStorage_StringSize) – maximum message size in
bytes.

MaxMessages (kl_KlogStorage_MaxMessages) – maximum number of
messages.

Env

The constants in the sysroot-*-kos/include/kl/Env.idl(.h) �les:

MaxArgsCount (kl_Env_MaxArgsCount) – maximum number of launch
parameters and environment variables for a program.

MaxArgSize (kl_Env_MaxArgSize) – maximum program launch parameter
and environment variable size in bytes.

MaxNameSize (kl_Env_MaxNameSize) – maximum process name size in
bytes.

VFS The constants in the sysroot-*-kos/include/kl/VfsTypes.idl(.h) �les:

MaxBytesCount (kl_VfsTypes_MaxBytesCount) – maximum VFS data
transmission bu�er size in bytes.

MaxPathSize (kl_VfsTypes_MaxPathSize) – maximum path size in bytes.

MaxDevnameSize (kl_VfsTypes_MaxDevnameSize) – maximum device
name size in bytes.

MaxFstypeSize (kl_VfsTypes_MaxFstypeSize) – maximum �le system
name size in bytes.

MaxFsDataSize (kl_VfsTypes_MaxFsDataSize) – maximum data size for
the data parameter of the mount() function, in bytes.

MaxFcntlTSize (kl_VfsTypes_MaxFcntlTSize) – maximum data size for
an optional parameter of the fcntl() function, in bytes.

MaxIoctlTSize (kl_VfsTypes_MaxIoctlTSize) – maximum data size for
an optional parameter of the ioctl() function, in bytes.

MaxSockAddrSize (kl_VfsTypes_MaxSockAddrSize) – maximum IP
address size in bytes.

MaxSockOptionSize (kl_VfsTypes_MaxSockOptionSize) – maximum
data size for the option_value parameter of the getsockopt() and
setsockopt() functions, in bytes.

423

MaxHostnameSize (kl_VfsTypes_MaxHostnameSize) – maximum host
name size in bytes.

MaxServnameSize (kl_VfsTypes_MaxServnameSize) – maximum data
size for the servname parameter of the getaddrinfo() function and the
service parameter of the getnameinfo() function, in bytes.

MaxMsgNameSize (kl_VfsTypes_MaxMsgNameSize) – maximum data size
for the msg_name element of the message parameter of the recvmsg() and
sendmsg() functions, in bytes.

MaxMsgDataSize (kl_VfsTypes_MaxMsgDataSize) – maximum data size
for a msg_control element of the message parameter of the recvmsg()
and sendmsg() functions, in bytes.

MaxIovDataSize (kl_VfsTypes_MaxIovDataSize) – maximum number of
the bu�er described by the iovec structure in the message parameter of the
recvmsg() and sendmsg() functions, and in the iov parameter of the
readv() and writev() functions, in bytes.

MaxIovecsCount (kl_VfsTypes_MaxIovecsCount) – maximum number of
iovec structures in the message parameter of the recvmsg() and
sendmsg() functions, and in the iov parameter of the readv() and
writev() functions.

MaxAddrinfoSize (kl_VfsTypes_MaxAddrinfoSize) – maximum data
size for the res parameter of the getaddrinfo() function, in bytes.

VfsHostent (kl_VfsTypes_MaxHostentSize) – maximum data size for a
return value of the gethostbyname() function, in bytes.

VfsDnsName (kl_VfsTypes_MaxDnsNameSize) – maximum data size for the
name parameter of the getnetbyname() function, in bytes.

MaxProtoentNameSize (kl_VfsTypes_MaxProtoentNameSize) –
 maximum protocol name size in the name parameter of the
getprotobyname() function, and in the return value of the
getprotobyname() and getprotobynumber() functions, in bytes.

MaxProtoentAliasesSize (kl_VfsTypes_MaxProtoentAliasesSize) –
 maximum protocol alias size in the return values of the getprotobyname()
and getprotobynumber() functions, in bytes.

MessageBus

The constants in the sysroot-*-
kos/include/kl/MessageBusTypes.idl(.h) �les:

MaxStringLength (kl_MessageBusTypes_MaxStringLength) – maximum
message size in bytes.

Dhcpcd

The constants in the sysroot-*-
kos/include/kl/rump/DhcpcdConfig.idl(.h) �les:

MaxDhcpcdStrSize (kl_rump_DhcpcdConfig_MaxDhcpcdStrSize) –
 maximum size of a parameter set received from a DHCP server, in bytes.

424

Terminal The constants in the sysroot-*-kos/include/kl/Terminal.idl(.h) �les:

MaxTerminalBytesCount (kl_Terminal_MaxTerminalBytesCount) –
 maximum terminal read/write bu�er size in bytes.

MaxTerminalConnectionIdSize
(kl_Terminal_MaxTerminalConnectionIdSize) – maximum terminal
identi�er size in bytes.

425

Please carefully read the terms of the End User License Agreement before you begin using KasperskyOS
Community Edition.

Licensing

The End User License Agreement is a legally binding agreement between you and AO Kaspersky that stipulates the
terms on which you may use KasperskyOS Community Edition.

You can view the terms of the End User License Agreement (EULA) in the following ways:

Read the text of the End User License Agreement before downloading the KasperskyOS Community Edition
distribution package.

Read the document named EULA.<language code>.txt located in the directory /opt/KasperskyOS-
Community-Edition-<version> after installing KasperskyOS Community Edition.

You accept the terms of the End User License Agreement by selecting the check box under the text of the
End User License Agreement before downloading the KasperskyOS Community Edition distribution package.

I agree

If you do not accept the terms of the End User License Agreement, you must cancel the download of the
distribution package and must not use KasperskyOS Community Edition.

426

KasperskyOS Community Edition versions

Data provision in KasperskyOS Community Edition

If there is no active Internet connection, the solution build occurs without transmitting data or checking for
updates.

Data provision

KasperskyOS Community Edition is distributed in two di�erent versions:

Version that can be downloaded from the Russian-language website https://os.kaspersky.ru/development.

Version that can be downloaded from the English-language website https://os.kaspersky.com/development.

Versions di�er in the contents of their End User License Agreement, �le and di�er in the speci�c information that
they automatically transmit to Kaspersky servers when a solution is built using CMake libraries from the SDK.

The version of KasperskyOS Community Edition downloaded from the Russian-language website automatically
transmits the following information to Kaspersky servers when a solution build is started:

Number of the installed version of KasperskyOS Community Edition.

Unique hardware ID consisting of the checksum of the creation date of the directory /opt/KasperskyOS-
Community-Edition-<version>.

The version of KasperskyOS Community Edition downloaded from the English-language website automatically
transmits the following information to Kaspersky servers when a solution build is started:

Number of the installed version of KasperskyOS Community Edition.

In addition to data transmission during the solution build process, both versions also check for the availability of a
newer version of KasperskyOS Community Edition.

You can disable the check for SDK updates and transmission of SDK version information to the Kaspersky server
by using the NO_NEW_VERSION_CHECK parameter of the CMake command initialize_platform() during the
solution build.

Data is transmitted to account for the number of users of KasperskyOS Community Edition and to obtain
information about the distribution and use of KasperskyOS Community Edition.

Any received information is protected by Kaspersky in accordance with the requirements established by law and in
accordance with current Kaspersky regulations. Data is transmitted over encrypted communication channels.

https://os.kaspersky.ru/development
https://os.kaspersky.com/development

427

Application

Arena chunk descriptor

Arena descriptor

Callable handle

Capability

Glossary

Program that is designed for interaction with a solution user and for performing user tasks.

Related sections:
Building a KasperskyOS-based solution

Structure containing the o�set of the arena chunk in bytes (relative to the start of the arena) and the size of the
arena chunk in bytes.

Related sections:
Working with an IPC message arena

Structure containing three pointers: one pointer to the start of the arena, one pointer to the start of the unused
part of the arena, and one pointer to the end of the arena.

Related sections:
Working with an IPC message arena

A callable handle is a client IPC handle that simultaneously identi�es an IPC channel to a server and an endpoint of
this server.

Related sections:
Creating handles

Each handle is associated with access rights to the resource identi�ed by this handle, which means it is a capability
in terms of the capability-based security mechanism known as Object Capability (OCap). By receiving a handle, a
process obtains the access rights to the resource that is identi�ed by this handle. For example, these access rights
may consist of read permissions, write permissions, and/or permissions to allow another process to perform
operations on the resource (handle transfer permission).

Related sections:
Managing access to resources
Managing handles (handle_api.h)

428

CDL

Client

Client library of the solution component

Client Process

Conditional variable

Constant part of an IPC message

Component De�nition Language is a declarative language used to create a formal speci�cation of a solution
component.

Related sections:
Formal speci�cations of KasperskyOS-based solution components
CDL description

In the context of IPC, client refers to the client process.

Transport library that converts local calls into IPC requests.

Related sections:
Transport code for IPC

Process that uses the endpoint of another process via the IPC mechanism. One process can use multiple IPC
channels at the same time. A process may act as a client for some IPC channels while acting as a server for other
IPC channels.

Related sections:
IPC mechanism

Synchronization primitive that is used to notify one or more threads about the ful�llment of a condition required by
these threads. It is used together with a mutex.

Related sections:
Using synchronization primitives (event.h, mutex.h, rwlock.h, semaphore.h, condvar.h)

The part of an IPC message that contains the RIID, MID and (optionally) �xed-size parameters of interface
methods.

429

Critical section

Description of a security policy for a KasperskyOS-based solution

Direct memory access

DMA

DMA bu�er

Related sections:
Overview: IPC message structure
Working with an IPC message arena
IDL data types

Section of code in which the resources shared by threads are accessed.

Related sections:
Using synchronization primitives (event.h, mutex.h, rwlock.h, semaphore.h, condvar.h)

A set of interrelated text �les with the psl extension that contain declarations in the PSL language.

Related sections:
Describing a security policy for a KasperskyOS-based solution
General information about a KasperskyOS-based solution security policy description
Security.psl.in template
Example descriptions of basic security policies for KasperskyOS-based solutions
Methods of KasperskyOS core endpoints

Direct memory access (DMA) is a feature that allows data exchange between devices and the main system
memory independently of the processor.

Related sections:
Using DMA (dma.h)
Managing I/O memory isolation (iommu_api.h)

Direct memory access

Bu�er that consists of one or more physical memory regions (blocks) that are used for direct memory access.

Related sections:
Using DMA (dma.h)
Managing I/O memory isolation (iommu_api.h)

430

EDL

Endpoint

Endpoint ID

Endpoint Interface

Endpoint method

Endpoint Method ID

Entity De�nition Language is a declarative language used to create a formal speci�cation of a solution component.

Related sections:
Formal speci�cations of KasperskyOS-based solution components
EDL description

Set of logically related methods available via the IPC mechanism (for example, an endpoint for receiving and
transmitting data over the network, or an endpoint for handling interrupts).

Related sections:
Overview
IPC mechanism
Methods of KasperskyOS core endpoints

A Runtime Implementation Identi�er (RIID) is the sequence number of an endpoint within the set of endpoints of a
server (starting at zero).

Related sections:
IPC mechanism
Overview: IPC message structure

Set of signatures for endpoint methods. The endpoint interface is de�ned in the IDL description.

Related sections:
Formal speci�cations of KasperskyOS-based solution components
IDL description

Interface Method

An Endpoint Method ID (MID) is the sequence number of the endpoint method within the set of methods of this
endpoint (starting at zero).

431

Event

Event mask

Execute interface

Formal speci�cation of the KasperskyOS-based solution component

Handle

Related sections:
IPC mechanism
Overview: IPC message structure

Synchronization primitive that is used to notify one or more threads about the ful�llment of a condition required by
these threads.

Related sections:
Using synchronization primitives (event.h, mutex.h, rwlock.h, semaphore.h, condvar.h)

Value whose bits are interpreted as events that should be tracked or that have already occurred. An event mask
has a size of 32 bits and consists of a general part and a specialized part. The common part describes events that
are not speci�c to any resources. The specialized part describes events that are speci�c to certain resources.

Related sections:
Using noti�cations (notice_api.h)
Transferring handles

Interface used by the KasperskyOS kernel when querying the Kaspersky Security Module to notify it about kernel
startup or about initiating the startup of a process by the kernel or by other processes.

Related sections:
Setting the global parameters of a KasperskyOS-based solution security policy
Binding methods of security models to security events

A system of IDL, CDL and EDL descriptions of a solution component (IDL and CDL descriptions are optional).

Related sections:
Formal speci�cations of KasperskyOS-based solution components

A handle is an identi�er of a resource (for example, a memory area, port, network interface, or IPC channel). The
handle of an IPC channel is called an IPC handle.

Related sections:
Managing access to resources
Managing handles (handle_api.h)

432

Handle dereferencing

Handle inheritance tree

Handle permissions mask

Handle transport container

Hardware interrupt

KasperskyOS also uses the following descriptors:

Arena descriptor

Arena chunk descriptor

Operation in which the client sends a handle to the server, and the server receives a pointer to the resource
transfer context, the permissions mask of the sent handle, and the ancestor of the handle sent by the client and
already owned by the server. Dereferencing occurs when a client that called methods for working with a resource
(such as read/write or access closure) sends the server the handle that was received from this server when access
to the resource was opened.

Related sections:
Managing handles (handle_api.h)
Dereferencing handles

Hierarchy of generated resource handles stored in the KasperskyOS kernel.

Related sections:
Managing handles (handle_api.h)

Value whose bits are interpreted as access rights to the resource that is identi�ed by the speci�c handle.

Related sections:
Managing access to resources
Handle permissions mask
Managing handles (handle_api.h)

Structure consisting of the following three �elds: handle �eld, handle permissions mask �eld, and the resource
transfer context �eld. It is used to transfer handles via IPC.

Related sections:
Transferring handles
OCap usage example

433

IDL

Init description

Initializing program

Interface Method

Signal sent from a device to direct the processor to immediately pause execution of the current program and
instead handle an event related to this device. For example, pressing a key on the keyboard invokes a hardware
interrupt that ensures the required response to this pressed key (for example, input of a character).

Related sections:
Managing interrupt processing (irq.h)

Interface De�nition Language is a declarative language used to create a formal speci�cation of a solution
component.

Related sections:
Formal speci�cations of KasperskyOS-based solution components
IDL description

An init description consists of a text �le containing data in YAML format that identi�es the processes and IPC
channels that are created when the solution starts. The init description �le is normally named init.yaml .

Related sections:
Overview: Einit and init.yaml
Example init descriptions
Init.yaml.in template

The Einit program, which is started by the KasperskyOS kernel, starts other programs according to the init
description and creates IPC channels.

Related sections:
Overview: Einit and init.yaml
CMakeLists.txt �le for building the Einit program
Structure and startup of a KasperskyOS-based solution
einit

Subprogram that is called via IPC.

Related sections:
IPC mechanism
IDL description
Methods of KasperskyOS core endpoints

434

Interprocess communication

IPC

IPC channel

IPC handle

IPC message

IPC message arena

Interprocess communication (IPC) is a mechanism for interaction between di�erent processes and between a
process and the KasperskyOS kernel.

Related sections:
IPC
Initializing IPC transport for interprocess communication and managing IPC request processing (transport-kos.h,
transport-kos-dispatch.h)
POSIX support limitations

Interprocess communication

KasperskyOS kernel object that allows processes to interact with each other by transmitting IPC messages. An IPC
channel has a client side and a server side, which are identi�ed by a client and server IPC handle, respectively.

Related sections:
IPC mechanism
Creating IPC channels

An IPC handle is a handle that identi�es an IPC channel. A client IPC handle is necessary for executing a Call()
system call. A server IPC handle is necessary for executing the Recv() and Reply() system calls. The callable
handle and listener handle are IPC handles.

Related sections:
IPC mechanism
Creating handles
Creating IPC channels

Data packet that is transmitted between di�erent processes and between processes and the KasperskyOS kernel
for IPC. An IPC message contains a constant part and an (optional) arena.

Related sections:
Overview: IPC message structure

435

Optional part of an IPC message that contains variable-size parameters of interface methods (and/or elements of
these parameters).

IPC request

IPC response

IPC transport

KasperskyOS

KasperskyOS Security Model

Related sections:
Overview: IPC message structure
Working with an IPC message arena

IPC message sent to a server from a client.

Related sections:
IPC mechanism

IPC message sent to a client from a server.

Related sections:
IPC mechanism

Add-on that works on top of system calls for sending and receiving IPC messages and works separately with the
constant part and arena of IPC messages. Transport code works on top of this add-on.

Related sections:
Initializing IPC transport for interprocess communication and managing IPC request processing (transport-kos.h,
transport-kos-dispatch.h)
Initializing IPC transport for querying the security module (transport-kos-security.h)

A specialized operating system based on a separation microkernel and security monitor.

Related sections:
Overview

Framework for implementing security policies for solutions.

Related sections:
Describing a security policy for a KasperskyOS-based solution
KasperskyOS security models

436

KasperskyOS-based solution

KasperskyOS-based solution component

KSM

KSS

Listener handle

System software (including the KasperskyOS kernel and Kaspersky Security Module) and applications integrated
to work as part of a software/hardware system.

Related sections:
Overview
Structure and startup of a KasperskyOS-based solution
Building a KasperskyOS-based solution

Program included in a solution.

Related sections:
Overview
Formal speci�cations of KasperskyOS-based solution components

The Kaspersky Security Module is the KasperskyOS kernel module that allows or denies interaction between
di�erent processes and between processes and the kernel, and handles queries of processes via the security
interface.

Related sections:
IPC control
Managing access to resources

Kaspersky Security System technology lets you implement solution security policies. This technology prescribes
the creation of formal speci�cations of solution components and descriptions of solution security policies using
security models.

Related sections:
Overview
Developing security policies

A listener handle is a server IPC handle with extended rights that allow it to add IPC channels to the set of IPC
channels identi�ed by this handle.

437

Memory barrier

Message signaled interrupt (MSI)

MID

Mutex

Noti�cation receiver

Related sections:
Creating IPC channels
Creating handles
Initializing IPC transport for interprocess communication and managing IPC request processing (transport-kos.h,
transport-kos-dispatch.h)
Dynamically creating IPC channels (cm_api.h, ns_api.h)

A memory barrier is an instruction for a compiler or processor that guarantees that memory access operations
speci�ed in source code before setting a barrier will be executed before the memory access operations speci�ed
in source code after setting a barrier.

Related sections:
Using memory barriers (barriers.h)

Message signaled interrupt (MSI) is a hardware interrupt that occurs when the device accesses the interrupt
controller via MMIO memory.

Related sections:
Managing interrupt processing (irq.h)

Endpoint Method ID

A synchronization primitive that provides for mutually exclusive execution of critical sections.

Related sections:
Using synchronization primitives (event.h, mutex.h, rwlock.h, semaphore.h, condvar.h)
POSIX support limitations

KasperskyOS kernel object that collects noti�cations about events that occur with resources.

Related sections:
Using noti�cations (notice_api.h)
Managing handles (handle_api.h)

438

OCap

Operating Performance Point

OPP

PAL

Process

Object Capability is a security mechanism that is based on capabilities.

Related sections:
Managing access to resources
Managing handles (handle_api.h)

Operating Performance Point (OPP) is a combination of the matching frequency and voltage for a processor
group.

Related sections:
CPU frequency management endpoint

Operating Performance Point

Policy Assertion Language is a declarative language used to create solution security policy tests.

Related sections:
Creating and performing tests for a KasperskyOS-based solution security policy
Examples of tests for KasperskyOS-based solution security policies

A running program that has the following distinguishing characteristics:

It can provide endpoints to other processes and/or use the endpoints of other processes via the IPC
mechanism.

It uses KasperskyOS core endpoints via the IPC mechanism.

It is associated with a solution security policy that regulates the interactions of the process with other
processes and with the KasperskyOS kernel.

Related sections:
Overview
Starting processes
init.yaml.in template

439

Program

PSL

Read-write lock

Recursive mutex

Resource

Resource consumer

Code that is executed within the context of an individual process.

Related sections:
Building a KasperskyOS-based solution

Policy Speci�cation Language is a declarative language used to create a solution security policy description.

Related sections:
Describing a security policy for a KasperskyOS-based solution
PSL language syntax

Synchronization primitive that is used to allow access to resources shared between threads for either write access
for one thread or read access for multiple threads at the same time.

Related sections:
Using synchronization primitives (event.h, mutex.h, rwlock.h, semaphore.h, condvar.h)

Mutex that can be acquired by a single thread multiple times.

Related sections:
Using synchronization primitives (event.h, mutex.h, rwlock.h, semaphore.h, condvar.h)

KasperskyOS-based software/hardware system object that can be accessed by processes. Resources can be
system resources or user resources.

Related sections:
Managing access to resources

Process that uses the resources provided by the KasperskyOS kernel or other processes.

440

Resource integrity level

Resource provider

Resource transfer context

Resource transfer context object

RIID

Security audit

Related sections:
Managing access to resources
Managing handles (handle_api.h)
Mic security model

Level of trust a�orded to a resource. The level of trust in a resource depends on whether this resource was
created by a trusted subject within a software/hardware system running KasperskyOS or if it was received from an
untrusted external software/hardware system, for example.

Related sections:
Mic security model

Process that manages user resources and manages access to those resources for other processes. For example,
drivers are resource providers.

Related sections:
Managing access to resources
Managing handles (handle_api.h)

Data that allows the server to identify the resource and its state when access to the resource is requested via
descendants of the transferred handle. This normally consists of a data set with various types of data (structure).
For example, the transfer context of a �le may include the name, path, and cursor position.

Related sections:
Managing handles (handle_api.h)

KasperskyOS kernel object that stores the pointer to the resource transfer context.

Related sections:
Managing handles (handle_api.h)

Endpoint ID

441

Security audit con�guration

Security audit data

Security audit pro�le

Security audit runtime-level

A security audit consists of the following sequence of actions. The Kaspersky Security Module provides the
KasperskyOS kernel with information about decisions made by this module. Then the kernel forwards this data to
the system program Klog , which decodes this information and forwards it to the system program KlogStorage
(data is transmitted via IPC). The latter sends the received audit data to standard output (or standard error) or
writes it to a �le.

Related sections:
Creating security audit pro�les
Examples of security audit pro�les
Using the system programs Klog and KlogStorage to perform a security audit

Element of a security audit pro�le that de�nes the security model objects covered by the security audit and the
conditions for performing the security audit.

Related sections:
Creating security audit pro�les
Examples of security audit pro�les

Information about decisions made by the Kaspersky Security Module, including the actual decisions ("granted" or
"denied"), descriptions of security events, results from calling methods of security models, and data on incorrect
IPC messages.

Related sections:
Creating security audit pro�les

Set of security audit con�gurations, each of which de�nes the security model objects covered by the security
audit and the conditions for performing the security audit.

Related sections:
Creating security audit pro�les
Binding methods of security models to security events
Examples of security audit pro�les
Setting the global parameters of a KasperskyOS-based solution security policy

The security audit runtime-level is a global parameter of a solution security policy and consists of an unsigned
integer that de�nes the active security audit con�guration. (The word "level" here refers to the con�guration
variant and does not necessarily involve a hierarchy.)

Related sections:
Creating security audit pro�les
Setting the global parameters of a KasperskyOS-based solution security policy

442

Security context

Security event

Security ID

Security interface

Security model expression

Data that is associated with a security ID and is used by the Kaspersky Security Module to make decisions.

Related sections:
Managing access to resources

A signal indicating the initiation of communication between a process and another process or between a process
and the KasperskyOS kernel.

Related sections:
General information about a KasperskyOS-based solution security policy description
Binding methods of security models to security events
Examples of binding security model methods to security events

A Security Identi�er (SID) is a globally unique identi�er of a resource. The Kaspersky Security Module identi�es
resources based on their security IDs.

Related sections:
Managing access to resources
Getting a security ID (SID)

Interface that is used for interaction between a process and the Kaspersky Security Module. The security
interface is de�ned in the IDL description.

Related sections:
Formal speci�cations of KasperskyOS-based solution components
EDL description
CDL description
IDL description
Binding methods of security models to security events
Initializing IPC transport for querying the security module (transport-kos-security.h)

Security model method that returns values that can be used as input data for other methods of security models.

Related sections:
General information about a KasperskyOS-based solution security policy description
Binding methods of security models to security events
KasperskyOS security models

443

Security model method

Security model object

Security model rule

Security module decision

Security pattern

Element of a security model that determines the permissibility of interactions between various processes and
between processes and the KasperskyOS kernel.

Related sections:
General information about a KasperskyOS-based solution security policy description
Binding methods of security models to security events
Examples of binding security model methods to security events
KasperskyOS security models

Instance of a class whose de�nition is a formal description of a security model (in a PSL �le).

Related sections:
General information about a KasperskyOS-based solution security policy description
Creating security model objects
KasperskyOS security models

Security model method that returns a "granted" or "denied" decision.

Related sections:
General information about a KasperskyOS-based solution security policy description
Binding methods of security models to security events
Examples of binding security model methods to security events
KasperskyOS security models

A decision on whether to allow or deny a speci�c interaction between di�erent processes or between a process
and the KasperskyOS kernel.

Related sections:
Overview
IPC control
General information about a KasperskyOS-based solution security policy description

A security pattern (or security template) describes a speci�c recurring security issue that arises in certain known
contexts, and provides a well-proven, general scheme for resolving this kind of security issue. A pattern is not a
�nished project that can be converted directly into code. Instead, it is a solution to a general problem encountered
in various projects.

444

Security pattern system

Security policy for a KasperskyOS-based solution

Security template

Seed

Semaphore

Related sections:
Security patterns for development under KasperskyOS

Set of security patterns together with instructions on their implementation, combination, and practical use when
designing secure software systems.

Related sections:
Security patterns for development under KasperskyOS

Logic for processing security events in the solution. This logic is implemented by the Kaspersky Security Module.
The source code of the Kaspersky Security Module is generated from the solution security policy description and
formal speci�cations of solution components.

Related sections:
Overview

A security template (or security pattern) describes a speci�c recurring security issue that arises in certain known
contexts, and provides a well-proven, general scheme for resolving this kind of security issue. A template is not a
�nished project that can be converted directly into code. Instead, it is a solution to a general problem encountered
in various projects.

Related sections:
Security patterns for development under KasperskyOS

Starting number of the random number generator (seed) , which determines the sequence of the generated
random numbers. In other words, if the same seed value is set, the generator creates identical sequences of
random numbers. (The entropy of these numbers is fully determined by the entropy of the seed value, which
means that these numbers are not entirely random, but pseudorandom.)

Related sections:
Generating random numbers (random_api.h)

Synchronization primitive based on a counter whose value can be atomically changed.

Related sections:
Using synchronization primitives (event.h, mutex.h, rwlock.h, semaphore.h, condvar.h)
POSIX support limitations

445

Server

Server library of the solution component

Server process

SID

Subject integrity level

System program

System resource

In the context of IPC, server refers to the server process.

Transport library that converts IPC requests into local calls.

Related sections:
Transport code for IPC

Process that provides endpoints to other processes via the IPC mechanism. One process can use multiple IPC
channels at the same time. A process may act as a server for some IPC channels while acting as a client for other
IPC channels.

Related sections:
IPC mechanism

Security ID

Level of trust a�orded to a subject. The trust level of a subject depends on whether the subject interacts with
untrusted external software/hardware systems or whether it has a proven standard of quality, for example.

Related sections:
Mic security model

A program that creates the infrastructure for application software (for example, it facilitates hardware operations,
supports the IPC mechanism, and implements �le systems and network protocols).

Related sections:
Building a KasperskyOS-based solution

446

Thread

Transport code

Transport library

User resource

User resource context

Resource that is managed by the KasperskyOS kernel. Some examples of system resources include processes,
memory regions, and interrupts.

Related sections:
Managing access to resources
Managing handles (handle_api.h)

A thread is an abstraction used to manage the execution of program code. One process can include one or more
threads. CPU time is allocated separately for each thread. Each thread may execute the entire code of the
program or just a part of the code. The same program code may be executed in multiple threads.

Related sections:
POSIX support limitations

C-language methods and types for IPC.

Related sections:
Transport code for IPC
Example generation of transport methods and types

To use a supplied solution component via IPC, the KasperskyOS SDK provides the following transport libraries:

Solution component's client library, which converts local calls into IPC requests.

Solution component's server library, which converts IPC requests into local calls.

Related sections:
Transport code for IPC

Resource that is managed by a process. Examples of user resources: �les, input-output devices, data storage.

Related sections:
Managing access to resources
Managing handles (handle_api.h)

447

Data that allows the resource provider to identify the resource and its state when access to the resource is
requested by other processes. This normally consists of a data set with various types of data (structure). For
example, the context of a �le may include the name, path, and cursor position.

Related sections:
Managing handles (handle_api.h)

448

Information about third-party code

Information about third-party code is contained in the �le named legal_notices.txt in the application installation
folder.

449

Trademark notices

Registered trademarks and endpoint marks are the property of their respective owners.

Arm and Mbed are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere.

Docker and the Docker logo are trademarks or registered trademarks of Docker, Inc. in the United States and/or
other countries. Docker, Inc. and other parties may also have trademark rights in other terms used herein.

Eclipse Mosquitto is a trademark of Eclipse Foundation, Inc.

GoogleTest is a trademark of Google LLC.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

OpenSSL is a trademark owned by the OpenSSL Software Foundation.

Python is a trademark or registered trademark of the Python Software Foundation.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

QT is a trademark or registered trademark of The Qt Company Ltd.

Ubuntu is a registered trademark of Canonical Ltd.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Limited.

Visual Studio and Windows are trademarks of the Microsoft group of companies.

